
Can. J. Math. Vol. 48 (6), 1996 pp. 1296-1323 

DISCIPLINED SPACES AND CENTRALIZER CLONE SEGMENTS 

V. TRNKOVA AND J. SICHLER 

ABSTRACT. Our main result implies that for any choice 1 <m<n <p of integers 
there exist finitary algebras A\ and A2 that generate the same variety, and such that 
the initial ^-segments of their centralizer clones coincide exactly when k < m, are 
isomorphic exactly when k < n and are elementarily equivalent exactly when k < p. 
The proof uses the existence and properties of disciplined topological spaces which we 
introduce and investigate here. 

1. Introduction. 
1.1. In simplest terms, the centralizer clone C\o(A) of a universal algebra A is the cat­
egory of all homomorphisms between finite powers A0 = {0}, A1 = A, A2, A3, . . . of 
A. For any integer r > 1, all homomorphisms between the powers A0, A1, . . . Ar form 
what is called the initial r-segment Clor(^) of Clo(^4). It is clear that the equality of cen­
tralizer clone segments Clor(v4i) and QXoyiAi) of algebras A\,A2 always implies their 
isomorphism, and that their isomorphism always implies their elementary equivalence. 
The present paper demonstrates that, subject only to these obvious dependencies, the 
three upper boundaries of equality, isomorphism and elementary equivalence of central­
izer clone segments of universal algebras may be chosen at will. 

This result translates an earlier one [7] on continuous maps of metrizable spaces, 
and exploits the method used by the first author in her preprint [10] to separate equality 
from elementary equivalence for centralizer clone segments of universal algebras. These 
two sources, in turn, derive their essence from yet another first author's paper [9] on 
continuous maps of metrizable topological spaces. The original impetus for [10] came 
from Ralph McKenzie who suggested that, having completed [9], the first author also 
investigate centralizer clones of universal algebras. 

Results of [7] on continuous maps of metrizable spaces can be 'translated' into our 
present results on homomorphisms of universal algebras only for metrizable spaces 
which are disciplined (see 2.2 below). We show that metrizable spaces constructed in 
[7] are disciplined and have other properties enabling the translation to proceed. 
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A somewhat more general notion of a clone is needed for an accurate description of 
our results. 

1.2 . Let UJ — {0,1,2,...} denote the set consisting of all finite ordinals n = {0 , . . . , 
/ i - l } . 

A subcategory T of the category Set of all sets and maps is called a clone on a non­
empty set X if the set obj T of all objects of T consists of all finite Cartesian powers 
X° = {0},* 1 = X,X2 =XxX,...ofX,theproductprojections/?jm):^w ^ X w i t h 
/ G m are morphisms in T for any m G UJ, and every X"1 G obj T accompanied by all 
Cartesian product projections pf^\ X" —> X with / G m is a categorical product, in T, of 
m copies of X. This means that for any m,n G UJ and any m-tuplefi:X71 —> Xof maps in 
T, the mapf.X" -> X* defined by 

fiy) = (A)(y),• • • Jm-M) for ah> G X» 

also belongs to T. In particular, for each ifj'.m—^n with m,n £ UJ, the category T contains 
the mappw:X" —> A™ given for every ̂  = (y0, •.. ,yn-\) G ^" by 

pw(yo,... 9yn-\) = 0ty(o), • • • ^v(m-i))-

Set ITY(AW) = A™ for any m G a;, and I"Y(V0 = / ? ^ for any mapping -0: m —> n with 
m,n £ UJ. Then T^: Ord^ —> T is a well-defined contravariant functor from the category 
Ordu of all finite ordinals and all mappings between them, and Tri^) — pf^ for every 
map VyM): 1 -> n with ^ ( O ) =y G n. 

Let A: be an abstract category and let H be an isomorphism of k onto a clone T on 
a non-empty setX Then the composite a = H~l o I> : Ordw —* k is a contravariant 
functor which endows k with the following additional structure: 

(g) k has a uniquely determined object a such that obj A: = {an \ n G UJ}, where a" is 
an H-th power of a in the category k, and 

(e) A: has a specific enumeration of product projections 7rjw): an —> a by members of 

Indeed, it suffices to set a = a(l), an — a(n) and 7rjw) = a(i/>jw)) fory G fl G a;. 
Conversely, the information provided in (g) and (e) gives rise to such a contravariant 
functor a: Ord^ —» A:. 

A category k for which (g) and (e) hold (or, equivalently, a category accompanied by 
such a functor a: Ordw —» A:) will be called an abstract clone and a G obj A: its generating 
object. 

Therefore, up to trivial cases when a is not faithful, any abstract clone is the categor­
ical dual of an algebraic theory as defined by Lawvere. 

We say that abstract clones k and k! are isomorphic, and we write 

k~kf, 

if there exists an isofunctor O of k onto k' such that O o a — a7 for the respective 
contravariant functors a and a' of Ord^ into k and ft. In particular, any isomorphism 
preserves generating objects and projection enumeration. 
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1.3. A pair (k, F) is called a clone whenever k is an abstract clone and F:k—^ Set is a 
faithful functor which preserves finite products. 

We say that clones (&, F) and {k1, F') are isomorphic, and we write 

(k,F)~(k',F,% 

whenever the abstract clones k and k! are isomorphic. We say that the two clones are 
equal, and we write 

(k,F) = &,?), 

if there exists an isomorphism O of the abstract clone k onto the abstract clone kl (that 
is, an isofiinctor O such that Q>oa= a') for which F1 o Q> — F. 

1.4 . If ^C is a category with finite products, then every object a of ^C determines an 
abstract clone k, uniquely up to an isomorphism, as follows: for every n € u we select 
an n-th power an of a and an enumeration of its product projections, and then let k be the 
full subcategory of %^ generated by these powers. 

If (^C, *Zi) is a concrete category such that 9£ has finite products and the forgetful 
functor U: %^ —> Set preserves them (that is, if (5C, U) has finite concrete products), 
then every object a of ^C with U(a) ^ 0 determines, up to an equality of clones induced 
on the non-empty set U(a), a clone (k,F), namely that consisting of an abstract clone 
k determined by a in ^C and the restriction F of U to k. Any such clone (k,F) will be 
denoted as Clo(a), or Clo(a, 9Q when ^ needs to be explicitly mentioned. 

1.5. Any nonvoid universal algebra^ of a finitary type Z determines two distinct clones 
on its underlying setX As suggested by [6], for instance, these are: 

(1) the clone C\o(A) formed by all homomorphisms between finite powers of A, 
called the centralizer clone of A, and 

(2) the operation clone of A, which is the smallest clone on X containing all opera­
tions of A. 

While the operation clone of A determines the centralizer clone C\o(A) uniquely, its 
abstract clone does not do this at all, as shown in Theorem 1.9 below. 

1.6 . Let r > 0 be an integer. Ifk is an abstract clone generated by the object a, then 
its full subcategory generated by {a7 \j = 0 , 1 , . . . , r} C obj k augmented by the enu­
meration of the product projections i^p: a/ —> a inherited from k is called the r-segment 
of k. A pair (kr, Fr) is the r-segment of a clone (k, F) if kr is the r-segment of k and Fr 

is the restriction of F to the full subcategory kr ofk. For any concrete category (^C, U) 
with finite concrete products and any a G obj ^ with U(a) ^ 0, the r-segment of a clone 
C\o(a) will be denoted by C\or(a). 

We say that two r-segments kn k'r of abstract clones k, k! are isomorphic and write 

kr~K 

if there exists an isofiinctor Or of kr onto k!r such that O r o ar — a'r where ar, a!r are 
restrictions of the respective contravariant functors a and af. 
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If (kr,Fr) and (k'r,F'r) are r-segments of clones, we say that they are isomorphic and 
write 

(kr,Fr)~{k'nF'r) 

whenever kr ~ k^.. Finally, the two clone r-segments (knFr) and (K^K) a r e equal, and 
we write 

(kr,Fr) = {k'nF'r) 

if there exists an isofunctor Or of kr onto k!r such that Or o ar = a'r and F j o O r = Fr. 

1.7. In addition to their equality and isomorphism, we shall also investigate elementary 
equivalence of clones and clone segments. We say that clones or r-segments of clones 
(k, F) and (k/, F1) are elementarily equivalent, and write 

{KF)K(k\F'\ 

if the abstract clones or r-segments of abstract clones k and k! are elementarily equivalent 
(in symbols k & kf), that is, whenever £ and k! satisfy the same formulas of the first order 
language of clone theory or of its fragment appropriate to r-segments. Paragraph 1.8 
below introduces this language, as used by Taylor [8], and then in [9] and [7]. 

1.8 . Any abstract clone k with a generating object a can be viewed as an ^-sorted 
universal algebra whose carrier Xw of the «-th sort is the set k(an, a) of all A:-morphisms 
an —* a, and which has 

(c) n distinct miliary operations c^\..., c^\ of each sort n G u>, and 

(s) for any m9n G u, an operation S^ of heterogeneous arity (n,m,..., m) whose 
values are of the sort w, that is, 

bm'.Xn X Xm X • • • X Xm • Xm. 

Indeed, we need only interpret c^\..., c^\ as the product projections TT^\..., TT^\ of 
k and write 

S"m(h,f0,• • • ,fn-i) = h o <f0x • • • x/„_i) 

in terms of the composition in k—where fox • • • xfn-\ is the unique &-morphism/ in 
k(am, an) for which TTJ"} of=fi for all i En. These operations also satisfy all equations 
below, namely, 
(RU) SJ(A, 4W), ...9c™l) = h for every n€u>, 
(LU) ^ ( c f V o , • • • ,/n-i) =fi for all m9 n G a; and / G *, 
(AC) Sg,(A,SKgo,/o,.-.,/«-i),...,^(&-i,/o,...,/«-0) = S&(«(A,go,...,gp-i), 

/o, • • • ,/w-i) for all m,n,p G a;. 
Hence every abstract clone k determines a unique assorted algebra whose operations 

are described in (c) and (s), and which satisfies equations (RU), (LU) and (AC). Con­
versely, any such assorted algebra determines, up to an isomorphism, an abstract clone k. 
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To see this, we choose an abstract generating object a for k and then formally require that 
k(am, an) consist of all ̂ -tuples of members of the carrier Xm of the sort m [with the unique 
'empty' 0-tuple in case of n — 0]. If a 'composite' gof off = (/o,... ,fn-\) £ k(am,an) 
andg = (go,... 9gp-\) G k(an,ap) is defined by 

£ ° / = ( S £ f e o , / o , . . . , / „ - i ) , . . . , ^ f e - i , / o , . •.,/«-!)), 

then the associativity of o follows from (AC). The A-tuple ( c ^ , . . . , c ^ j ) is the unit in 
k(an, an), and an is the «-th power of a with the projections c^\..., c ^ G l „ = k(an, a) 
because of (RU) and (LU). 

