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T H E T A R S K I - K A N T O R O V I T C H P R I N C I P L E 

A N D T H E T H E O R Y O F I T E R A T E D F U N C T I O N S Y S T E M S 

JACEK JACHYMSKI, LESLAW GAJEK AND PIOTR POKAROWSKI 

We show how some results of the theory of iterated function systems can be de­
rived from the Tarski-Kantorovitch fixed-point principle for maps on partially or­
dered sets. In particular, this principle yields, without using the Hausdorff metric, 
the Hutchinson-Barnsley theorem with the only restriction that a metric space con­
sidered has the Heine-Borel property. As a by-product, we also obtain some new 
characterisations of continuity of maps on countably compact and sequential spaces. 

1. INTRODUCTION 

Let X be a set and / 1 , . . - , / „ be selfmaps of X. The theory of iterated function 
systems (IFS) deals with the following Hutchinson-Barnsley operator. 

(1) F(A) : = [J fi(A) for A CX. 
i=l 

The fundamental result of the Hutchinson-Barnsley theory (see [2, 7]) says that if (X, d) 
is a complete metric space and all the maps fi are Banach contractions, then F is the 
Banach contraction on the family K(X) of all nonempty compact subsets of X, endowed 
with the Hausdorff metric. Consequently, F has then a unique fixed point AQ in K(X), 
which is called a fractal in the sense of Barnsley. Moreover, for any set A in K(X), the 
sequence (^Fn(A)>j of iterations of F converges to Ao with respect to the Hausdorff 
metric. For an arbitrary IFS, a set Ao such that A0 = F(A0) is called invariant with 
respect to the IFS {/* : i — 1,..., n} (see Lasota-Myjak [10].) If n — 1, then such an AQ 
is said to be a modulus set for the map fx (see Kuczma [9, p.13]). 

In this paper we study possibilities of applying the Tarski-Kantorovitch fixed-point 
principle (see Dugundji-Granas [3, Theorem 4.2, p.15]) in the theory of IFS. (In the 
sequel we shall use the abbreviation "the T-K principle".) So we shall employ the partial 
ordering technique to obtain results on fixed points of the Hutchinson-Barnsley operator. 
The idea of treating fractals as Tarski's fixed points appeared earlier in papers of Soto-
Andrade & Varela [13] and Hayashi [6], however, they considered other version of Tarski's 
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theorem than that studying in this paper. Other consequences of the T-K principle were 
investigated, for example, in articles of Baranga [1] (the Banach contraction principle is 
derived here from the Kleene theorem, an equivalent version of the T-K principle) and 
Jachymski [8]. See also "Notes and comments" in the Dugundji-Granas monograph [3, 
p. 169], and references therein. 

Our paper is organised as follows. In Section 2 the T-K principle is formulated and 
a lemma on continuity with respect to a partial ordering is proved. 

Section 3 is devoted to a study of the T-K principle for the family 2X of all subsets 
of X, endowed with the set-theoretical inclusion D as a partial ordering. Theorem 2 
gives sufficient conditions for the existence of the greatest invariant set with respect to 
the IFS considered in this purely set-theoretical case. 

Section 4 deals with the family C(X) of all nonempty closed subsets of a Hausdorff 
topological space X, endowed with the inclusion D. In this case the countable chain 
condition of the T-K principle forces the countable compactness of X (see Proposition 
4). Our Theorem 3 on an invariant set generalises an earlier result of Leader [12], 
established for the case n = 1. As a by-product, we obtain a new characterisation of 
continuity of maps on countably compact and sequential spaces (see Proposition 5 and 
Theorem 8). We also study the T-K principle for the following operator F, introduced 
by Lasota and Myjak [10]. 

(2) F(A) : = c l ( ( J / i W ) f o r ^ C X , 

where cl denotes the closure operator. Again, as a by-product, we obtain here another 
new characterisation of continuity (see Proposition 6 and Theorem 9). 

Section 5 deals with the family K(X) of all nonempty compact subsets of a topolog­
ical space X, endowed with the inclusion 3. This time the condition "6 ^ F(b)" of the 
T-K principle forces, in some sense, the compactness of the space in which we work. Nev­
ertheless, using an idea of Williams [14], we show that, in such a case, the T-K principle 
yields the Hutchinson-Barnsley theorem for a class of the Heine-Borel metric spaces, 
that is, spaces in which every closed and bounded set is compact (see Williamson-Janos 
[15]). We emphasise here that instead of showing that the Hutchinson-Barnsley operator 
F is contractive with respect to the Hausdorff metric, it suffices to prove the existence of 
a compact subset A of X such that F(A) C A, which is quite elementary (see the proof 
of Corollary 2). Also it is worth noticing here that many results of the theory of IFS 
were obtained in the class of the Heine-Borel metric spaces (see Lasota-Myjak [10] and 
Lasota-Yorke [11]). 

