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SIGN PATTERN MATRICES THAT ALLOW A NILPOTENT MATRIX

LiNA YEH

We characterise some star sign pattern matrices and linear tree sign pattern ma-
trices that allow a nilpotent matrix.

1. INTRODUCTION

A sign pattern matrix A is an n X n matrix whose entries consist of the symbols
+,— and 0. Let Q(A) denote the set of all n x n real matrices that have the same sign
pattern as A. For a property P, a sign pattern matrix A is said to require (respectively,
allow) P if every (respectively, there exists a) matrix in Q(A) (respectively, that) has
property P. In [3], Eschenbach and Johnson characterised sign pattern matrices that
require some eigenvalue properties, and they asked [2] several questions about the sign
pattern matrices that require or allow a distribution of eigenvalues. Typically they
ask for a characterisation of sign pattern matrices that allow a nilpotent matrix. In
this paper, we examine this question for star sign pattern matrices and linear tree sign
pattern matrices of order less than 8. First we review some notation and definitions that
are needed to develop our results. Let A = (a;;) be an nxn sign pattern matrix. By the
directed graph D(A) of A, we mean the directed graph with vertex set {1,2,---,n}
and arc (3,7) if a;; # 0. A simple k-cycle v of length |y| = k of A is a sequence
of k arcs (21,%2),(%2,%s), - ,(ik,21) In D(A) such that the vertices 21,42, -- ,%; are
distinct. We denote the cycle v by (1,22, - ,%k,%1). Write Ily = a; 4,445 - - - 044,
the cycle product of A associated with a simple k-cycle y. A simple k-cycle is said to
be positive (respectively, negative) if it contains an even (respectively, odd) number of
negative entries in its cycle product.

It is well-known that the determinant of a complex matrix B is the sum of all

possible terms of the form
(1) (-, (-, - (-l

where 71,72, -+ ,7p are disjoint simple cycles the sum of whose lengths is equal to n.
Similarly, Ex(B), the sum of all k x k principlal minors of B, is equal to the sum of all
terms of the form (1) where 71,72, - ,7p are disjoint simple cycles whose length sum
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equals k. The computation of the characteristic polynomial of B is then expressed in
terms of its cycle products as follows:

(2) Pg(t) =t™ + z,.: (—1)*Ex(B)t" .
k=1

An n x n sign pattern matrix A is said to be potentially nilpotent if it allows a
nilpotent matrix, that is, there exists B € Q(A) such that B is nilpotent. From (2),
this is equivalent to finding B € Q(A) such that Ex(B) = 0 for all k. We discuss
potential nilpotence of star sign pattern matrices in section 2, and find all possible
potentially nilpotent 7 x 7 linear tree sign patterns in section 3.

2. STAR SIGN PATTERNS

A directed graph on n vertices is a star if it consists of n —1 simple 2-cycles which
contain a common vertex v. The vertex v is called the centre of the star graph. A star
graph may permit loops. A sign pattern matrix A4 is star if D(A) is a star.

THEOREM 1. Let A be an n X n star sign pattern matrix. If D(A) has exactly
one loop then A is not potentially nilpotent.

PROOF: If D(A) has exactly one loop then for every B € Q(A), Es(B)#0. [

THEOREM 2. Let A be an n X n star sign pattern matrix such that D(A) has
no loops. Then A is potentially nilpotent if and only if A has a positive and a negative
simple 2-cycle.

PrOOF: Let B € Q(A). Then, from (2), Pg(t) = t® + E,(B)t*"2, and
(3) EZ(B)=_(H‘71 +1,, +"'+H'Yn—1)’

where 71,72, ,n—1 are the n — 1 simple 2-cycles of B. Hence E;(B) = 0 if and
only if there are terms in (3) of opposite sign.

Let A be a star sign pattern matrix centred at v. Assume D(A) consists of k loops
v31,v2, - ,V%. Note that v may or may not be one of the k loops. Let A; be the sign
pattern submatrix that lies in the rows and columns of 4 indexed by v, vy, va, - -+ , vg;
and let A; be the submatrix of A obtained by deleting the rows and columns indexed

by {v1, v2, ---, vg} — {v} and replacing a,, = 0.

