A HOMOMORPHISM IN EXTERIOR ALGEBRA
B. KOSTANT AND A. NOVIKOFF

1. Introduction. In the following, V is a vector space over an arbitrary
field F, dimzV = n. Let {e!,...,¢"} be a basis for V, and {f1,...,f.} be
the dual basis for V*, (f;,e)) = 6L lf u = e A... Aefand g=f1 A ... A fp
then the operators e(#) and 7(g) (exterior and inner multiplication by # and
g respectively) set up an equivalence between the ideal & = range of e(u)
and the sub-algebra U = range of #(g) considered as vector spaces. That is,
e(u)i(g) is the identity on &, 2(g) e(«) is the identity on (. Under this equivalence
fu N et A ... Ae*} and {e* A ... A e} are corresponding bases of & and
I respectively (p <11 < ... <1 < n). While ¥ is a subalgebra of AV (namely
AW, where W CV is the space spanned by e?*1, ..., "), & is multiplicatively
trivial, i.e., within & all products vanish. Throughout AV is a generic relation
for the exterior algebra over the vector space V and A?V for elements of
degree p.

2. Below we establish that certain homomorphisms on AV induce homo-
morphisms on A = AW. Using the above equivalence of & and A we then
establish a matrix identity (‘‘Sylvester’s identity’’) as a corollary.

LemMMA 1. If e € Vand f € V*, then
1) 1(fle(e) + e(e)i(f) = (f, )L

This is entirely standard. In fact
4 .
@A Ax) =2, (DU e Ao AR A LA,
=1

from which (1) follows when both sides are restricted, as operators, to decom-
posable elements x; A ... A x,, p = 1,...,n The unrestricted validity of
(1) then follows by linearity.

COROLLARY 1. (fy) and e(¢’) anti-commute if k #~ j.

LEMMA 2. Any two of the following three statements tmply the third, where
P is a linear map on AV.

(1) P 1s a derivation.
(ii) The range of P is multiplicatively trivial (i.e. Px A Py = 0 for all x, y).
(iii) I — P is a homomorphism.

Received February 25, 1963.
166

https://doi.org/10.4153/CJM-1964-017-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1964-017-4

A HOMOMORPHISM IN EXTERIOR ALGEBRA 167

Proof.
(@ (—=PxAN{T—=Py=xANy— (PxANy+xAPy)+ Px A Py.
(b) U=P)xAy)=xAy—PxAy).
From (a) and (b) we have

(I=PxANI—-Py—-—T—-P)xAy)=PlAy —(PxAy+xAPy
+ Px A Py

from which the result is immediate.
CoROLLARY 2. If e € V, f € V* (f,e) # 0, then

i(f)e(e)
(fre)

15 a homomorphism. In particular i(f)e(e*) is a homomorphism.

Proof. e(e) i(f) is a derivation whose range is multiplicatively trivial. Use
equation (1) and Lemma 2.

The next lemma replaces the e and f of Corollary 2 by « and g, decomposable
elements in APV, A?V* respectively.

LEMMA 3. If g € APV*, u € APV, g and u decomposable, and (g, u) = 1(g)u #~ 0,
then Ni(g)e(u) is a homomorphism on AV where the scalar N is chosen so that

A= (g, u).

Proof. Let u = u* A ... A . No non-zero element in the subspace of V*
determined by g can vanish on each of ul, ..., %" (for then (g, ) would
vanish), so there exist gy, . . ., g, such that (g;, /) = 6fand g = \"lg; A ... A g

Further, since (g, u) = (A\™g; ... g, #'...u?) we have A1 = (g, u). However,

N(ge(m) =2(g1 A ... ANge(w A ... A uP)
1(gy) .. . 1(ge(®?) . .. e(u?).

Using Corollary 1 and the anti-commutativity of £(g1), . . ., 2(g,) among each
other, we have MNi(g)e(n) = 1(g1)e(ut)i(g2)e(u?) ... 1(g,)e(u?), which, by
Corollary 2, is the product of p homomorphisms and hence a homomorphism,
as desired.

The next theorem is an immediate consequence of Lemma 3.

TurorREM. If A is a homomorphism of AV and g, u are decomposable elements
of APV*, APV respectively, such that (g, Auy = =1 £ 0, then N(g)Ade(u) is a
homomorphism of AV (and indeed, one which leaves the subalgebra U invariant).

Proof. Mi(g)Ade(u)(x A y) = N(g)e(4d () (Ax A Ay) for x and y in AV. By
Lemma 2 Mi(g)e(A (%)) is a homomorphism, so that
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N(g) Ae(u)(x A v) = Ni(g) e(Au)Ax A Ni(g) e(Au)Ay
= M(g) Ae(u)x A NM(y) Ae(u)y

as desired.
3. Application. Let By denote the restriction to & of e(x)i(g)A4 and

By the restriction to A of i(g) Ade(u). Then By : F — & and By : A -«
are equivalent under the maps 7(g) and e(u), i.e., there is commutativity in

By
§—— 3
i(g) T ew)  e(w) TLi(g)
A —— I
By

where \ is determined as in Lemma 3.
It follows that Bg and By have the same matrix

1...p i>=B<i>
)‘A<1...p j j

with respect to the corresponding bases {u A €'}, {¢f} (=p+1,...,n)
in A1 & and AV N A = W respectively.

As a consequence of our theorem, By is a homomorphism on . We then
have that Bg on A?** /M & has the matrix

ka<¢1 . zk>
v

with respect to the § basis {u A et A ... Aelk} p <1, < ... <1 < m.
Since the corresponding matrix for By on A¥V M Y is

A‘/1<]....P’i1-..'ik>

1...p51...5/"°

)\k_lB<¢:1...z:k>:A<1...p1:1...z:k>
Ji. - Tk 1...p51... 0k

A LooopY (1. pive . iy
v i) (1)) (1)

the well-known identity of Sylvester.

we have

or
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