The first order language of clone theory is nothing else but the first order language 
of the ^-sorted algebras described above. Let r > 1 be an integer. Having restricted the 
sorts to { 0 , 1 , . . . , r} and the operations to those c^ and S^ for which i E n and m,n < r, 
we obtain a fragment of the first order language of clones which is just the first order 
language of clone r-segments. 

Given an abstract clone or an r-segment of an abstract clone k, we shall call the above 
assorted or (r + l)-sorted algebra the clone algebra ofk. The carrier of its n-th sort, that 
is, the set k(an, a) of A:-morphisms, will be denoted by (k)n. 

It is clear that two abstract clones or clone segments are isomorphic exactly when 
their corresponding clone algebras are isomorphic and, more generally, that product pre­
serving functors that also preserve product projection enumeration correspond exactly to 
homomorphisms of the corresponding clone algebras. 

1.9. MAIN THEOREM. Ifm,n,p e {1,2, . . . ,oo} are such that m < n < p, then 
there existfinitary algebras A\ and A2 whose centralizer clones Clo(^4i) and Clo(;42) 
satisfy 

m = sup{/ < u I Clo/(^i) = Cl0i(^2)}, 

n — sup{/ < UJ I Clo/(^i) ~ Clo/(^2)}, 

p = sup{/ < to I Clo/(^i) « Clo,042)}. 

The algebras A [, A2 have isomorphic operation clones. 

Next we outline the contents of the paper. In the second section, we assign a finitary 
algebra A(X), called a trace of X, to any metrizable topological space X. We also intro­
duce the notion of a disciplined (metrizable) space X, for which we demonstrate a close 
connection between continuous maps X1 —» X and homomorphisms (A(X)) —> HX). 
Then (see 2.9) we deduce that, for any two infinite disciplined spacesX\, X2, 

Clo*(X0 - C\ok(X2) if and only if Cloit(A(Ari)) = Clo*(A(X2)). 

In the third section (see 3.5), we prove that 

Clok(Xi) ~ Clo*(X2) if and only if Clo*(A(*i)) ~ C\ok(\(X2)) 
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for any infinite disciplined spaces X\, X2 with no absolute constants—a clone notion 
introduced in 3.2. In the fourth section on elementary equivalence (see 4.1), we show 
that such spaces also satisfy 

Clo*(X0 & Clo*(X2) if and only if Clojk(A(Ari)) « Clo*(A(X2)). 

In [7], we presented a general construction method that produces metric spaces whose 
clones of continuous maps have certain useful properties, and then applied it to obtain a 
result similar to the present Theorem 1.9: 

[7] for any choice of m, n,p £ {1,2, . . . , 00} with m < n < p, there exist metric 
spaces X\ andX2 such that 

m = sup{i < u> I Clo,-(Xi) = Clo,-(Ar2)}, 

n = sup{i < u I CloK^i) ~ Clo,(X2)}, 

p = sup{/ < u I Clo/(Zi) « Clo,(X2)}. 

In the fifth section, we briefly describe this method, and then supplement [7] by show­
ing that all spaces it produces are disciplined, and almost none of them have absolute con­
stants. Together with the results of Sections 2-4 mentioned earlier, this already shows 
that the algebras A\ = k{X\) and^2 = A(X2) satisfy the first statement of Theorem 1.9. 
Its remainder—the claim that the operation clones ofA\,A2 are isomorphic—is proved 
in the sixth section, where we show that traces of any two infinite metrizable spaces sat­
isfy precisely the same set of identities. This implies that operation clones of algebras 
A\ — A\(m,n,p) and^2 = A2(m,n,p) are isomorphic for all choices m < n < p in 
{1,2, . . . , 00}, so that they determine the same abstract clone. Moreover, all these al­
gebras will be constructed over the same underlying set. This means that an abstract 
(operation) clone can have representations on the same set which vary to the extent that 
their centralizer clones realize every triple m < n < /? in {1,2, . . . , 00}, in the sense 
described by Theorem 1.9. 

Using [7] as a source of disciplined spaces without absolute constants, in the sev­
enth section we apply the trace to 'translate' other results of [7] into results on finitary 
algebras. This section also describes alternate traces (unary and infinitary), and restates 
Theorem 1.9 for a finitary algebra and its reduct. 

2. Disciplined spaces and their algebraic traces. 
2.1. To any metrizable topological space X = (P, t) we now assign its algebraic trace 
(k(X). This is a universal algebra lk(X) = (g, {-,7} \J{irk\ke cv}) with a single binary 
operation • and countably many unary operations 7To, ir\,... and 7. The underlying set Q 
of \(X) is the disjoint union 

Q = PL)SU{\}, 
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where the set S consists of all one-to-one sequences {pk \ k E UJ} of members of P. The 
operations of A(JQ are defined as follows: 

q'<I 

for every k E u, we set 

q if q = q' E P 
X otherwise; 

^ (^ _ \Pk ifq = {pk\k£uj} eS 
kW \q for every qePU {A}; 

and finally, the operation 7 which traces the topology t ofXis given by 

I p ifq^S andq converges to p mX 
X ifqeS does not converge in X 
q for every q E PU{A}. 

It is clear that Jk(X) is isomorphic to h(Xf) whenever X is homeomorphic to Xf. Con­
versely, if the traces A(X), A(A )̂ are isomorphic then X is homeomorphic to X. Indeed, 
if A(X) is a singleton thenZ = Xf = 0. Else P e g consists of all # E £? with q - q = q 
satisfying q • q' ^ q for every #' ^ #, and hence P is bijective to the underlying set P' of 
X/

9 and X is homeomorphic to A" because of the remaining unary operations. 

2.2. DEFINITION. Let n E u. We say that a topological space X = (P, t) is «-
disciplined if every continuous map/i.Y71 —» X decomposes as a projection followed by 
a homeomorphism onto a closed subset of Xox, more precisely, if for some set M C « = 
{0, . . . ,« — 1} and some homeomorhismg:^ —> Xof J&1 onto a closed subset of X, 

where TT^-.X" —> ^ is the projection of X" onto X*4 associated with the inclusion map 
MCn. 

A space X is disciplined if it is ^-disciplined for every n E LJ. 

REMARKS, (a) It is clear that every T\ -space is 0-disciplined. 
(b) A space X is ^-disciplined if and only if for every continuous map/:X1 —» X 

there exist an integer k > 0, a one-to-one mapping ip:k —> n, and a homeomorphism 
g'.X* -» X onto a closed subset of X such tha t / = g o 71™, where TT^IA71 -> A* 
is the (surjective) projection given by ir^((f) = <p o t/; for every cp £ X71. Any such 
decomposition/ = go 7r[l/,] will be called standard. 

For any integer « > 0, let A(w): &(X)n —> A(X) be the constant map whose value is A. 
Here is the central result of this section. 

2.3. PROPOSITION. Let k{X) be the algebraic trace of a disciplined metrizable space 
X = (P, t), and let n>0. Then 

(1) every continuous mapf.X71 —> X has a unique extension to a homomorphism 
E(f): A(X)n —> \(X), and E(f) is constant if and only iff is constant, 
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(2) ifh: fi(X)n —• HX) is a homomorphism, then either h = A(w), or else h(Pn) C P 
and the restriction ofh to Pn maps X" continuously into X. 

We recall that the algebraic trace \(X) = (g,{-,7}U{7r7 \j G u}) of a spaced = (P,f) 
is defined on the disjoint union Q — PUSU{A}. For A: > 1 and an arbitrary one-to-one 
map g: Pk —> P we define a map 

as follows. For # = (go,...,^-i) £ 2*> we set 

. . , . , , x (A if at least one qt = A 
(hi) A,(?o, . . . . f t - i)= ( ^ i f g e / * 

The case still left undefined is that of a A:-tuple g e (PUS)k with gi E S for at least one 
/ G /:. For any such A>tuple (go,..., gk-\) and every / G k andy G a; we first write 

%i = 
gt when qt G P 
7ryto/) when g( G S, 

and then assemble a sequence {#y \jEu} with the members #7 = (%$,... ,#/,*-1) £ 
P ^ C ^ . This sequence is one-to-one because #/ G S for some / G k. Since the mapping 
g is one-to-one, 

(h2) Agfao, • • •,qk-i) = {g%) \j€u} 

is a one-to-one sequence of elements of P. Whence hg(qo,... 9gn-\) G *S, and (h2) and 
(hi) define a mapping hg:Q^ —* Q correctly and completely for any k > 1. 

When £ = 0, we have P° = 0° = {0} and, for any g:P°-+P, we define /ig: g° —• 0 
to be the map with /*g(0) = g(0). 

Proposition 2.3 is proved in 2.4—2.9 below. 

2.4. LEMMA. Let k>0bean integer and let g^ —• Pbea homeomorphism ofXk 

onto a closed subset of X. Then E(g) = hg: \(X)k —• \(X) is a homomorphism. 