In Section 6 we assemble some topological results, which, in our opinion, are in­
teresting themselves, and which have been obtained as a by-product of our study of 
D-continuity of the Hutchinson-Barnsley operator. 
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Given sets X and Y, and a map / : I H V , the sets / _ l ({? /}) (y G V ) are called 
fibres of / (see Engelking [5, p.14]). 

As in [5], we assume that a compact or countably compact space is Hausdorff by 
definition. 

2. THE TARSKI-KANTOROVITCH FIXED-POINT PRINCIPLE 

Recall that a relation ^ in a set P is a partial ordering, if ^ is reflexive, weakly 
antisymmetric and transitive. A linearly ordered subset of P is called a chain. A selfmap 
F of P is said to be ^-continuous if for each countable chain C having a supremum, 
F(C) has a supremum and supF(C) = F(supC). Then F is increasing with respect to 

THEOREM 1 . (Tarski-Kantorovitch) Let (P, ^ ) be a partially ordered set, in 
which every countable chain has a supremum. Let F be a ^-continuous selfmap of 
P such that there exists a b € P with b ^ F(b). Then F has a fixed point; moreover, 
sup | F " ( O ) : n € N} is the least fixed point of F in the set {p € P : p~£ b}. 

REMARK 1. It can be easily verified that the assumption "every countable chain has 
a supremum" is equivalent to "every increasing sequence (pn) (that is, pn ^ pn+\ for 
n G N) has a supremum". Similarly, in the definition of ^-continuity, we may substitute 
increasing sequences for countable chains. Such a reformulated Theorem 1 is identical 
with the Kleene fixed-point theorem (see for example, Baranga [1]). 

LEMMA 1 . Let (P, <) be a partially ordered set, in which every countable chain 
has a supremum and such that for anyp, q £ P there exists an inhmum inf {p, q}. Assume 
that for any increasing sequences (Pn^-i and (o n )£Li, 

(3) inf isupp„, supo n l = sup inf {pn,qn}. 
UeN neN > neN 

Let F\,..., Fn be ^-continuous selfmaps of P and define a map F by 

F{p):^mi{Fl{j>),...,Fn(p)} for p € P. 

Then F is ^-continuous. 

PROOF: For the sake of simplicity, assume that n = 2; then an easy induction shows 
that our argument can be extended to the case of an arbitrary n e N . By Remark 1, 
it suffices to prove that given an increasing sequence (p„), F(p) = supF(pn), where 

p := supp„. Since Fi and F2 are increasing, so is F. Thus the sequence (F(pn)) is 
neN 

increasing and by hypothesis, it has a supremum. Then, by (3) and ^-continuity of Fi 
and F2, 

supF(p„) = sup inf {Fl(pn),F2(pn)} = inf {supF 1 (p„) ,supF 2 (p n )} 
neN neN 1 ' UeN neN > 
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= inf {Fi(supp„) ,F 2 (supp„) 1 = F(suppn), 
I neN ' \ eN '> V„€N ' 

which proves the ^-continuity of F. D 

The following example shows that there exists a partially ordered set (P, ^ ) , in which 
every countable chain has a supremum and for any p, q € P there exists inf {p, g} , but 
condition (3) does not hold. In fact, the set (P, ^ ) defined below is a complete lattice, 
that is, every subset of P has a supremum and an infimum. 

EXAMPLE 1. Let C(R) be the family of all nonempty closed subsets of the real line 
and P := C(R) U { 0 } . Endow P with the inclusion C. If {At : t € T} C P, then 
inf j4t = H -At and sup At = cl ( U -At) • Define 

i4„ := [0,1 - - 1 , B„ := [l + - , 2l for n € N. 

Then (>ln) and (P„) are increasing and 

inf { s u p A „ , s u p B n } =CLF|J An)nc\(\J Bn) = { 1 } , 

whereas sup inf {J4„, Bn} = ell IJ (An n P„ ) ) = 0, so (3) does not hold. 
neN W N / 

3. T H E HUTCHINSON-BARNSLEY OPERATOR ON ( 2 x , 2 ) 

Throughout this section X is an abstract set, 2X denotes the family of all subsets of 
X, and / , / i , . . . , / „ are selfmaps of X. We consider the partially ordered set (2X, D ) . SO 
for A, B C X, A ^ B means that B is a subset of A. A sequence (Ai)^Li is 2-increasing 
if it is decreasing in the usual sense; moreover, supAn in (2x,d\ coincides with the 

neN 
intersection f\ An. 

neN 

PROPOSITION 1 . Let F(A) := f{A) for A C X so that F : 2X M- 2x. The 
following conditions are equivalent: 

(i) F is D-continuous; 
(ii) given a decreasing sequence (An)™=l of subsets of X, 

/(N A . ) = N/(̂ «); 
\ eN ' neN 

(iii) aii fibres of f are Unite. 

