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A simplified lightcurve inversion method is applied for the special case where 
observations are taken in the equatorial plane of the asteroid The solution is 
obtained in terms of a spotted two-surface model using Lambert's law and 
geometrical reflectivities. 

The general problem of interpreting the lightcurve of a rotating body in 
terms of its shape and surface spottiness has been discussed in detail by Russell 
(1906). However, in the special case where the rotational axis is perpendicular 
to the line of sight, the analysis may be greatly simplified. Although the 
ambiguity between the shape and spot contributions to the light variation 
remains unresolved, it is possible to examine the type of surface reflectivity law 
and to set some limits on the range of albedo variation that will be consistent 
with the observed lightcurve. 

Without loss of generality (insofar as being able to reproduce the observed 
lightcurve is concerned) we can assume the asteroid to be spherical in shape. 
The surface is taken to consist of bright and dark areas that reflect either 
geometrically (<* cos 7) or diffusely according to Lambert's law (<* cos2 7) 
where 7, defined by 

cos 7 = cos 6 cos 6Q + sin 0 sin 0O cos (0 - 4>Q) 

is the angle between the outward normal of a surface element and the line of 
sight in the polar coordinates centered on the asteroid. The polar angle and 
longitude of the sub-Earth point are designated by 0O

 an^ 0o> respectively. 
In the special case when the observer is in the equatorial plane of the 

asteroid, the integration over the visible hemisphere is greatly simplified, and 
we can write the brightness variation of the asteroid as 

1 ("it A>0+»r/2 . 
g(<t>0) = B+ - I I [A sin2 6 cos2 (<t>- 0O) 

-•njl 

-B sin 0 cos (</> - <j>0)] h(<p) sin 6 d6d<j> (1) 
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where g(0o) *s ^ e rat*° °f reAected to incident light; B is the normal albedo of 
the geometrically reflecting surface area; A is the normal albedo of the 
diffusely reflecting area; and h(4>) is the spot distribution function that gives, as 
a function of longitude, the fractional area that reflects diffusely according to 
the Lambert law. Because no information regarding the latitude distribution of 
bright and dark areas appears in the lightcurve when the asteroid is viewed 
from within its equatorial plane, h(<p) is taken to be constant with latitude. 
Assuming that h(<t>) can be expressed in the form 

oo 

h(<t>) = / &„ cos «0 + bn sin n<t>) (2) 
71 = 0 

equation (1) can be integrated to obtain a Fourier series in <t>0. By comparing 
the resulting Fourier coefficients with the corresponding terms obtained from a 
Fourier analysis of the observed lightcurve, we find that the coefficients for the 
cos n<j)Q terms are related by 

CQ=B + t-A-B)a0 (3) 

/16 IT \ 
CM—A--B)ax (4) 

\9TT 4 / 

C2=-(A-B) a2 (5) 
3 

16.4 
C„=(-l)("+D/2 . („ = 3 ,5 , . . . ) (6) 

3Trn(nz - 4) 

C„=(-l)n/2^-an (n = 4 , 6 , . . . ) (7) 
nz - 1 

where the Cn are the Fourier coefficients obtained from the observed 
lightcurve and the an are the coefficients defined in equation (2). The same 
relationships apply for the sin n0o terms. 

The above set of relations contains the available information regarding the 
relative proportion and longitude distribution of geometrically and diffusely 
reflecting surface areas and the range of albedo combinations that are 
compatible with the observed lightcurve. The limits for the allowed albedo 
range are imposed by the physical requirement that the spot distribution 
function h(<t>) must not become negative or exceed unity. 
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Because of the infinity of possible solutions, it appears best to consider 
families of solutions for constant A/B ratios. By specifying a ratio for A/B and 
by setting a0

 = u-5, we define a model for which the surface is evenly divided 
between geometrically and diffusely reflecting areas. (See fig. 1.) This allows 
for the greatest amplitude fluctuation for h(<t>) and marks the approximate 
center of the allowed albedo range for the specified A/B ratio. The locus of 
these points falls along the broken line shown in figure 2. Then, keeping the 
A/B ratio fixed, increasing (or decreasing) A and B simultaneously until h(<j>) 
becomes negative (or greater than unity), establishes the range of albedo 
combinations that are compatible with the physical restriction imposed on 
h(<}>). 

This procedure defines two separate albedo regions—one corresponding to 
bright spots, the other to dark spots. Because all albedo combinations in a 
given enclosure are equally capable of reproducing the observed lightcurve to 
the same degree of accuracy, it is clearly impossible to differentiate between 
bright spot and dark spot models on the basis of the observed lightcurve alone. 