PROOF. Write hg = h. Since {p} is a subalgebra of k(X) for every/? G P, we need 
consider only the case of k > 1. Let g = (go,-- • ,#*-i) and #' = (#Q, .. • ,<7*_i) belong 
tog*. 

a) First we show that the binary operation • is preserved by h. 
al) If g ^ g', then #/ - g't = \ for some / G &, so that h(g • #') = A. We show that 

h(g) • h(g') = A as well. If <?/ G SU {A} for some / G k, then % ) G SU {A} and hence 
h(g)-z = A for all z € Q. Since the operation • is commutative, in the only remaining case 
we have g, g' G Pk. But h coincides with g on P* and g is one-to-one, so that h(g) ^ /*(#') 
and h(g) • ^(g7) = A follows. 

a2) If g = g\ then either qt G SU {A} for some / G A: and % • <?') = A = h(q) • % ' ) 
as in the previous case, or q G Pk, and hence q - q — q. But then h(q • g) = g(q) and 

% ) • K4) = g(4) • g(q) = £(<?)• 
b) Next we prove that h preserves 7T) for eachy G A:. 
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bl) If q G (P U {A})*, then ^j(qt) = qt for all / G k, and hence irj(q) = <?. Also, 
% ) GPU{A} by (hi), and *j(h(g)) = h(q) = hfaiqj) follows. 

b2) If qi = Aforsome/ G t, then 7Ty(̂ /) = A, so that/i (79^)) = A = h(q) = 7Tj(h(q)), 
by (hi) again. 

b3) In the remaining case of a q G (P U S)k with <?/ G £ for some / G £, the A;-tuple 
r — (79(^0), • • •, 7Ty(^_i)) is such that 7ry(#/) = <?/ when #/ G P, and 79(̂ 7) G P is the7-th 
member of the sequence qi when #/ G S, so that r G Pk and /z(r) = g(r) = irj(h(qf) by 
(h2). 

c) Finally, we show that h(l(q0%... 7(#*_i)) = 7 ( % ) ) for all # = (gr0?..., qk_x) G 
g*. This is clearly true for q e (PU {\})k because 7 is the identity o n ? U { A } and 
h(q) G P U {A} for any such q, and also for any A>tuple q with some <// = A, for then 
h{l(qo\ • • • ,7(^-0) = A = 7(A) = l(h(qj) by (hi). 

In the remaining case, we have a q G (PUS)* with qi £ S for some / G &. As in 
the clause (h2) of the definition of h, let q = {qj \ j G uo} be the one-to-one sequence 
of elements qj = (%$,..., q^k-i) ofPk, such that cjjj = qt when qt G P, and ^ / is the 
y-th member of qh when qt G 5. First, let us suppose that q converges to a point r — 
(ro,. . . , n-\) in the spaced = (P, /)*. Then, for every / G A:, the sequence {qjti \ j G u] 
converges to rt in X, so that (7(^0),..., l(qk-1)) = r > a n d hence A (7(^0),..., 7fe-1)) = 
/*(/-). On the other hand, h(q) = {g(cjj) \jeu} G S by (h2), and the sequence {g(qj) \ 
j G a;} converges to g(r) because g is continuous. But h(r) = g(r) since r G Pk, and 
therefore 7 (/*(<?)) = A(r) = h{pf(q0),... ,7(^-1)). Secondly, let us suppose that q does 
not converge in Xk. Then there must be a sequence {qjj \ j G a;} which does not converge 
in X. Whence l{%i \ j G u} = A. Simultaneously, since g is a homeomorphism of P^ 
onto a closed subset of (P, t\ the sequence {g(tfy) \ j e CJ} = h(q) cannot converge in 
(P, 0 either. Therefore 7 ( % ) ) = A = h(l(q0),... ,7(<?*_i)). • 

2.5. LEMMA. Let k > 0 6e AH integer and let h: &(X)k —> A(Z) fee a homomorphism. 
Then either h is constant with the value in P U {A}, or else h(X,..., A) = A, h(Pk) C P, 
and the restriction ofh to Pk is not constant. 

PROOF, (a) Since z • A = A for all z G Q, for every q G 0* we have # • (A,.. . , A) = 
(A,...,A), and hence also %)-/*(A,. . . ,A) = A(A,...,A). If A(A,...,A) ^ A, then 
A(A,..., A) G P and hence h(q) = A(A,..., A) for all qeQ*. Therefore A(A,..., A) = A 
for any h which is not a constant whose value belongs to P. 

(b) Suppose that/? = (p0,... ,Pk-\) £ P* and /z(p) = A. We aim to show that h must 
be the constant with the value A. Since 7(z) = z exactly when z G P U {A}, the homo­
morphism h must map (P U {A}/ into P U {A}. First we show that h(pf) = A for any 
otherp' = (p'Q9... ,p'k_y) G P*. For 1 G £, we set# = pt when/?; = /?,- and, whenp^ ^ p f , 
choose qt G 51 with 7r0(^/) = pt and 7ri(^/) = p\. Then (7r0(<7o), • • •, 7ro(^_i)) = p and 
(TTI(^O), - • - ,7ri(^_1)) =/? ; . Whence 7T0(%o,.--,^-i)) = h[^{q0\... ,7r0(^_i)) = 
A(p) = A. But then h(q0,...,qk_i) = A because TTQ1 {A} = {A}, and//(p7) = 
7TI(% 0 , . . . ,<7A:- I ) ) = 7ri(A) = A follows. Therefore A(P )̂ = {A}. Next we show 
that h(q) = A for every q = (^0, •.. , ^ -1 ) ^ (P U {A})*. For any such <?, there exist 
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p = (p0,... ,pk_{) and/?7 = (p'0,... 9p'k_x) in F* with qt = pt • p\ for every i G i, and 
hence h(q) = h(p) • /*(//) = A • A = A. Finally, for any q = (q0,..., qk_x) G ^ w e have 
(710(40),...,Mqk-\)) e(PU {A})*, so that 7T0(%)) = h(7r0(qol...,7r0(^_i)) = A. 
Since 7ro(z) = A in \(X) only when z = A, this proves that h(q) = A. Whence h is the 
constant with the value A. 

If h is not constant, then (a) and (b) show that h(X,..., A) = A, h{Pk) C P, and that 
the restriction of h to Pk is not constant. • 

2.6. LEMMA. Le/ k > 0 be an integer and let h\,h2: &(X)k —> A(X) 6e homomor-
phisms such that h\(p) = h2(p)for everyp G Pk. Then h\ = h2. 

PROOF. Since the claim is trivial when k — 0, let us assume that k > 1. By 
Lemma 2.5, the homomorphisms /*i, hi agree on P* U {A}*. 

(a) To show that h\{q) = h2{q) for each q = (q0, . . . , ^ _ i ) G ( P U {A})\ we select 
p = (po,... 9pk-\) and// = (p'0,... ,/>£_!> in P* so that/?, -p'. = # for every / G £, and 
conclude that h\(q) = h\(p) • h\(p') = h2(p) • h2(p') = h2(q). 

(b) Let q = (q0,...,qk-i) G 0*. Then (TT^O), . . . , ^ ( ^ - i ) ) e(PU {\}f for every 
y G CJ. The maps Ai, h2 satisfy iTj(hi(qj) = hx{irj{qo\...9^j{qk-x)) and -Kj(h2{q)) = 
h2{7Tj(qoX..., TT/te-i)). But then 7Tj(hi(q)) = TTj(h2(qj) for every y G a; because h\, h2 

agree on (P U {A}/, and /*i(#) = h2(q) follows. • 

2.7. Now we are in a position to prove Proposition 2.3(1). LetX = (P,1) be a disciplined 
metrizable space, and let/: A71 —+ Xbe continuous with n > 0. Since X is disciplined, 
we have a standard decomposition/ = g o 7r^] of/, where 7r[^]: A"1 —* A* for some k > 0 
and an injective ip:k -^ n, and g: Jfc* —> X is a homeomorphism of A* onto a closed 
subset of X Then the homomorphism /*g: A(X)* —» \(X) from Lemma 2.4 extends g. 
Whence £(/) = Ag o TT^], where TT[I/,] denotes the projection A(X)W —> A(A)* associated 
with i/>, and £(/) is a homomorphism extending / Its uniqueness follows by Lemma 2.6. 
The homomorphism E(f) is constant exactly when/ is constant, by Lemma 2.5. This 
completes the proof of Proposition 2.3(1). 

Proposition 2.3(2) will follow directly from Lemma 2.6 and the Lemma 2.8 below. 

2.8. LEMMA. Let n>0bean integer, and letX = (P, t) be a metrizable space. Then 
any homomorphism h: &(X)n —> \(X) other than A(/l) is an extension of a continuous map 
f:X»-+X. 

PROOF. If h =̂  A(w) then, by Lemma 2.5, either h is a constant whose value belongs 
to P, or else A(A,..., A)_ = A and /z(P") C P. Thus we need consider only the latter case 
for n > 1. 

Suppose that the restriction / : Xn —> X of h to P" is not continuous at some r = 
(r0 , . . . , rn-\) G P". Then there exists a sequence {vy- | y G a;} which converges to r in A71 

and such that, for some e > 0, the distance from/(v7) to/(r) is never less than e. If we 
write Vj = (v7,0,. •. v,>_i) for eachy G u, then the sequence V = {VJJ | y G UJ} converges 
to n for every / G n. We need to produce a sequence {vv, | j G CJ} in P" amenable to 
algebraic arguments, that is, a sequence whose coordinate sequences {WJJ \JELJ} are 
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either one-to-one or constant for / G n. We proceed as follows. Any sequence contains 
a subsequence that is either constant or one-to-one. There exists a subsequence {v? | 
j G UJ} of {vj I j G UJ} whose first-coordinate sequence {v?0 | j G UJ} is one-to-one or 
constant. Then we find a subsequence {vj | j G UJ} of {vj \ j G UJ} such that the sequence 
{vj j | j G UJ} of its second coordinates is one-to-one or constant, and repeat this process 
until, having exhausted all n coordinates, we arrive at a subsequence {WJ | j G UJ} of 
{vj | j G UJ}. If Wj = (wjfi,... 9Wjin-\) and / G «, then the /-th coordinate sequence 
w1 = {wyj/ 17 G a;} is either constant with Wjj = rt for ally G a;, or else it is one-to-one 
and converges to r,-. 

For each / G n, we choose #/ G ^ as follows: 

f w* if w' is one-to-one qi = { 
\ r{ ifw' is constant. 

Then qt G S in the first instance, qt G P in the second and, moreover, 7(#/) = r,- and 
7ry(<7/) = wyy for all i G « andy G a;. Thus, in particular, q = (qo,..., #w-i) G (P U 5)w 

and (l(qo),... ,7(#w_i)) = r in A(X)W. Also, for everyy G a;, 

* / ( % ) ) = h(7rj(q0), . . . , 7Ty(^_i)) - h(Wj309 • • • , W y >_l) = /(lVy) G P 

because /*(PW) C P. From irrl(P) = PUSit follows that either h(q) G P or % ) G 5. In 
the first case h(q) =f(wj) for ally G a;, while /z(#) = {f(wj) \ j G UJ} G 5 in the second. 
But then 

7 ( % ) ) = A(7fao), • • • ,7fen-0) = AW =/ ( r ) , 

and this is possible only when either/(wy) = / ( r ) for ally G a;, or {f(Wf) \ j G UJ} 
is one-to-one and converges to/(r). But this is impossible since {/"(wy) | y G UJ} is a 
subsequence of the sequence {/"(vy) | y G a;} which does not converge to r. • 

The proof of Proposition 2.3 is now complete. 