In particular, (iii) holds if f is injective. 
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PROOF: The equivalence (i)-£=>(ii) follows from Remark 1. To prove (ii)=>(iii) 
suppose, on the contrary, that (iii) does not hold. Then there exist a y 6 X and a 
sequence ( z n ) ^ ! such that y = f(xn) and x„ ^ xm if n ^ m. Set An := {xk : k ^ n) 
for n € N. Clearly, (Ai)^Li is decreasing and f| An = 0. Simultaneously, f(An) — {y} 

neN 
so that 

f l / ( ^ n ) = { j / } ^ 0 = / ( n ^ n ) , 

neN vneN y 

which violates (ii). 
To prove (iii)=>(ii) assume that a sequence (An)™=l is decreasing. It suffices to show 

that fl f(An) Q f{ fl A i l - Let y G fl / ( A i ) - Then there is a sequence (xn)™=l such 
neN VneN / neN 

that xn € An and y = f(xn), that is, the set {x„ : n € N} is a subset of the fibre / _ 1 ({?/})• 
Condition (iii) implies that there is an x € X and a subsequence (a;^)^-! of ( x n ) ^ _ 1 such 
that Xfcn = x. Hence x € fl Akn. Since ( A i ) ^ is decreasing, fl Akn = f] An so 

neN neN neN 

£ S fl ^n- Moreover, y = f(x) and thus y 6 / ( D A i ) • 0 
neN VneN / 

As an application of Proposition 1, Theorem 1 and Lemma 1, we obtain the following 
result on invariant sets of IFS in the set-theoretical case. 

THEOREM 2 . Let F be defined by (1). If for i — 1,... ,n all fibres of the maps fi 
are finite, then for each set A C X such that F(A) C A, the set f) Fn(A) is invariant 

neN 
with respect to the IFS {fi, • • •, fn}- In particular, the set fl Fn(X) is the greatest 

neN 
invariant set with respect to this IFS. Hence, the system . . . , / n } has a nonempty 
invariant set if and only if the set fl Fn(X) is nonempty. 

neN 

PROOF: We shall apply Theorem 1 to the partially ordered set (2x,D^j and the 
operator F. Clearly, (2X, I>) is a complete lattice. We verify condition (3). Let ( A O ^ i 
and ( B n ) ^ ! D e decreasing sequences of subsets of X. Then (3) is equivalent to the 
equality 

f ) AnU f | Bn = f | (An U Bn), 
neN neN neN 

which really holds. Let F{(A) := fi(A) for A C X and i = 1,..., n. By Proposition 1, all 
the maps Fi are D-continuous. Thus all the assumptions of Theorem 1 are satisfied. 

To show that fl Fn(X) is the greatest invariant set, observe that if A0 = F(A0), 
neN 

then A0 — Fn(A0) so that A0 = fl Fn(A0). Since F is increasing, so are all its iterates 
neN 

Fn and hence, Fn{A0) C Fn(X), which implies that A0 C |~| Fn(X). The last statement 
neN 

of Theorem 2 is obvious. D 
Let us notice that if X is a finite set, then condition (iii) of Proposition 1 is auto­

matically satisfied so, by Theorem 2, for each map / : X t-» X the set fl fn(X) is a 
neN 

https://doi.org/10.1017/S0004972700022243 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700022243


252 J. Jachymski, L. Gajek and P. Pokarowski [6] 

modulus set for / . It turns out that this property characterises finite sets only, according 
to the following 

PROPOSITION 2 . The following conditions are equivalent: 

(i) A' is a finite set; 

(ii) for each map f : X >-» X, the set f] fn{X) is a modulus set for f. 
neN 

PROOF: The implication (i)=s>(ii) follows from Theorem 2. To prove (ii)=>(i) 
suppose, on the contrary, that X is infinite. Let XQ be a countable subset of X. Without 
loss of generality we may assume that 

oo n 
X 0 = { a , 6 } u | J U M 

n=l k=l 

where elements a, b and ank are distinct. Set 

f(x):=b for x£{X\X0)u{a,b}; 

/(f lni) : = a> for n £ N; 

fi^nk) '•= &n,k-\ for n ^ 2 and 2 ^ k ^ n. 