THEOREM 3. Let A be an n Xn starsign pattern matrix. Then A is potentially
nilpotent if and only if A; and A, are potentially nilpotent.
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PROOF: Assume v;,v2,- -+ ,v; are loops of D(A) and vk41,Vk42, " ,¥n are non-
loops of D(A). Let B € Q(A). If the centre v is a loop, say v = vy, then

(4) Ey(B) = byyv; + byguy + -+ + byyoy,
(5)
Em(B) = —(a+ Bm)biyibiziz * bipy_zim_s + bjsj1bizja = Bimimy» M =2,3,- -,k
(6) Ex41(B) = abyy03bug0y *  bogoys
En(B)=0,m=k+2,k+3, - ,n,

where o = — } II,,, and 7 runs over the simple 2-cycles (v,v;,v), 7 = k+1,k+2,--- ,n,

and the vertices i;,%2, - ,im—2 run over the disjoint vertices from {vy,vz,--- ,v:},
and B, is the sum over all simple 2-cycles, disjoint from z;,%2, - ,4m—2, in A;, and
J1,J2,° - ,jm are disjoint vertices from {vy,v3,--- ,vx}. If A is potentially nilpotent
then there exists B € Q(A) such that Ey(B) = E;(B) = --- = Eg41(B) = 0. From
(6), we have a = 0, and thus, by Theorem 1, A; is potentially nilpotent. But then (5)
becomes

(7) Em(B) = —Bmbiyi biziy - bipn_3im_s + 85118523z Bjmjm

for m = 2,3,--- ,k. Hence from (4) and (7), A, is potentially nilpotent, and vice versa.
A similar argument holds if the centre » is not a loop. 0

Note that A; is a star sign pattern matrix which has loops at each vertex except
possibly at the centre, and A, is a star sign pattern matrix without loops. According
to Theorem 2 and Theorem 3, it suffices to consider star sign pattern matrices which

have loops at each vertex except possibly the centre vertex.

THEOREM 4. Let A be an n X n star sign pattern matrix such that each vertex
has a loop except possibly at the centre. Then A is potentially nilpotent if and only if:

(i) for n = 2, the diagonals of A have opposite signs and the simple 2-cycle
of A is negative;
(ii) for n = 3, if the centre is not a loop, two diagonals of A have opposite
signs and A has only negative simple 2-cycles;
(i) for n = 3, if the centre is a loop, the diagonals have positive and neg-
ative signs, the two simple 2-cycles have opposite signs if the noncentre
vertices have the same sign; and it has only negative simple 2-cycles if the

noncentre vertices have opposite signs.

ProoF: Let n = 2. By Theorem 1, D(A) has two loops. The existence of
B € Q(A) such that Pg(t) = t? — (b1y + b22)t + (b11b22 — b12b21) = £2, is equivalent to
the stated conditions.
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Suppose n = 3 and the centre is not a loop. Then for B € Q(A) we have

(8) E\(B) = b;; + bjj,
(9) E2(B) = bﬁbﬁ - H‘h = H‘Yz )
(10) Es(B) = —billy, - b;;10,,,,

where ¢ and j are vertices having loops that are not in the simple 2-cycles v, and 72
respectively. If B is nilpotent then, by (8), b;; = —b;;. Substituting into (10), we have
I, =1.,, and then by (9), I, is positive.

Now suppose n = 3 and the centre is a loop. Assume the centre is the vertex 1.
Let B € @Q(A), and u = by1, v = byz, w = b3z, € = b12bz1 and y = by3b3;. Then B is
nilpotent if there exist nonzero real numbers u,v,w,z,y such that

(11) v+v+w=0,
(12) —z—y+uvtuw+ovw =0,
(13) —wz — vy + vvw = 0.

If v = w then dividing (13) by v and substracting from (12), we have
(14) v(u+w)=0.

Substituting (11) into (14) we obtain v? = 0, a contradiction. Hence v—w # 0. Solving
the equations (12) and (13) for z and y, we have

v w?

and y= .
v—w v—w

(15) z=—

From (11), the sign and the value of ¢ are determined by v and w. There are four
possible signs for v and w. Using (15) we see that if sign (v,w) = (+,+) or (—, —) then
sign (z,y) = (+,—) or (—,+), and if sign(v,w) = (+,-) or (—,+) then sign(z,y) =
(—,—). This proves (iii). 1]

The method used in (#4) may be applied to the case when n > 4. Of course, for
large values of n, the computations by Cramer’s rule for the non-homogeneous systems

are fairly involved.