2.9. PROPOSITION. Let k>0 bean integer and letX\ andX2 be disciplined metriz-
able spaces. Then 

Clo*(J!ri) - Clo*(X2) if and only if C\ok{k(Xx)) = Clo*(A(X2)). 

PROOF. This is an immediate consequence of Proposition 2.3. • 

3. Absolute constants in disciplined spaces. 
3.1 . Our Theorem 1.9 speaks about the equality =, isomorphism ~ and elementary 
equivalence ^ of centralizer clone segments Clo,(^i) and Clo;(/l2) of finitary algebras^ i 
and ̂ 2 which, as indicated earlier, are the algebraic traces of suitable disciplined metriz-
able spaces. The equality of centralizer clone segments of such algebras has already been 
treated by Proposition 2.9. Here we investigate their isomorphism, for which we prove 
a similar Proposition 3.5 and, in 3.8, also set down a basis for subsequent consideration 
of elementary equivalence. 
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We need the following concepts. 

3.2. DEFINITION, (a) Let F: k —> Set be a functor and let a be an object of the 
category k. We say that an element x G F(a) is an absolute fixpoint of a whenever, for 
any morphism/ G k(a, a), either the mapping F(f) is constant or F(f)(x) = x. 

(b) Let a G obj A: generate a clone (&,F), and let « G w . A morphism c £ k(an,a) 
is called an absolute constant whenever F(c): F(aw) —-* T7^) is a constant map 
whose value is an absolute fixpoint of a. 

3.3 . We recall that the first order language of clones is just the first order language of 
assorted algebras with the operations cy and S^m withy G n and m, n G UJ, as described in 
1.8. The language has UJ sorts of variables, with symbols x^l\y^l\ x^\ x%\ . . . denoting the 
variables of the i-th sort for each / G UJ. For any r > 1, the first order language of clone 
r-segments is the fragment of the first order language of clones which has variables x(/), 
y®,... with / = 0 , 1 , . . . , r only, and operation symbols S^m and cjw) withy G n restricted 
to m, n < r. 

Since in our case the variables of the /-th sort range through maps T —> Y, we simplify 
matters somewhat by treating all variables as maps. As is customary, we shall identify 
elements of Y with constant maps Y —-» Y, so that a variable x(0) will be replaced by a 
variable x(1) of the 1-st sort satisfying the predicate 

p(xm) = \/ymS\(x^,y^) = x^. 

In what follows, we shall also use the predicates 

afp(x(1)) = p(x(1)) A Vy(1)(p(y(1)) V S}(y(1),x(1)) = x(1)) and 

ac(z(w)) = 3x(1)(afp(x(1)) A ^(x(1),z(w)) = z(w)), 

which describe absolute fixpoints and absolute constants in this language. 

3.4 . If X = (P, t) is an infinite disciplined metrizable space then, by Lemma 2.5, any 
homomorphism h: A(JQ —» A(X) with h(X) ^ A is a constant map (whose value belongs 
to P). Whence A is an absolute fixpoint of \(X), and the homomorphism A(n): A(X)n —> 
\(X) is an absolute constant in Clo(A(Z)) for every n > 0. 

If X has no absolute fixpoints, then for every/? G P there is a non-constant continuous 
m&vfp'.X —> X withjj,(/?) 7̂  /?. Hence the unique homomorphism £(/J,): A(X) —> A(JQ 
extending^,—see Proposition 2.3(1)—is non-constant and such that E(fp)(s) ^ s for any 
S G S with 7r0(̂ ) = p. It follows that A(JQ has no absolute fixpoints other than A, that A(n) 

is the only absolute constant &(X)n —> \(X), and that Clo(JQ has no absolute constants. 
Hence, by 2.3, for every n G u, 

C\o(HX))n = {E(f) | / G Clo(J04u{A^>}, 

and A(w) is the unique absolute constant in Clo(A(A^) . Let 

£:CloW^Clo(A(X)) 

denote both the embedding of these clone algebras and also the functor preserving finite 
products and projection enumeration corresponding to it. 
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3.5. PROPOSITION. Let k>\ bean integer, and letX\ andX2 be infinite disciplined 
metrizable spaces without absolutefixpoints. Then 

Clo^Xj) ~ Clo*(X2) if and only if C\ok(k(Xx)) ~ C\ok{h{X2j). 

This equivalence also holds for the respective full clones. 

PROOF. In the diagram below, let ES^ and E® be restrictions of embeddings from 
3.4 above to the respective clone segments. 

cio*(xo ^ cio^Atro) 

Clo,(X2) -^ Clo,(A(X2)) 

Suppose first that the functor *¥ in this diagram is an isomorphism. Then *F preserves 
elements satisfying the same first order formulas, and hence it must map absolute con­
stants of its domain precisely onto absolute constants in its codomain. By 3.4, there is a 
unique isomorphism O completing the diagram above. 

Conversely, let O be an isomorphism. We extend O to a product-preserving functor *F 
which sends the unique absolute constant A(n) of Clo(A(Zi)) to the unique absolute con­
stant of Clo(A(Z2)) for every n < k. Then the diagram above commutes. The fact that 
the bijection *F is a clone isomorphism or, equivalently, that it preserves all operations 
S^ with m, n <k, will follow from Lemma 3.8 below. The remainder is clear. • 

3.6 . Let K = (k,F) be a clone with the generating object a, and let ip:r —•» n be a 
map for some r,n G u. As in 1.2 for clones of spaces, but now for any clone, we write 
7r^]: an —> ar to denote the A:-morphism 

Jtf\ -Jri) • . • (n) 
* - 7 r ^ ( 0 ) X X7rV<r-ir 

Then, for any h G k(ar, a), 

follows from the definition of clone algebra operations. 

3.7 . Let K = (k,F) be a clone with the generating object a. Since F is faithful and 
an 7̂  am for distinct n,m G u9 any A;-morphismg G k(an, a) is fully determined by F(g). 
Hence there is no need to distinguish F(g) from g, and we shall write g instead of F(g) 
as well. 

DEFINITION. Let g G k(an, a). We say that 

g = h o TT[V;] 

is an extremal decomposition of g—in the clone K or in any of its ra-segments with m > 
n—whenever xpir —> n is a one-to-one map, and for any decomposition g — h\ o 7r[^ 
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with a one-to-one map -01-^ —• n there exists a A:-morphism d G k{as,ar) such that 

REMARKS, (a) Since xj; and ^i in the definition above are both one-to-one, we have 
r,s < n. Thus the definition does apply not only to the full clone, but also to all its 
w-segments with m>n. 

(b) Any factorizing morphism d is unique and has the form d = 7r[<5] for some 6 with 
ifj\ oS = xj). 

(c) Since the map 7r^ is surjective for any injective map xjj, an extremal decomposi­
tion is determined uniquely up to a commuting isomorphism. 

OBSERVATION. If g = h o ̂  G k(an, a) with ip: r —• n, and iffi G k(am, a) for/ G «, 
then 

S i f e / 0 , • • • / « - l ) = g<> (ft* • • • X/w_i) = A O (/^0)X • ' ' X/flr-l)) 

= ^ ( * » / 0 ( O ) J • • • >/v>(r-l))-

This follows immediately from 7r[t/,] = fl^x • • • x ^ - i ) -

3.8 . The Lemma below summarizes the relationship of Clo(A(X)) to Clo(X) in a form 
suitable for investigations of elementary equivalence. 

Let E: Clo(X) —> Clo(A(X)) be the embedding from 3.4. Proposition 2.3 shows that, 

for each / G n, the homomorphism E(ir^) G Clo(A(X)) is the /-th projection, and that 

E(if?}) uniquely extends the i-th projection ir\n) G Clo(X)«. It follows that E(i^) is the 

unique extension of 7r[^] = 7r^L x • • • xir^r_^ for any xpir^nas well. This allows us 

to simplify the notation as follows: we write 7rjw) instead of E(ir^) G Clo(A(X)) and, 

more generally, TT^ instead of £(7r[l/,]) G C1O(A(*)) . 

LEMMA. IfX = (P, 0 is a disciplined metrizable space and n G a;, f/ze« Clo(Jf) a«d 
Clo(A(Z)) ^flve the following properties: 

(1) C\o(Mft)n = {E(gf) | gf G Clo(J0«} U {A<»>}. 
(2) For any g' G Clo(X)w, a«y standard decomposition g' = h' o 7r[^ o/g w a/so a« 

extremal decomposition ofg'. 
(3) Every g = 2s(g0 G Clo(A(X)) \ {A(n)} /*#£ aw extremal decomposition g = 

£( /0 o 7r^, w/*ere gf = h' o T^ is an extremal decomposition ofg'. 
(4) Letf = (fax • • • x/n_i): A(I)m -> A(X)W andg: \(Xf - • A(#) fe JW Clo(A(*))-

77iew e#/zer g = A(w) awrf /zewce gof= A(m), or e/se g /JOS an extremal decompo­
sition g = EQi') o 7r[l/,] a/w/ 

o f A<w) if/^0 - A<m> for some i G r 
g ^ " \ E(h') o (/̂ (o) x • • • xfwr-i)) otherwise, 

withfm = E(f'm)for all i G r. 
These conclusions also hold for any initial k-segments of these clones when k > 1. 

PROOF. Claim (1) is already contained in 3.4. To prove (2), let g' = h! o 7r[l/,] be a 
standard decomposition. To show that this is also an extremal decomposition, suppose 
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thatg' = h\ o 7rc^ for some injective ^\\s —» n. Since the projections TT^] and 7 r ^ are 
surjective and h' is a homeomorphism ofX" onto /zi(A^), the composite d — (h')~x o /*j 
exists and is continuous. But then h' o d o 7 1 ^ = h! o 7r^, and rf7r^ = 7r^ follows 
because A7 is injective. 