Then 6 = /"(6) and a = / " ( a n n ) so {a, 6} C fl / " ( * ) • On the other hand, it is easily 

seen that fl fn{X) Q {a, b}. Therefore, we get 
neN 

/ ( f l / " ( * ) ) = / ( { a , 6 } ) = {b} # {a,6} = f l № ) . 
S>eN ' neN 

which violates (ii). D 

We emphasise that condition (iii) of Proposition 1 is not necessary for the set 
fl fn(X) to be a modulus set for / . This fact can be deduced from Proposition 3 

neN 
and Example 2 given below. 

PROPOSITION 3 . Let (X,d) be a bounded metric space and f : X >-> X be a 
Banach contraction with a contractive constant h £ (0,1). Then for each set A C X (not 
necessarily f(A) C A), fl /"(-A) is a modulus set for f. 

neN 

PROOF: Let A C X. Clearly, if the set f| fn{A) is empty, then it is a modulus 
neN 

set for / . If this set is nonempty, then the diameter, <5l f] fn{A)), can be estimated as 
VneN / 

follows: 

<*( D / " M l ^ S{fn(A)) < 6 ( / " ( * ) ) < hn6{X) - > 0 as n - » oo, 
VeN ' 
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which implies that fl / " ( A ) = {a} for some a £ X. Hence, to prove that fl fn(A) is 
n€N neN 

a modulus set for / , it suffices to show that a is a fixed point of / . Since a £ fn(A) for 
n e N , there is a sequence (a,,)^., such that a = fn(on). Then 

d ( o , / ( o ) ) = d(fn(an),fn+l(an)) ^ hnd(an,f(an)) ^ hnS(X) -> 0, 

which implies that a = f(a). D 

EXAMPLE 2. Let X := [-1,1], a £ (0,1/3), / (0) := 0 and f(x) := ax 2 sin (1/x) for 
x £ X \ { 0 } . Endow X with the Euclidean metric. Since | / ' ( x ) | ^ 3a < 1, / is a 
Banach contraction, so the assumptions of Proposition 3 are satisfied. On the other 
hand, Theorem 2 is not applicable here, since the fibre / _ 1 ( { 0 } ) is infinite. 

REMARK 2. The proof of Theorem 1 (see Dugundji-Granas [3, p.15]) suggests we in­
troduce the following definition: a selfmap F of a partially ordered set (P, ^ ) is said to be 
iteratively ^-continuous if F is increasing and F preserves the supremum of each increas­
ing sequence (p„)^Li s u c h that pn = Fn(p) for some p £ P (compare with Remark 1). 
Then Theorem 1 holds for such a class of maps. Moreover, this class is essentially wider 
than the class of ^-continuous maps: the map F : 2X >-¥ 2X generated by the map / 
from Example 2 is iteratively ^-continuous by Proposition 3 and is not ^-continuous by 
Proposition 1. 

4. THE HUTCHINSON-BARNSLEY OPERATOR ON (C(X),d) 

Throughout this section X is a Hausdorff topological space and C(X) denotes the 
family of all nonempty closed subsets of X, endowed with the inclusion D. We start with 
examining the countable chain condition in this case. 

PROPOSITI ON 4 . The following conditions are equivalent: 

(i) every countable chain in (C(X), 3^ has a supremum; 
(ii) for every decreasing sequence (A„)^Lj of nonempty closed subsets of X, 

the intersection fl An is nonempty; 
n€N 

(iii) X is countably compact. 
PROOF: (i)«=^(ii) follows from Remark 1. For (ii)<=»(iii), see Engelking [5, The­

orem 3.10.2]. D 

Recall that a space X is sequential if every sequentially closed subset A of X (that 
is,'A contains limits of all convergent sequences of its elements) is closed. In particular, 
every first-countable space is sequential (see Engelking [5, Theorem 1.6.14]). Our next 
result deals with 3-continuity of the Hutchinson-Barnsley operator in such spaces. It 
is interesting that D-continuity is connected with appropriate properties of fibres of / 
(similarly, as in the set-theoretical space; see Proposition 1 and Theorem 6), which, 
however, leads directly to continuity with respect to topology, according to the following 
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PROPOSITION 5 . Let X be a countably compact and sequential space, 
f : X ' ¥ X and F(A) :— f(A) for A C X. The following conditions are equivalent: 

(i) F(C(X)^) C C(X) and F is continuous on C(X) with respect to the in­
clusion D; 

(ii) / is continuous on X with respect to the topology. 

PROOF: This equivalence follows from Remark 1, the fact that for a decreasing 
sequence {An)™^ of sets in C(X), s\xpAn in (C(X), D) coincides with f] An, and The-

neN v ' neN 
orem 8 (see Appendix). D 

The following example shows that in Proposition 5 we cannot omit the assumption 
that X is a sequential space. Also observe that there exist countably compact and 
sequential spaces, which are not compact such as, for example, the space Wo defined 
below. 