3. LINEAR TREE SIGN PATTERNS
A sign pattern matrix A = (a;;) is tree sign pattern (t.s.p.) (4] if
(1) D(A) is strongly connected without loops;

(1) there is no simple cycle of length 3 or more;
(ii) ai; # 0 if and only if aj; #0.
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A tree is linear if no vertex is adjacent to 3 or more vertices. It looks like:

It is clear that every linear tree sign pattern matrix is permutationally similar to a
tridiagonal sign pattern matrix with zero main diagonal. Hence we may asssume without
loss of generality that a linear t.s.p. matrix is tridiagonal with zero main diagonal.
For convenience, a tridiagonal matrix B = (b;;) € @(A) with zero main diagonal is

sometimes expressed as
B = tridiag((b12,b23," - - ybn—1 n),(b21b32, - ,bn n—1)).

Suppose A is a linear t.s.p. matrix of even order. Then it is clear that A is not
potentially nilpotent since the composite n-cycle of B € @(A) is nonzero, and thus
has a nonzeo determinant. Therefore, in the following, we discuss only odd order linear
t.s.p. Let A be a tridiagonal linear t.s.p. matrix of order n. The arc pattern of A is
the (n — 1)-tuple (@1,a2, - ;@n_1), where a; = a; i}18i41 i, 1 =1,2,--- ,n—1. From
[1], A is potentially nilpotent if and only if its arc pattern is +(+,—) when n = 3;
and that its arc pattern is one of &(+,+,—,+),£(+,—,+,+) and +(+,—,+,—) when
n = 5. In the following, we determine the case when n =T7.

Let A be an 7 x 7 linear t.s.p. matrix. We assume that A4 is tridiagonal with zero
main diagonal. For each B = (b;;) € Q(A), let b; = b; s41bi41 4, 1 = 1,2,--- ,n — 1.
From (2), B is nilpotent if and only if

(16) by +by +bs +bs+ b5 +bg =0,
(17) bi(bs + bs + bs + bg) + ba(bs + bs + bg) + bs(bs + bg) + babe = 0,
(18) blbs(bs + ba) + b4bg(b1 + bz) =0.

We have 2% = 64 possibilities to specify the signs of the arc pattern of A. But since
(b1, b2, b, bs, bs, bg) is a solution of the system (16)-(18) if and only if (—b,, —bz, —bs, —b4,
—bs, —bg) is a solution of the system, we reduce the possible arc patterns to 32 patterns
with b; being positive. Without loss of generality, we may assume that b; = 1. From
(18) we have

(19) b3(b5 + bo) + b4bo = —bzb4b3.
Substituting (16) and (19) into (17), we obtain

(20) (=by — b2) + b2(bs + bs + be) — babsbeg = 0.
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Direct computations from (20), give that

(21) (bz +1)% /b, = —bs — bybs.
Set p = (b2 +1)%/b, and q = bybg. Then (21) becomes
(22) bs = —(p + q),

and (19) becomes

(23) bs +bs = (1+52)g/(p+q).
From (22), (23), and (16) we have

b4:—1—b2—b3—b4_b5_bﬂ
—(1+b2) +(p+q) — (1 +b2)e/(p+q)

(24) =A/(p+ 9),

where

(25) A=(p+q)° —(p+a)(1+52)—q(l+b2).
From (24)

(26) bs = q/bs = q(p+ 9)/A,

and then from (23) and (26),
(27) bs = q(1+b2)/(p+q) —bs = q(1 +5)/(p+9) — 9(p+ 9)/A = ¢°b2/(A(p + q)).

Now we are ready to discuss the 32 arc patterns of A.

p1 = (+,+,+,+,+,+): Clearly A is not potentially nilpotent.

p2 = (+,+,+,+,+,—) : This pattern implies that p > 0 and ¢ < 0. From
(22), p+ q = ~bs < 0, and by (25), A > 0. Then we obtain, from (24), by < 0, a
contradiction.

ps = (+,+,+,+,—,+) : We have p > 0 and ¢ > 0, and thus, by (22), b3 <0, a
contradiction.

ps = (+,+,+,+,—,—) : We have p> 0 and ¢ < 0. By (22), p+ ¢ < 0. Then
from (23), b5 + b > 0, a contradiction.

ps = (+,+,+,—,+,+) : Let B € Q(A) be defined by

2
B= tridiag((l,l,l,l,l,l), (1,1,2,10,?7,2)).
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Then B satisfies equations {16)-(18), and thus is a nilpotent matrix.

ps = (+,+,+,—,+,—): Wehave p > 0 and g > 0. Then by (22), bs = —(p+ ¢) <
0, a contradiction.