Now we turn to (3). If g ^ A(w), then g = E(gf) for a unique g':^72 —> X, by (1), and 
g' has an extremal decomposition gf = h' o ir^\ by (2). From Lemma 2.6 it then follows 
that E(irm) = 7r[l/;] andg = £(/*') o 7r[^]. TO show that this is an extremal decomposition 
of g, suppose that g = h\ o 7r^l] with an injective ij)\:s —> n. Then h\ ^ A(5) because 
g ^ X(n\ so that hi = E(h[) for some h[ G Clo(A%, by (1) again, and g* = h\ o T T ^ 
follows. Since the decomposition g' = h' o 7r^ is extremal, we have J o 7r^l] = TT^ for 
some J G Clo(X), and hence £(</)OTT[I/,I] = TTM in Clo(A(*)). Therefore g = E(h')oirM 
is an extremal decomposition of g, as claimed. 

To prove (4), letg ^ A(w). Theng = E(g*) — E(hf)o7r^ is an extremal decomposition 
of g in which h! is a homeomorphism of Xr onto a closed subset of X, by (3) and (2), 
and gof = E(h') o (/ (̂0) x • • • x^(r_i)) by Observation 3.7. From the definition of the 
extension E{h') of the homeomorphism hi it then follows that g of = A(w) whenever 
/i>(0 — ^(w) for at least one i G r. If, on the other hand, fip^ ^ A(m) for every / G r, then 
•/#) = ^ ( / ) ) f o r a 1 1 ' ^ r by (1), and (4) follows. . 

4. Elementary equivalence. 
4.1. The purpose of this section is to verify the following claim about elementary equiv­
alence of clones or their segments. 

PROPOSITION. For any two infinite disciplined metrizable spaces X\ andX2 with no 
absolute fixpoints, and for any k > 1, 

Clo^XO re Clo*(X2) if and only if Clo*(A(X0) re Clo*(A(X2)). 

This equivalence also holds for the respective full clones. 

Even though it is easy to show, using Lemma 3.8 and a natural uniform interpretation 
of sentences from the theory of C\ok(X) in the theory of Clo^/H^O), that Clo^fXi) re 
Cl0yt(X2) follows from Cloyt(A(Xi)) re Cloyt(A(X2)), sentences claiming the existence 
of absolute constants make a converse interpretation unwieldy, and we employ other 
means to prove the above Proposition. Specifically, we use the well-known fact that el­
ementary equivalence is equivalent to isomorphism of prime limits (see [4] for mono-
sorted algebras). We prove that an isomorphism of certain prime limits of Clo^fXi) and 
Clo£(X2) can be extended to an isomorphism of associated prime limits of Clo^(A(Xi)) 
and Ck>£(A(X2)) and, vice versa, that a restriction of an isomorphism of some prime 
limits of Cl0yt(A(Xi)) and C l o ^ A ^ ) ) is an isomorphism of the associated prime limits 
ofClo^XOandClo^^). 

4.2 . In order to introduce an appropriate notation, we recall how ultrapowers of clone 
algebras are created. 
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Let K be a clone algebra as described in 1.8, and let Kn denote its carrier of the n-th 
sort. Given an ultrafilter J on a set /, for any s,t EK^ we define 

s ~7 tiff Eq(s,t) = {iEl\ s(i) = /(/)} G J . 

Then ~ j is an equivalence. For any s G ££, the symbol [s] j will denote the class of 
~ j containing 5. If « j ^ is the natural map of K[ onto the ultrapower K$} = K!

n/ ~<f 
with the kernel ~ ^ then K$\S) = [5], so that each a G £ j ^ may be replaced, as is 
customary, by any s G Kl

n with [s] <y — a. Whence t G [s] j exactly when Eq(s, f) G ^F. 
For any w G ^w, we let VP G Xj stand for the constant sequence whose value is w. For 

each; G « we then write 

where cjn) is the miliary operation from 1.8(c). 
Let (SJj,/: JKj x (A^)w —+ A^ be the componentwise extension of an operation S^: Kn x 

K^->Km from 1.8(s), that is, let 

( ( ^ / ( s , fc,..., f„-i))(0 = S£(*(i), 'o(0, • • • **-i(0) 

for every i G /, any s G K„ and any /0, • •., t„-\ G Km. If s' G [s]<f and tj G [//]<f for all 
j G w, then 

E q ^ ^ n n i E q ^ ^ l y G « } G ^ , 

and hence also 

Eq((SrJ(s, to,..., k-i) , ( ^ ) V , ^ . . . , O ) G JF. 

It follows that there is a well-defined and unique mapping 

given f o r o - G ^ a n d r o , . . . ^ - ! G K<P by 

( ^ ) ( J W o , . . . ,rw_0 = [(STjis, t0,..., fc-.i)]j 

with an arbitrary choice of s G cr and /, G ij for eachy G n. 
Let x ^ —> £ ^ be the diagonal map given by \{k) = [£]j G A j ^ for all k G 

ATW. Then x is a one-to-one homomorphism of the clone algebra K into a heterogeneous 
algebra K^ whose operations (cjw))^ and ( S J ) ^ satisfy (RU), (LU) and (AC) from 
1.8. Having identified every k E K with its image \{k) G A ^ \ we thus obtain a clone 
algebra KS^ whose carrier of the «-th sort is %S^ and whose operations are (cj/l))(^) = 
c ^ and (*S^)(^. The clone algebra K^ will be called a prime power ofK associated 
with f. 

Let K, L be clone algebras, and let E: K —•» L be a clone homomorphism. The definition 
of its extension ES^'.K^ —> L ( ^ is evident, and it is clear that ES^ is an embedding 
whenever E is an embedding. 
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4.3 . For any integer r > 1, let % be an ultrafilter on some set Ir and let F = {% \ 
r > 1}. Set K(p) — K, then inductively define K^ = K^^x) for each r > 1, and let 
Xr''K(r-\) —> K(r) denote the diagonal embedding arising at each step. If 0 < s < r, 
then \r ° • • • ° Xs+\ *s a n injective homomorphism, and we may therefore assume that 
K(S) is a subalgebra of K(r) whenever 0 < s < r. These composite embeddings, or rather 
inclusions, form a diagram whose colimit PLF(X) is an assorted algebra isomorphic to 
the union of the u;-chain 

A ( 0 ) >K(i) >A(2) > • • • , 

with colimit injections ps'-K(s) —> PLf(X). It is clear that the o;-sorted algebra PLf(AT), 
called ?iprime limit ofK over F, satisfies (LU), (RU) and (AC) from 1.8 with the miliary 
operations cjw) G K{0) for ally G « and joint extensions (S^)(F) of all ( ^ ) ( ^ } with r > 1. 

For a clone homomorphism £ : ^ —> Z, the definition of PLf(£): P L F ( £ ) —* PLf(£) is 
evident. It is clear that if E is an embedding then T*L¥(E) is also an embedding. 

4.4 . Let X be an infinite disciplined space with no absolute fixpoints, and let F be a 
sequence of ultrafilters. In the lemma below, we extend claims (l)-{4) of Lemma 3.8 
about the clone algebras Clo(X) and Clo(A(JQ) to analogous claims about their prime 

limits^ = PLF(C1O(A0) and^* = PI*(cio(A(*))). 
The non-nullary clone operations will be denoted as S™ in A, and as (S™)* in A*, while 

c\n) will denote the clone constant corresponding to the product projection 7r[w) in C\o(X) 
and in Clo(A(X)), in both ,4 and^*. 

From 3.7 we recall that any existing extremal decomposition is determined uniquely 
up to a commuting isomorphism. We note that, in the lemma below, all decompositions 
are expressed by means of clone algebra operations, see Observation 3.7. 

LEMMA. LetX, F, A, A* be as above. Then: 
(1) There exists a one-to-one clone homomorphism E:A—> A* such that the carrier 

A*n of the n-th sort of A* is the disjoint union A* = {E(g') \ g' G An} U {*(w)}, 
and *M is the only absolute constant in A*. 

(2) Each g' G An has an extremal decompositiong' = S^Qi'\ c^L, . . . , cty_xA 
(3) E\A —» A* preserves extremal decompositions, that is, ifg€A*,g = E(gf) 

and g' = STn(h
f,c^0y... ,c^r_{)) is an extremal decomposition ofg' in A, then 

g= (&„)* (E(h'\ c$0y . . . , c$r_ 1}) is an extremal decomposition ofg in A*. 
(4) Forfo,...,/„-iG A*m andg G A*n, denote 

c = (srmy(gj0,:.jn-i). 

Then C = *(m) for g = *(w). Otherwise g G A* \ {*M} has an extremal decom-

V'(O)' '** » C V( ' - -1 )^ /Kw/tfon g = (SJ)*(A, c&> . . . , c&> ). ^ ft*-^. W 

r , •(m) i f / w = *(w) for some / e r 
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The same conclusions hold for prime limits PL^Clo^X)) and PLpt Clo^(A(X)) ) of It-

segments of the clone algebras. 

PROOF. Denote A(0) = Clo(X), Afa = Clo(A(X)), and let E^y.A^ —> Afa be as in 
3.4. For every s > 1, write A{s) = {A{s-X))&>\ A\s) = (4_1})<*> and £( j) = (£ ( ,_ i ) ) ( ^ 
where ^ G F is an ultrafilter on a set Is. 

From 3.4 and Lemma 3.8 it follows that AQ), Afa and£(o) already satisfy (1), (2), (3) 
and (4). From the definition of a prime limit it follows that the lemma will be proved 
once we show that these four statements hold for A^ A^ and E(S) whenever they hold 
f o r ^ - i ) , ^ * ^ and £(,_i). 

Hence, let an ultrafilter f on a set / be given. We shall suppose that (l)-(4) hold for 
clone algebras K,L = K* and a clone-embedding E:K—>L, and prove these statements 
for the ultrapowers K^\ L^\ and£ ( ^ . To simplify the notation, let us suppose that the 
embedding E is an inclusion, so that K is a subalgebra of L and each operation (SJJ,)* of 
L is a mere extension of the operation S^m ofK. 