EXAMPLE 3. Let wi denote the smallest uncountable ordinal number, W0 be the set of 
all countable ordinal numbers and W :— WQ U {WI}- It is known that W is a compact 
space (see Engelking [5, Example 3.1.27]) and W0 is countably compact, but not compact 
(see [5, Example 3.10.16]). Moreover, W0 is a first-countable space, hence sequential. 
Let X :— W0 X W. Then X is countably compact as the Cartesian product of a countably 
compact space and a compact space (see [5, Corollary 3.10.14]). Define a map / by 

f(xi,x2) := {0,x2) for (xux2) eX. 

Clearly, / is a continuous selfmap of X so (ii) of Proposition 5 holds. Let A := {(x\,X\) : 
xi € W0}. Since the space W is Hausdorff, A is a closed subset of X. On the other hand 
f(A) = {0} x W0 so c l ( / ( A ) ) = {0} x W. Hence condition (i) of Proposition 5 does not 
hold: the operator F is not a selfmap of C(X). 

As an immediate consequence of Propositions 4 and 5, we obtain the following 

COROLLARY 1 . Let X be a sequential space, f and F be as in Proposition 5. 
The following conditions are equivalent: 

(i) (C(X), and F satisfy the assumptions of the T-K principle; 
(ii) X is countably compact and f is continuous on X. 

In view of Corollary 1 the following theorem is the best result on invariant sets with 
respect to IFS on a sequential Hausdorff space, which can be deduced from the T-K 
principle for the family (C(X), 

THEOREM 3 . Let X be a countably compact and sequential space, and / i , • • •, 
/„ be continuous selfmaps of X. Let F be defined by (1) and AQ := f] Fn(X). Then 

neN 
the set A0 is nonempty and closed, A0 = F(AQ), and A0 is the greatest invariant set 
with respect to the IFS {fi, • • •, fn}- Moreover, if X is metrisable, then the sequence 
( F " ( X ) ) _ i converges to A0 with respect to the Hausdorff metric. 
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PROOF: Denote Fi(A) := fi(A) for A G C(X) and i = 1,..., n. By Corollary 1, 
(C(X), DJ and Fi satisfy the assumptions of Theorem 1. Clearly, for A € C(X) the set 
F(A) is closed as a finite union of closed sets. Moreover, condition (3) is satisfied here 
(see the proof of Theorem 2) so, by Lemma 1, F is D-continuous. Thus, by Theorem 1, 
the set A 0 is invariant with respect to {fi,..., / „ } . Since F(X) C X and F is increasing, 
the sequence ( F " ( X ) ) _ t is decreasing. Therefore, if X is metrisable, then ^Fn(xf) 
converges to A0 with respect to the Hausdorff metric as a decreasing sequence of compact 
sets (see Edgar [4, Proposition 2.4.7]). D 

We close this section with a result on D-continuity of the operator F defined by (2). 
It is rather surprising that the D-continuity of such an F forces that F coincides with 
the operator defined by (1). 

PROPOSITION 6 . Let X be a countably compact and sequential space, 
f '. X i ¥ X and F(A) := c l ( / (A) ) for A G C(X). The following conditions are equiva­
lent: 

(i) F is continuous on C(X) with respect to the inclusion D; 

(ii) / is continuous on X with respect to the topology. 

Hence, if F is D-continuous, then F(A) = f(A) for A G C(X). 

PROOF: By Remark 1, the D-continuity of F on C(X) means that given a decreasing 
sequence ( A , ) ^ of nonempty closed subsets of X, 

cl(/(n An))= f]d(f(An)). 
v \>eN «eN 

By Theorem 9 ((i)<=>(ii)), this condition is equivalent to the topological continuity 
of / . Then, by Theorem 8 ((i)«=>(ii)), for A € C{X) the image f(A) is closed so 
F(A) = f(A). U 

5. THE HUTCHINSON-BARNSLEY OPERATOR ON (K(X),D) 

Throughout this section X is (with one exception) a Hausdorff topological space 
and K(X) denotes the family of all nonempty compact subsets of X, endowed with the 
inclusion D. Then every countable chain in (K(X), d ) has a supremum. Let F be defined 
by (1) for A G K(X). If we are to apply Theorem 1 then, without loss of generality, we 
may assume that the space X is compact (in particular, countably compact), because 
the assumption of Theorem 1 "there is an Xo G K(X) such that XQ D F(X0)" implies 
that all the maps fi\Xo №e restriction of fi to Xo) are selfmaps of the same compact set. 
Thus we arrive at the case considered in the previous section, however, this time we need 
not assume that the space X is sequential, since each continuous map / on X is closed 
so it generates the operator F, which is a selfmap of K(X). 
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THEOREM 4 . Let X be a compact space and / 1 , . . . , / „ be continuous selfmaps 
of X. Let F be defined by (1) and A0 := f] Fn(X). Then the set A0 is nonempty 

and compact, A0 = F(^4 0)i and AQ is the greatest invariant set with respect to the IFS 
{ / i , . . . , / » } • 