71 =(+,+,+,——,+): Wehave p >0, ¢ <0 and p+q < 0, and by (25), A >0,
and thus from (27), b5 > 0, a contradiction.

ps = (+,+,+,—,—,—) : We have p > 0 and ¢ > 0, and thus, by (22), b5 <0, a
contradiction. '

po =(+,+,—,+,+,+) : This is a permutation similar to ps.

10 = (+,+,—,+,+,—) : We have p > 0 and ¢ < 0. From (22), p+¢ > 0. By
(24), A > 0, and then, by (27), b5 < 0, a contradiction. _

11 = (+,+,—+,—+): We have p > 0 and ¢ > 0, and from (22), p+ ¢ > 0.
Again by (24), A > 0, and then, by (27), b5 > 0, a contradiction.

P12 = (+,+,—+,—,—) : We define B € Q(A) as follows:

B = tridiag((1,1,1,1,1,1),(1,1,-2,2,—1,-1)).

Then B satisfies equations (16)-(18), and thus is a nilpotent matrix.

ps = (+,+,—,—,+,+): We have p > 0, ¢ < 0 and p+ g > 0. Then, by (23),
bs + bs < 0, a contradiction.

ras = (+,+,—,—+,—): We have p > 0, ¢ > 0 and p+ g > 0. Then by (24),
A <0, and thus by (27), b5 < 0, a contradiction.

p1is = (+,+,———,+) : We have p > 0, ¢ < 0 and p+ g > 0. From (24) we
have, A < 0, and thus by (27), bs > 0, a contradiction.

pe={(++,——;—3—): Wehave p>0, ¢ >0 and p+ ¢ > 0. Then, from (23),
bs + bg > 0, a contradiction.

ri7 =(+,—,+,+,+,+) : This is a permutation similar to ps.

pis = (+,—,+,+,+,—) : Let B € Q(A) be defined by

11
B= tridiag((l,l,l,l,l,l), (1,—2,1, 5, 5,—1))

Then B satisfies equations (16)-(18), and thus is a nilpotent matrix.
p1e = (+,—,+,+,—,+) : Define a matrix B € Q(A4) by

111
= tridi 1,1,1,1 -z —2,1) ).
B tndlag((li bt et | ’1)) (1’ 27 6, 3) ’1))

Then B satisfies equations (16)-(18), and thus is a nilpotent matrix.
p20 = (+,—,+,+,—,—): —p20 is a permutation similar to p4.
p21 = (+,—,+,—,+,+) : This is a permutation similar to p;; .
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p22 = (+,—,+,—,+,—) : Let B € Q(A) be defined by
.1 3 1 1 3
B = tndla‘g((171111111’1)a (11_57 ﬁ’_ﬁ’ 51_1))'

Then B satisfies equations (16)-(18), and thus is a nilpotent matrix.
p2s = (+,—,+,—,—,+) : Define B € Q(A) by

.. -13 -7 2 3
5= tndlag((l’l’l’l’l’l)’(I’T’E’T’ﬁ’7))'

Then B satisfies equations (16)-(18), and thus is a nilpotent matrix.

p2a = (+,—,+,—y—,—) : —P24 is a permutation similar to pg.

p2s = (+,—,—,+,+,+) : This is a permutation similar to pr.

p2e = (+,— —,+,+,—) : We have p < 0 and ¢ < 0. Then, from (22), b5 > 0, a
contradiction.

p27 = (+,—,—,+,—,+) : This is a permutation similar to pzs.

P28 = (+,~,—,+,—,—) : —Pp2s is a permutation similar to pyg.

p29 = (+,—,—,—,+,+) : This is a permutation similar to p;s.

pso = (+,—,—,—,+,—) : —p3o is a permutation similar to p;s.

ps1 = (+,——,—,—,+) : We have p < 0 and ¢ < 0. Then, by (22), b5 > 0, a
contradiction.

ps2 = (+,—,—;—»—»—) : —P32 is a permutation similar to p;.

Summarising, we have

THEOREM 5. Let A be an 7 x 7 tridiagonal linear t.s.p. matrix. Then A is
potentially nilpotent if and only if the arc pattern of A is one of the forms

+ps, £ps, £p12, T p1s, £P19, P22, £pas, £pa7, £P30.

Note that ps and pg are permutation similar, and so are pa3 and ps7.
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