To prove (1), assume that the carrier Ln of the «-th sort of L is the disjoint union 
Ln = KnU {*(w)}, in which *(w) is the only absolute constant. Clearly KSp C L\P. 
Furthermore, the sentence Vx(w)-i ac(x(w)) holds in Kn, while its negation Ebc(w) ac(x(w)) is 
satisfied in Ln by *(w) alone. For an arbitrary/ G L^\ the set / is the disjoint union of 
J= {i Gl\ f(i) EKn} and f = {i e I \ f(i) = * ( w ) } , so that exactly one of these sets 
belongs to f.IfJe jF, then/ G KS^ and / is not an absolute constant. Else J' G jF 
and / ~f *(w), and/ must be the absolute constant in L\^\ Having identified diagonal 
members of L^ with their values in Ln, we obtain (1) for KSp and ltf\ 

For (2), select any g G A j ^ . Then J = {i e I \ g(i) e Kn} e f. Since g(/) ^ 
*(/l) for all / G J, every such g(7) has an extremal decomposition g(i) = 
SJj(A(0,c^(0),... ,c^)

(r._1)) in A:„. Each ^ : r z —> « is injective, there are only finitely 
many of these maps, and hence there is a unique injective map ijjir —> n for which 
J^ = {i GJ\ i/>i = V} G jF. But then g = S K * , ^ , . . . , ^ ^ ) in ^ because 
/z(z') G Âw for every / G J. 

To see that this decomposition is extremal, let also g = S%(h\,c^\Qy... ,$\ n) 
with an injective map -01 • n —> w- Then there exists some Ji G jF so that the left hand 
side in 

is an extremal decomposition of g(i) in K, and the equality itself holds for every i eJ\. 
Since J\ ^ 0, there exists a unique 6:r —> r\ with ip\ 08 = ijj and, because</i G ^F, the 
decomposition g = STn(h9 c$0)9..., c j ^ ^ ) of g is extremal. This proves (2). 

For (3), we need that an extremal decomposition g = S£(A, c^ 0 ) , . . . , c^^) in K$P 

of any g G £ j ^ is its extremal decomposition also in L^\ This follows easily from the 
fact that (4) holds for K and L. 

To prove (4), l e t / 0 , . . . , / _ ! G L%\ g G I$\ and let C = (^)*(g,/0 , . . . , / _ 0 
be the composite in lS?\ If g = *(w), then C = *(m) because *(w) is a constant. Any 
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g £ L^ \ {*(n)} belongs to K$f\ by (1), and hence has an extremal decomposition 

g = srn(h9c^oy... ,4(r-i))> b y (2)- Kfm = *(w) for *omQJ e r>then c = *(w) follows 

from the definition of (5^)* on the ultrapower iS^ and the fact that *(m) is constant. 
Otherwise also/^) G K^ for ally G «, by (1), and hence there exists some72 G F̂ such 
that C(0 = STm(g(i)9fo(j)> • • • J i - i (0 ) in * for all i G -/2. But then C = ^ ( g , / 0 , • • • ,fn-\) 
in A ^ , and this completes the proof of (4) for KS^ and lS?\ m 

4.5. LEMMA. Let EA:A^A* andEB'.B —> B* be clone algebra embeddings satis­
fying (l)—(4) of Lemma 4.4. Then 

, 4~£ i fandon ly i f ,4*~£* . 

PROOF. TO simplify the notation, let us suppose again that the embeddings EA , EB are 
inclusions. We let (S^A, (^)A-> (Smh, (S^B stand for the non-nullary clone operations of 
A,A*,B,B* respectively, and c|n) for the miliary operations of each of these four algebras. 

Let 0>:A —> B be a clone algebra isomorphism. Then O maps each sort An of A 

bijectively onto the sort Bn of B in such a way that <X>(cjw)) = c^ for every j G n. 

Furthermore, if g = (SQAQI, C^0 ) , . . . , c^)^) is an extremal decomposition of some 

gEA„ then <£(g) = (STJB (0(A), c$oy..., 411-1)) i s a n e x t r e m a l decomposition of 0(g). 
From (1) we recall that A*=AnU {*(w)} and B*n = Bn U {*(w)}, and set 

v i / / ^_ J<Bfe) for all gG 4 , 
T ^ ~ (*(») for g = *<»>. 

It is clear that *F maps each 4̂* bijectively onto 5*. To prove that *F is an isomorphism, 
we only need to show that 

(O *((siK(g,/o,... Ji-O) = (^»(*fe), Wo),.--,W*-i)) 

for any choice of/o, • • • ,fn-\ £ ^m a n d £ ^ ^«-
First suppose that g = *(n). 

Here (*S^(g,/o, • • • ,fn-i) = *(m) and (SJ)S(Vfe), Wo) , • • •, W«- i ) ) = *(m), from 
(4) applied to both A* and B\ But then (C) follows because ¥(*<«)) = *(w). 

Let g 7̂  *(w) next. 
Then g has an extremal decomposition g = ( ^ ^ ( A , c j ^ , . . . , c$r_^) with A ^ *(r), 

and hence *F(g) = (iSJ)^(0(A), c$p)>..., £$>._!)) is an extremal decomposition of *F(g). 
If/i,(/) = *(w) for some / G r, then *F(/0(,-)) = *(w), and (C) follows from an application of 
(4) to both A* and B*. Otherwisefy{i) G An for all i G r by (1), and (C) obtains from (4) 
because $> is an isomorphism of A onto B. Therefore ^.A* —> 5* is an isomorphism, as 
claimed. 

Conversely, assume *¥:A* —> #* to be an isomorphism of these clone algebras. Iff G 
An then ->ac(/) by (1), and hence -nac(vF(/)) because ->ac(x(w)) is a first order formula 
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and *F is an isomorphism. But then *F(/) G Bn by (1) again and, therefore, the restriction 
Q> of *F to A maps A isomorphically onto B. m 

4.6 . Now we are ready to complete the proof of Proposition in 4.1, which claims that 
for any two infinite disciplined metrizable spaces X\, X2 with no absolute flxpoints and 
any A: G {1 . . . ,oo} , 

Clo*(Xi) « Clo*(X2) if and only if Clo*(A(Xi)) n C\ok(fi(X2)). 

But this follows immediately from 4.4-5 and the fact that, similarly to monosorted al­
gebras (see [4] for instance), heterogeneous algebras of the same type are elementarily 
equivalent if and only if they have isomorphic prime limits. 

4.7 . In 1.9, we noted the following result. 

THEOREM [7]. Ifm, n,p G {1,2, . . . , UJ} satisfy m <n <p, then there exist infinite 
metrizable spaces X\ andX2 such that 

m = sup{/ < UJ | C\Oi(Xx) = C\Oi(X2)}, 

n = sup{i < u> | CXoiiXx) ~ Clo/(Jr2)}, 

p = sup{i < UJ | Clo/(Xi) » C\Oi(X2)}. m 

Thus to demonstrate the claim of Theorem 1.9 about the three clone segments, in view 
of Propositions 2.9,3.5 and 4.1 we need only show that the spaces X\ andX2 of Theorem 
[7] may be chosen to be disciplined and without absolute flxpoints. This we do in the next 
section. 

5. Disciplined spaces with no absolute flxpoints abound. 
5.1 . Let £ = \J£LQ E,, be a finitary type of (mono-sorted) universal algebras in which 
I„ denotes the set of all «-ary operation symbols. For a G I , we write ar a = n whenever 
a G E,,, and always assume that I 0 is infinite. 

Let P = (P, {pa | (J G £}) be an absolutely free X-algebra over the empty set of 
generators. It is well-known that P = \J£L0 Pk, with 

Po = {Po \a G lo} andP*+1 = Pk U \J{pa(Pfa) \o G X \ !<>}, 

where the unions are disjoint and every pa with o G 2 \ So is one-to-one. 

5.2. For any integer m > 1, let T(xo,...,xm_i) denote the term algebra of type £ over the 
set {xo, • • • ,Xm-\}- Then J(XQ, ... ,xm-\) is an absolutely free Z-algebra freely generated 
by the set {JCO, • • • ,xm~\}, see [4] or [6]. 

We aim to define a mapping g(w) of T(x0,.. • ,xm_i) into the set Ppm of all maps Pm —> 
P, where P is the underlying set of the 0-generated absolutely free Z-algebra P from 5.1. 
We write 7rjw) to denote the /-th product projection Pm —> P and, for each cr G So, we let 
cr(w) stand for the constant map Pm —> P with the value /v G PQ. 
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We define a mapping £(w) recursively as follows. 

Q(m\Xi) = TT^ for i £ m, 

QM(!J) = OM for a GXo, and 

0 ( w ) ( < K f o , . . . , ' n - i ) ) = / ^ 

It is easily verified that £(m): T(xo,... ,xw-i) —* ^ is one-to-one. 
For any given Q C S \ (SoUSi), let TQ(X0, . . . , Jtm-i) consist of all those members of 

T(xo, • • • ,xm-\) which have a subterm 

(/(xi09...9Xiao,_l)vn±(/ G Q and distinct x /o,...,x /arff/1 G {x0,.. . ,x w_i} . 

Denote / /^ - QM(l(x0,.. . ,*w-i)) andflg0 = ^ ( I Q C X Q , . . . ,xw_,)). 
Now we are ready to state the main result of [7]. 

M [7]. #cardS0 ^ 2K°+card(S\S0), then for everyQ C S\(S0USi) thereexistsa 
metric TQ on the set P so that, for the metric space XQ = (P, TQ) and any integer m > 1, 
a mapping f:X£ —> XQ W continuous exactly whenf G 7^m) \ / / ^ . • 

In this section we prove that the spaces XQ constructed in [7] are disciplined, and that 
they have no absolute fixpoints when S \ S0 ^ 0- To do this, we need to use some of 
their structural properties that were stated only implicitly in [7] or had only an auxiliary 
role there. 

5.3 . As in 3.4 of [7], we write P0 = {pa \ a G So}, Ba = pa(P
n) for a G Sw with n > 1, 

and£ = U R I * e S \ So} = ^ \ ^ o -
In 3.5 of [7] it is shown that (P,TQ) is a metric space of diameter 1 such that 
(a) B is a closed subset of (P, TQ), 
08) / v is an isometry ( P " , T £ ) —> (5CT, r n r ^ ) when a G S„ \ Q, 
(7) Tn(Ba,Baf) = 1 whenever a, a7 G I \ So are distinct, 
(6) pa is an isometry (P" , ^ ) —> (#CT,TQ \Ba) when cr G Sw n Q, 

where f̂  in (8) is an auxiliary metric which we describe in 5.4 below. 
From (a) and (7) it follows that every set Ba with a G S \ So is closed inXQ, and (/3) 

implies that/?CT is a homeomorphism of A^ onto the closed subset^ for any a G S„ \ Q. 