PROOF: Let Fi(A) :— f{(A) for A € K{X) and i = l , . . . ,n . The D-continuity 
of Fi follows from Proposition 7 (see Appendix). By Lemma 1, F is D-continuous, so 
Theorem 1 is applicable. D 

THEOREM 5 . Let X be a topological space (not necessarily Hausdorff), / 1 , • • •, 
/ „ be continuous selfmaps of X and F be defined by (1) . The following conditions are 
equivalent: 

(i) there exists a nonempty compact set AQ such that F(Ao) = A0; 
(ii) there exists a nonempty compact set A such that F(A) C A. 

PROOF: Obviously, it suffices to show that (ii) implies (i). This follows immediately 
from Theorem 4 applied to the compact set A and the restrictions fi\A of the maps ft to 
the set A. D 

We shall demonstrate the utility of Theorem 5 in the theory of IFS. As was mentioned 
in Section 1, if all the maps fi are Banach contractions on a complete metric space X, 
then it can be shown that the operator F is a Banach contraction on K(X) endowed with 
the Hausdorff metric and, consequently, there is a set Aq G K{X) such that A0 — F(A0). 
With a help of Theorem 5 we can give another proof of this fact without using Hausdorff 
metric. Instead, the contractive condition for fi enables us to show the existence of a 
nonempty compact set A such that F(A) C A. The only restriction is that we shall work 
in the class of the Heine-Borel metric spaces (see Section 1). Nevertheless, this class is 
large enough for applications since, obviously, the Euclidean space E" is Heine-Borel. 
The closed ball around a point x € X with a radius r is denoted by B(x,r). 

COROLLARY 2 . Let X be a Heine-Borel metric space, fi,...,f„ be Banach's 
contractions on X with contractive constants h \ , . . . , h n in ( 0 , 1 ) , and F be defined by 
(1) . Then there exists a nonempty compact set AQ such that F(A0) = A0. 

PROOF: We use an idea of Williams [14] (also see Hayashi [6]). Since a Heine-
Borel metric space is complete, each map fi has a unique fixed point x, by the Banach 
contraction principle. Let A :— B(x\,r), the radius r will be specified later. Denote 
h :— max {hi : i = 1 , . . . , n} and M := max jd (x j ,x i ) : i = 1 , . . . , n j . If x 6 A, then by 

the triangle inequality and the contractive condition 

(4) d(fiX, Xi) < d(/iX, fiXi) + d(x;, x x ) ^ hd(x, Xj) + M 

^ h(d{x, Xi) + d ( x b x ^ ) + M ^ hr + (1 + h)M. 

Now if we set r := [(1 + h) / ( l - h )JM, then hr + (1 + h)M = r so, by (4), fi{x) e A. 
Since A does not depend on the integer i, we may infer that F(A) C A. Clearly, by 

https://doi.org/10.1017/S0004972700022243 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700022243


[11] The Tarski-Kantorovitch principle 257 

the Heine-Borei property, A is compact and the existence of the set Ao follows from 

Theorem 5. D 

REMARK 3. It follows from the above proof and Theorem 3 applied to the IFS {/ì\A '• 

i = l , . . . , n } that the sequence ^Fn^B(xi,r)Yj ^ with r defined above is convergent 

with respect to the HausdorfF metric. We may set 

Ao-.= f | Fn(B(xur)), 
neN 

which is the limit of this sequence. Actually, this set is the unique invariant set with 

respect to { / i , . . . ,fn}, but the uniqueness of it follows from the Hutchinson-Barnsley 

theorem and is not obtainable via the T-K principle. 

6. APPENDIX: CONTINUITY OF MAPS ON COUNTABLY COMPACT AND SEQUENTIAL 

SPACES 

In the proof of Theorem 4 we used the following 

PROPOSITION 7 . Let X be a countably compact space, Y be a set and f : 

Y. If all fibres of f are closed, then given a decreasing sequence {An)^=1 of closed 

subsets of X, 

/(n a ) = D / K O -

\eN ' neN 

PROOF: Let (Any^_x be a decreasing sequence of closed subsets of X. It suffices to 

show that PI f(An) = / ( fl A„ J. Let y € f| f{An). Then there is a sequence {an)°°. 
neN W N / neN 

such that y = f(an) and a„ e An. Thus the sets Bn defined by 
Bn:=A„nf-l({y}) 

are nonempty, closed and B n +i Q Bn. By the countable compactness of X, there exists 

an x € f] B„. Then y = f(x) and x G fl An, which means that y € / ( fl An ) . D 
neN neN V„gN / 

The next result is a partial converse to Proposition 7. 