5.4. For P as in 5.1 and B as in 5.3, let us write 

P"[i,j] = {(z0, • • • >^-i) G P" | Zi? = z,} for distinct ij G «, 

Pn[hc] = {(z0,... ,z„_i) G P" | z,- = c} for i G « and c G P, 

P"[/,£] = {(zo,... ,z„_i) G P" | z, G 5} for i G /i. 

and call these sets small subsets of X^. It is clear that Pn[iJ] and Pw[/,c] are closed 
subsets of XQ, and that Pn[i,B] is a closed subset of X^ because of 5.3(a). 

We need to show that, on any small subset of X^9 the product metric T^ induces the 
same topology as an auxiliary metric f̂  from [7]. The latter metric is given for n > 2 in 
3.4 of [7] by 

7^(x9y) = min{i,T»Q(x,y) + \g(x) - g(y)\}, 
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for a real-valued function g: Pn -> [0,1] and a point a™ = (a%\..., a^\) G Pn
0 satisfy­

ing af^ ^ ajw) whenever ij G n are distinct. 
The function g, the point dn\ and certain small subsets of X^ are related as follows: 
(1) g is continuous o n ^ \ {a^}, 
(2) g(x) = 0 for any x G UiF'iUa^] \ i G «}, and also for any JC outside a neigh­

bourhood of a^ which is disjoint with the sets [j{Pn[iJ] \ i ^ j , ij G n} and 
\J{P»[i9B]\ien}9 

(3) g is discontinuous at a^n\ 
Therefore the restriction of g to any small subset of X^—including the sets Pn [/, a^ ] — 

is continuous, so that f̂  and ?Q induce the same topology on every small subset of XQ. 
This implies that the identity map of XQ = (Pn, TQ) onto {Pn,i^} sends each small subset 
homeomorphically onto a closed subset of(Pn,fn). Since each 2?a with a G S \ So is 
closed, 5.3(5) implies that, for any a G E„ D Q, the restriction of/v to any small subset 
of XQ is a homeomorphism onto a closed subset of XQ. 

5.5. Here is a summary of earlier observations which will be needed in Proposition 5.6 
and in Section 7: 

(1) if a G Iw \ Q and n > 1, then/?a is a homeomorphism o O ^ onto a closed subset 
of Ah, 

(2) if a G Sw D Q, then/?a is not continuous, but its restriction to any small subset of 
X^ is a homeomorphism onto a closed subset of XQ, 

(3) the topology of (Pn,f^) is finer than the topology of (P" ,T^) for every n > 2. 

5.6. PROPOSITION. The space XQ is disciplined for every Q C Z \ ( X 0 U Ii) . 

PROOF. Write X = XQ. Since X is metrizable, we need only show that, for any 
m>l, every non-constant continuous map/: A™ —> Xis of the form/ = go 7r(M), where 
(̂M).̂ ™ __> j^f j s m e projection associated with some M C w, and g is a homeomor­

phism o O ^ onto a closed subset of X. 
Let m > 1 and let/: JL7" —> Xbe non-constant and continuous. According to 5.2, there 

is a unique term tf G T(x0,... ,xw-i) \ TQ(X0, . . . ,xm-\) with £(m)(f/) = / . 
We use the term recursively of the absolutely free X-algebraT(jto,. •. ,xm_i) as follows. 
If tf = xt with / G m, then/ = 7r|m) is the /-th product projection^ —* X, and hence 

it has a required decomposition, namely/ = idx 071^. Otherwise //• = a(to,..., tn- \) for 
some cr G X and *0,..., tn-\ G T(xo,... ,XW_I)\TQ(XO, . . . ,xm-\). Since/is non-constant, 
we must have o G S„ with « > 1, and/ = pa o (f0x - - x / - i ) , where/ = £(w)(//) for 
ally G « and at least one of the maps/: Xm —* Xis non-constant. Assuming that 

for every j G w, there is some Mj C m and some homeomorphism gy of XMJ onto a 
closed subset of X such that/- = g7 o 7r(jW,), 

(where we write Mj = 0, ir^'.X" —>J^ andg/Ji0 —>Xwhen/ is a constant map), we 
shall construct a required decomposition/ = go 7r(M). 

First of all, we note that g = n{gy 17 G n} is a homeomorphism of U{XMj \ j G «} 
onto a closed subset of X1. Set M = U{^/ I j £ «}5 and let tyj\Mj —•> M denote the 
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inclusion map. For any ip G XM write h(cp) = (^o i / i 0 , . . . , ^o i/jn_{). Then 

is a homeomorphism of XM onto a closed subset of n j ^ 7 | j G «}. 
If A: A™ —• (A7")" is the 'diagonal map' defined by A(<p) = (<p,..., if) for all y G A7", 

and if TV = U{^Mj) \ j G «}, then 7r O A = h o 7rw . Since/ = f0x • • • xf„-\ has a 
decomposition 

it follows that / = (goh)o TT^, where g o /z is a homeomorphism of JL7^ onto a closed 
subset of A71. 

For n > 1 and a G l „ \ Q , the mapping ̂  is a homeomorphism of A71 onto a closed 
subset of X, by 5.5(1), so that the composite g — p^ o g o h is a homeomorphism of 
X?4 onto a closed subset of X again. Therefore/ = pa of = go 7r(M) has a required 
decomposition. 

Letcr G SHQ. Then a G S„nQ for some n > 2, and we show that/(A™)is contained in 
a small subset of Xn. Indeed, if at least one of the component maps/ of/ =/> x • • • x /_ i 
is the constant with the value c, then/(A™) C Pw[/, c\. Assume that no m a p / withy* G n 
is constant. If one of them, say/ 0 , is not a product projection, then/0 = pG> o h for 
some AiA™ -> A*1"' and a' G S \ S0, and h e n c e / ^ ) C P"[/o,£]. In the remaining 
case, every fj is a projection TT^IX" —> X, so that/(jc0, • • • ,xm-i) = (x /o,... ,*/„_,). 
Should x / o , . . . ,Xin_x be pairwise distinct, then cr(x/0,... ,*,•„_,) G TQ(XO, . . . ,xw-i) and 
hence/ would not be continuous. Therefore ir = is for some distinct r,s En, and hence 
f(Pm) C /*[/,., / , ] . Al together , /^) is always contained in a small subset of X1. Since 
f(Pm) is closed in^Y", it is also closed in any small subset containing it. By 5.5(2), the 
restriction ofpa to f(Pm) maps the set f(Pm) = ghQ^4) homeomorphically onto a closed 
subset of X, so that g = paogohisa homeomorphism of ̂  onto a closed subset of X 
and/ = pa of = go ir^ also in this case. 

Therefore every continuous non-constant f:Xm —> X with m > 1 has a required 
decomposition. • 

5.7. LEMMA. If! \ S0 ^ 0 and Q C S \ (S0 U Si) w arbitrary, then there exists a 
continuous map S:XQ —> JTQ SWC/Z //*#* s of ^ f for every f:X^ —> XQ W/7/Z k > 0. In 
particular, the space XQ has no absolute fixpoints. 

PROOF. If a G S„ and /i > 1, then either H = 1 and a £ Q, or else « > 2 and 
the diagonal of X^ is a closed subset of the small subset Pn[0,1] C J^ . Hence s(x) = 
pa(x,... ,x) is a homeomorphism of Xn onto a closed subset of Ba for any a G S \ So-
If ^(a) = a for some a e P then <j(a,... ,a) = a in the absolutely free 0-generated S-
algebra P, which is impossible. Therefore s of ^ / for every cont inuous/ :^ —* XQ 
with k > 0. • 

5.8. COROLLARY. 7f S \ S0 7̂  0 ^ ^ £ £ \ (So U Si), then XQ is a disciplined 
space without absolute fixpoints. • 
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6. Operation clones of traces. 
6.1. To complete the proof of Theorem 1.9, we recall that the trace A(X) = (0,ZU{-}) 
of any infinite metrizable space X = (P, t) has a binary operation • and a countable set 
Z = {7} U {TTJ \jeu} of unary operations on the set Q — 5 U P U {A}, in which S 
is the collection of all one-to-one sequences in P. One can easily verify that the binary 
operation • and the set Z of the unary operations satisfy these identities: 

(1) (x -y) >z = X- (y -z)andjc-y — y-x 
(2) a(jc • y) = x -y for all a E Z, 
(3) pa(x) = cr(x) for all p,a E Z, 
(4) a(x) • a(x) = a(x) for all a E Z, 
(5) TTO(X) • TTI(X) -y = x-y, 

(6) 7i)(x) - TTf (x) • t(x) = iro(x) - 7ri (JC) for ally ^ / in LJ9 provided t(x) = x, or t(x) = a(x) 
for some a E Z, or *(JC) is missing altogether. 

6.2. PROPOSITION. Ze/X = (P, t) be an infinite metrizable space with no isolated 
points. Then an identity holds in k(X) if and only if it is a consequence of the identities 
described in (I)—(6) above. 

PROOF. For «, n' > 1, let t(x\,...,xn) and tf(x[,...,x'n,) be terms in the basic opera­
tions of k(X) over the variables indicated. We need to show that any identity 

(I) t(xu...,xn) = t'(x'u...9x'n>) 

either fails to hold in A(X) or else follows from (l)-(6). 
The following easily established properties of A(Z) will be used: 
(a) if t(x\,... ,xm) is a term and/? E P9 then t(p9 ...,p)=p, 
(b) if q,qf E 0 and q - q' ^ A, then q = q' = q . q' e P, 
(c) if *(xi,..., JC„) is a term and (<7i,...,#„) E (71 with^ = A for some/ = 1,...,«, 

t h e n ^ i , . . . , ^ w ) = A. 
We claim that an identity (I) is satisfied in A(Z) only when it is regular, that is, when 

it has the form 

(R) t(xu...,xn) = tf(xu...,xn). 

If not, then, say, x\ £ {x[,...,x'n,}. Select any p ^ pf in P and substitute/? for x\ and/?7 

for all other variables occurring in (I). Then *'(/?',...,/?') =/?/and/(/?,/?/,.../?/) E {/?,A}, 
by (a), (b) and (c). Since/?7 ^ {/?, A}, such an identity fails to hold in any k(X). 

Before discussing reasons why (R) holds or fails in k(X)9 we note that any term t in 
which • does not occur is either a variable or t(x) = a(x) holds in A(A!) for some a E Z, 
by (3). 

CASE 1. Suppose that • occurs on neither side of (R). Since members of Z act dif­
ferently from one another and from the identity map on the trace \(X) of any infinite X, 
the identity (R) holds in A(X) exactly when it follows from (l)-{6). 

We turn to the remaining possibilities now. 
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Suppose that • does occur in t(x\,..., xn). Then (1H3) imply that t = t\-...-tr where 
each ti is either one of the variables of t, or tt(x) — a{x) holds in h(X) for some a G Z. 
Having applied (5) twice to each tt which is a variable x, we find that tj(x) = 7To(x) • 7ri (X) 
holds in A(X), and may henceforth assume that every tt has the form tt(x) = cr(x) for 
some a G Z. Then, using (4) to eliminate all repetitions, we may also assume that tt ^ tj 
whenever / ^y . Having applied (6), we also conclude that each variable x needs to occur 
in t at most twice, and that t(x) = tx(x) if n s unary or else t(x) = tx(x) • Tx—where the 
variables of Tx are the variables oft other than x, and tx(x) is one of the unary terms 

(U) 7r0(x) • 7ri(x),7(x), or TTJ(X) • 7(x), 7ry(x) withy G u 

in either case. 
In particular, for any unary term t in which • does occur, in any k(X) we have either 

t{x) = 7ro(x) • 7TI(JC) or t(x) = 7Tj(x) • 7(x) for somey G CJ. 

For a future use we note that, since an infinite disciplined metrizable space has no 
isolated points, for any p G P there exists a one-to-one sequence s converging to p. In 
particular, there are sequences s, Sj G S converging top such that TTJ(S) ^ p for ally G u, 
and 7T>(s/) = p exactly when k =j G u. In algebraic terms, this respectively means that 
7i) 0) • 70) = A for ally G a;, and that TT^SJ) • 70) ^ A if and only if k =j G u. 

CASE 2. Suppose that • occurs in t but not in t/. Thus t'{x) = x or ^(x) = <r(x) for 
some a G Z. We claim that (R) fails to hold in any &(X). In the first case, t(s) G PU{A} ^ 
s — t*(s) for any s G S. In the second, we choose a convergent sequence s G S so that 
*)0) T̂  70) for ally G a;. Then /(s) = A £ P and ^0) = a(s) G P for every a G Z. 
Whence (R) fails to hold in A(JQ in either case. 

CASE 3. Suppose that • occurs in both / and if. Let the identity (R) hold in A(X), and 
let x be one of its variables. Then t = tx(x) • Tx and t' = l/x{x) • Tx—where x occurs neither 
in Tx nor in Tx and ^(x), 4(x) are amongst the unary terms listed in (U). 

(3a) Suppose that tx(x) = a(x) for some a G Z. To show that ^(x) = 40)> we select 
an s G 5" so that 7(5) G P and 7(5) 7̂  79(5) for ally G a;, and then substitute s for x 
and a(s) for each of the remaining variables in (R). Then a(s) G P and, if T* and Tx are 
present, also Tx = Tx = a(s), by (a). If (R) is a unary identity, then a(s) = 40). If not, 
then a(s) = t — 40) • o(s) by (4), and hence a{s) — 40) follows again, this time from 
(b). Since s is one-to-one and70) ^ TTJ(S)9 we have 7r00) • TT\(S) = A = 7ry(s) • 70) for 
ally G a;, and also a'(s) ^ <J0) in P whenever cr, a7 G Z are distinct. Since 4 0 ) is one 
of the terms listed in (U), the only remaining possibility is that t'x(x) — a{x). But then 
tx{x) = tx(x), as claimed. 

(3b) To show that ^(x) = tx(x) in all cases, suppose now that ^(x) = 7r7(x) • 7(x) for 
somey G UJ. Select Sj G S so that 70/) = 7ry0y), and substitute Sj for x and 71)0/) G P 
for all other variables in (R). Then tx(sj) = 71)0,) G P, and Tx = Tx = TT/0/)—if these 
terms are present. Then 7ry(.sy) = 40/) follows as in (3a), from where we also already 
know that 4 0 ) cannot be a(x) for any a G Z. If 4 0 ) = TTOO) * ^lOX m e n 40/) = A ^ P 
because .sy is one-to-one, and (R) fails. The remaining possibility given by (U) is that 
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tx(x) = 7i>(x) • 7(x) for some k G u. But l!x{sj) = 7i>0y) • 7(sy) = 7i>(,sy) • 7ry(sy) G P 
only when k=j because of (b) and the fact that sy is one-to-one. Therefore tx(x) = tx(x) 
whenever neither term is equal to 7ro(x) • ir\(x) in \(X). This concludes the proof that 
tx(x) = ^ W follows for every variable x of any identity (R) which holds in A(X). 

Altogether, any identity (I) either follows from (l)-{6) or else fails to hold in every 
k(X). m 

The proof of Theorem 1.9 is now complete. 

7. Consequences and modifications. 
7.1 . Let (^C,U) be a concrete category with finite products preserved by its forgetful 
functor U. Then the clone Clo(a) exists for every object a of %^ with non-empty under­
lying set. If b is another such object, then the suprema 

i(a, b) = sup{k + 1 | Closet) ~ Clo^h)} and 

e(a,b) = sup{&+ 1 | C\ok(a) « Clo^(^)} 

exist and their values belong to the set {1,2, . . . , oo}. It is clear that the two resulting 
functions satisfy 

(1) <p(a, a) = oo, 
(2) (f(a,b) = (f(b,a), and 
(3) (f(b, c) > rmn{(f(a, b), (p(a, c)}. 
This leads to a natural question about the representability of ip by / or e over some 

category % of universal algebras. The question is addressed in Theorems 7.2—3 below. 
These follow from Theorems 1 and 2 of [7]—now valid for infinite disciplined metrizable 
spaces without absolute fixpoints—by means of Propositions 3.5 and 4.1. 

REMARK. For the reciprocal p— 1 ftp of a function <p satisfying (l)-(3) we have 

p(a, a) = 0, p(a, b) = p(b9 a) and p(b, c) < max{p(a, b), p(a, c)}, 

which are the axioms of a non-archimedean pseudometric. Every metrizable 0-dimen-
sional topological space can be metrized by a non-archimedean metric p with values in 
the set of integer reciprocals, see [2]. Theorem 7.2 below implies that any such pseu­
dometric space can be represented by the reciprocal 1// of our function / on a suitable 
collection of universal algebras. 

7.2. THEOREM. Let C be a set, and let (p:C x C —> {1,2, . . . , oo} be a function 
satisfying 7.1(l)-(3). Then there exists a system {Ac \ c G C} offinitary algebras with 
pairwise isomorphic clones of operations, and such that i(Aa,Ab) = (f(a,b)for every 
(a,b) e C x C. Moreover, if(p(a,b) > 1 for all (a,b) G C, then all algebras Ac can be 
constructed over the same underlying set • 

Since there are only countably many formulas in the first order language of clones and 
their A:-segments, a result by Erdos and Rado [3] implies that an analogue of Theorem 7.2 
for elementary equivalence cannot hold when card C > 2H°. In Theorem 7.3 below we 
present a partial positive result that leaves open the remaining case of Ho < cardC < 2K°. 
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7.3. THEOREM. Let C be a countable set, and let <p: C x C —> {1,2 , . . . , oo} be a 

function satisfying 7.1(l}-(3). Then there is a system {Bc \ c G C] offinitary algebras 

with pairwise isomorphic clones of operations, and such that e{Ba9B^) = (f(a9b)for 

every (a9b) G C x C. Moreover, if(p(a,b) > I for all (a9b) G C, then all algebras Bc 

can be constructed over the same underlying set. • 

7.4. CONCLUDING REMARKS. Other conclusions can be easily obtained by various 
manipulations of the algebraic trace A(X). 

(A) Theorems 7.2,7.3 and 1.9—without their claims about operation clone isomorph­

ism—hold also for algebras of other similarity types. 

(Al) Countably many unary operations suffice. To see this, for any infinite disci­
plined metrizable space X = (P9 t) with no absolute fixpoints, we simply replace the 
trace A(X) = (Q,ZU {•}) by an algebra B(X) = (Q x Q, {a2 \ a G Z} U {09PO9P\}) 
in which, for all (xo9x\) G Q X Q, we set cr2(xo9x\) = (ofcoXcrfri)) when a G Z, 
/?(jto,xi) = (JCO • JCI,XO • x{) and Pi(xo,x\) = (X/,JC/) for / G 2. Then E(X) is a unary al­
gebra such that g: B(X)n -^ B(Z) is a homomorphism exactly when g = f x / for some 
homomorphism/: A(Z)W —> A(X). 

(A2) A single o;-ary operation suffices as well. For any infinite disciplined metrizable 
spaced = (P, t) with no absolute fixpoints, we replace A(X) by an algebra C(X) = (R, T) 
of type {a;} in which R = P U {A} and, for any s G Ru

9 

P ^ x _ | / 7 i f s G P " converges top 
I A in all other cases. 

It is clear that, for n > 0, any homeomorphism h of X" onto a closed subset of ^extends 
to a homomorphism £(/*): C(X)n —* C(X), and that EQi) is constant whenever h is. Propo­
sition 2.3 is, in fact, somewhat easier to prove for C(X) than for A(X), and the remainder 
is straightforward. 

(A3) In a forthcoming paper, it will be shown that three unary operations are also 
sufficient. The proof uses a modification of a type-reducing construction from [5]. 

(B) Theorem 1.9 and its unary forms hold also for an algebra and its reduct—in place 
of two algebras with isomorphic operation clones. 

The spaces X\ andX2 used to prove Theorem 1 in [7], of which Theorem 1.9 is an 
algebraic translation by means of their traces h(Xi)9 have the same underlying set and 
satisfy ClofXO C Clo(X2), see also 5.5(3). The algebras A(X\) and A(X2) inherit these 
properties. Hence h(X\) can be expanded to an algebra ®(X\) by adding a new unary 
operation S\ defined by 8\(x) = 72W, where 72 was the unary 'convergence' operation 
of A(X2). ThenClo(P(Xi)) = Clo(A(Ari)) follows from Proposition 2.3 and the fact that 
Clo(X{) C C\o(X2). The reduct D(X2) = A(X2) is then obtained from B(X{) by removing 
the original 'convergence' operation 7i of A(Xi). 
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