PROPOSITION 8 . Let X be a Hausdorff topological space, Y be a set and f : 

X Y. If for every decreasing sequence [An)™=l of nonempty compact subsets of X, 

/ ( fl An) — fl f[An), then all fibres of f are sequentially closed. 
W N / neN 

PROOF: Suppose, on the contrary, that there is a y e X such that the fibre / _ 1 ( { y } ) 

is not sequentially closed. Then there exist an x € X and a sequence (xn)^Li s u c n that 

f(xn) — y and f(x) / y. Set An := { i } U {xk : k ^ n}. Then the sets A„ are 

compact, since X is Hausdorff, and An+i C An. Clearly, i 6 f| An. Suppose that 
neN 
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x' S fl 4 and x' ^ x. Then there is a subsequence {xkn)™=1 of (x„)^L1 such that 
neN 

Xfc„ = x'. Simultaneously, ( x ^ ) ^ . , converges to x so x — x' (since, in particular, A" is a 
Ti-space), a contradiction. Therefore Ç] An — {x} so that 

neN 

/( fl An) = {/{x)} * {f(x),y} = fl f(An), 
vneN ' neN 

which violates the hypothesis. D 

As an immediate consequence of Propositions 7 and 8, we get the following 

THEOREM 6 . Let X be a countably compact and sequential space, Y be a set 

and f : X t-¥ Y. The following conditions are equivalent: 

(i) all fibres of f are closed; 

(ii) given a decreasing sequence [An)™=l of nonempty closed subsets of X, 

fid An) = D f(An); 
VneN / neN 

(iii) given a decreasing sequence ( A n ) ^ = 1 of nonempty compact subsets of X, 

f(0An)= D f(An). 
VneN / neN 

PROOF: The implication (i)=>(ii) follows from Proposition 7, (ii)=>(iii) is obvious 

and (iii)=4>(i) follows from Proposition 8. D 

REMARK 4. Observe that under the assumptions of Theorem 6, the classes C(X) and 

K(X) need not coincide, so the equivalence (ii)<4=>(iii) is not trivial. For example, define 

X as the set of all countable ordinal numbers; then X € C(X)\K(X) (see Example 3). 

In the sequel we shall need the following lemma (see Engelking [5, Proposi­

tion 1.6.15]). 

LEMMA 2 . Let X be a sequential space, Y be a topological space and f : X \-t Y. 

Then f is continuous if and only if f is sequentially continuous, that is, given a sequence 

(*»)~=i ™ *> 
/ ( l imx„) Ç l im/(x„) . 

PROPOSITION 9 . Let X be a topological space, Y be a countably compact and 

sequential space and f : X i-¥ Y. Then f is sequentially continuous if and only if the 

graph of f is sequentially closed in the Cartesian product X x Y. 

PROOF: (=>) • Let a sequence ( x „ , / ( x n ) ) converge to (x,y) in X x Y. Then 

x € l imx n and {y} = l im/ (x„) since Y is Hausdorff. By hypothesis, 

f(x) 6 / ( l imx„) Ç l im/(x„) = {y}, 

which means that f(x) — y. Thus the gTaph of / is sequentially closed. 
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( < = ) . Suppose, on the contrary, that / is not sequentially continuous. Then there 
exist a sequence ( x „ ) ^ , and an x € X such that x € limx„ and f(x) & lim f(xn). 
Without loss of generality, we may assume, by passing to a subsequence if necessary, 
that there is a neighborhood V of f(x) such that f(xn) & V for all n 6 N. Since Y 
is also sequentially compact (see Engelking [5, Theorem 3.10.31]), there is a convergent 
subsequence ( / ( x ^ ) ) of ( / ( x „ ) ) _ . Set y := lim f(xkn) (this limit is unique since 
Y is Hausdorff). Since x € lima;*,, and the graph of / is sequentially closed, we infer 
that y = f{x), that is, (/(x*,,)) converges to / ( x ) . This yields a contradiction, since 
f(xkJ ? V and f(x) G V. D 

The next result is a closed graph theorem for maps on sequential spaces. 

THEOREM 7 . Let X and Y be sequential spaces and Y be countably compact. 
For a map / : X H 7 the following conditions are equivalent: 

(i) / is continuous; 
(ii) the graph of f is closed in X x Y; 

(iii) the graph of f is sequentially closed in X x Y; 
(iv) / is sequentially continuous. 

PROOF: That (i) implies (ii) follows from Engelking [5, Corollary 2.3.22]. (ii)=>(iii) 
is obvious. (iii)=>(iv) follows from Proposition 9 and finally, (iv)=»(i) holds by Lemma 2. D 

The main result of this section is the following theorem, which gives a characterisa­
tion of continuity of maps on countably compact and sequential spaces. This result was 
obtained as a by-product of our study of continuity of the Hutchinson-Barnsley operator 
with respect to the inclusion D (see Proposition 5). 

THEOREM 8 . Let X and Y be countably compact and sequential spaces. For a 
map f : X i—¥ Y the following conditions are equivalent: 

(i) / is continuous; 
(ii) for every closed subset A of X, the image f(A) is closed, and all fibres of 

f are closed; 
(iii) for every closed subset A of X, the image f(A) is closed, and given a 

VieN / neN 

(iv) for every compact subset A of X, the image f(A) is compact, and 
given a decreasing sequence ( j4 n )^ i of nonempty compact subsets of X, 

PROOF: ( i )=»( i i ) . Let A be a closed subset of X. Since X is sequentially compact 
(see Engelking [5, Theorem 3.10.31]), so is A (see [5, Theorem 3.10.33]). Hence and 

by continuity of / , the image f(A) is sequentially compact (see [5, Theorem 3.10.32]). 

decreasing sequence (An)™=l of nonempty closed subsets of X 
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In particular, f(A) is sequentially closed, hence closed since Y is sequential. Since, in 
particular, Y is a Ti-space it is clear that the fibres of / are closed. 

(ii)=>-(iii) follows immediately from Theorem 6. 

We give a common proof of the implications (iii)=>(i) and (iv)=>(i) . By The­
orem 7, it suffices to show that the graph of / is sequentially closed. Let a sequence 
(xn, f{xn))'^L1 converge to (x,y) in X x Y. Since both X and V are Hausdorff, we may 
infer that x — \imxn and y — lim/(a;„). Set An := {x} U {xk : k ^ n) for n G N. The 
the sets An are compact (hence closed), An+i C An and f] An = {x}. By hypothesis, 

neN 

fl f{An) - f( fl An) = \f{x)}- Since both (iii) and (iv) imply that the set f{An) 
neN V„ 6 N / 1 ' 
is closed and f(xk) € f(An) for k ^ n, we may infer that y = lim f(xk) e f(An) so 

k-ioo 

that y e f l f{An) — {f(x)\, that is, y = f(x). This proves that the graph of / is 

sequentially closed. 
We have shown that conditions (i), (ii) and (iii) are equivalent, and that (iv) implies 

(i). To finish the proof it suffices to show that (iii) implies (iv). Since (iii) implies the 
continuity of / , the first part of (iv) holds. The second part of (iv) follows immediately 
from (iii). D 

Our last theorem gives another characterisation of continuity. This result was ob­
tained as a by product of our study of D-continuity of operator F defined by Lasota and 
Myjak [10] (see Proposition 6). 

THEOREM 9 . Let X and Y be countably compact and sequential spaces. For a 
map f : X t-> Y the following conditions are equivalent: 

(i) / is continuous; 

(ii) given a decreasing sequence (A„)^ l 1 of nonempty closed subsets of X, 

c l f / f n aJ]) = D c l ( / ( A 0 ) ; 

(iii) given a decreasing sequence ( A „ ) ^ = 1 of nonempty compact subsets of X, 

c l f / f fl An)) = fl c l ( / ( A 0 ) . 
V VneN / / neN v ' 

PROOF: ( i)=>(ii) . Let (A , )^L, be a decreasing sequence of nonempty closed subsets 
of X. Since the intersection fl An is closed, we may conclude by Theorem 8 ((i)=>(ii)) 

neN 

that all the sets / ( fl An ) and f{An) (n € N) are closed. Therefore, (ii) follows imme-
V„eN / 

diately from condition (iii) of Theorem 8. 
(ii)=>(iii) is obvious. 
(iii)=>(i). By Theorem 7, it suffices to show that the graph of / is sequentially 

closed. We use the same argument as in the proof of ( iv)=^(i) in Theorem 8. So let 
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x — limx„ and y = lim f[xn). Set An := {x} U {xk : k^ n}. By (iii), 

0 c l ( / ( A . ) ) = d ( / ( f l A , ) ) = c l ( { / ( * ) } ) = { / ( * ) } . 

Since y € cl(/( j4„)) for all n € N, we infer that y = f(x), which proves that the graph 
of / is sequentially closed. D 
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