The size and location of the limiting enclosures depends both on the size of 
the lightcurve coefficients and on the proportionality factors appearing in 
relations (3) through (7). Generally speaking, each additional Fourier term that 
is included to approximate the observed lightcurve tends to diminish the size of 
the allowed albedo region. However, because of observational scatter, the 
higher order Fourier terms become increasingly unreliable. This is an important 
factor because the n = 1 and n = 2 terms contain contributions from both 
geometrically and diffusely reflecting areas. It is only on the basis of terms 
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Figure l.-The fractional area that reflects diffusely according to Lambert's law. For 
4 Vesta, h(<j>) includes Fourier terms up to n = 4. For 39 Laetitia, terms up to n = 2 are 
included. In both cases an = 0.5. 
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Figure 2,-The most probable albedo combinations for diffuse A and geometrical B 
reflectivities. Both scales have been normalized in terms of the average normal albedo 
of the asteroid. The broken line is the locus of points for a0 = 0.5. The numbered 
curves enclose the allowed albedo combinations as defined by the number of Fourier 
terms used to approximate the observed lightcurve. (a) 4 Vesta, April 10, 1967. 
(b) 39 Laetitia, December 1955. 

n = 3 and greater that we can verify the presence of diffusely or geometrically 
reflecting areas. 

The lightcurves used in the present analysis are those taken by Gehrels 
(1967) for 4 Vesta and by van Houten-Groeneveld and van Houten (1958) for 
39 Laetitia. These are typical examples of single maximum and double 
maximum lightcurves that also satisfy the requirement of being observed 
within the equatorial plane of the asteroid. This is indeed true for 4 Vesta, 
which is observed in the equatorial plane, although for 39 Laetitia the 
inclination may be as large as 20°. Also, it should be noted that the phase angle 
for 4 Vesta was -18° and that of 39 Laetitia was about the same. Although the 
present calculations are specifically applicable for a zero phase angle, the 
derived albedo limits should not be significantly affected unless the form of the 
assumed reflectivity laws changes significantly with phase. 

The results of Fourier analyzing the 4 Vesta and 39 Laetitia lightcurves are 
summarized in table I. For convenience of comparison, the Fourier coefficients 
of the sin «0O

 an<^ c o s n$o terms have been combined and are normalized with 
respect to C0, the mean normal albedo of the asteroid. Also included is the 
root-mean-square difference between the observed points of the lightcurve and 
the nth Fourier representation. 

The difference between the single maximum and double maximum 
lightcurves is illustrated by the prominence of the even-order terms in the 
39 Laetitia lightcurve and the odd-order terms in the 4 Vesta lightcurve. 
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TABLE I.—Fourier Analysis of Lightcurves 

n 

0 
1 
2 
3 
4 
5 
6 

4 Vesta 

(c2 + Z)2)'/2/c0 

1.000 
.056 
.005 
.007 
.002 
.005 
.000 

rms/Cg 

0.042 
.011 
.011 
.009 
.009 
.008 
.008 

39 Laetitia 

(C2 + Z ) 2 ) % 0 

1.000 
.025 
.203 
.009 
.022 
.012 
.018 

rms/Cg 

0.139 
.137 
.022 
.020 
.016 
.015 
.010 

Clearly, the even-order terms for 39 Laetitia may be interpreted as being due to 
the projected area of an irregular object. This leaves a 5 to 10 percent light 
variation due to the odd-order terms, which may be associated with either a 
spotted surface or Lambert law reflectivity. However, it appears likely that if 
39 Laetitia is observed closer to its equatorial plane, the size of these terms will 
be somewhat reduced. 

For 4 Vesta, interpreting the 1.4 and 1.0 percent light variation contributed 
by the n = 3 and n = 5 terms as significant would indicate the definite presence 
of a Lambert law contribution to the surface reflectivity. The n - 5 term seems 
to suggest bright diffusely reflecting spots on a darker geometrically reflecting 
surface. However, the limited accuracy of such high-order terms does not 
necessarily preclude a model with dark spots on a bright geometrically 
reflecting surface. 
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DISCUSSION 

VEVERKA: In your analysis you assume a surface composed of areas which scatter 
either "geometrically" (<* cos 7) or "diffusely" (<* cos2 7) according to Lambert's law. For 
asteroids, this is an invalid assumption. For intricate surfaces, in which multiple scattering 
is not dominant, the first part of the assumption is not too bad at small phase angles, but 
still, strictly speaking, you can only have "geometric" scattering at opposition and 
nowhere else. (See, for example, Irvine, 1966.) 

However, you can never have Lambert scattering on such a surface at visible 
wavelengths. At visible wavelengths, even quasi-Lambert scatterers are rare and usually 
consist of extremely bright patches in which multiple scattering is dominant (for example, 
snow or MgO). There is no evidence that such areas occur in asteroids, and much evidence 
that they do not occur (for example, deep negative branches in the polarization curves). 

You are therefore trying to force a fit using two generally inappropriate scattering 
laws, and a probably incorrect shape (a spherical asteroid). Thus the calculation, although 
interesting, cannot have much application to asteroids. 
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JOHNSON: The lack of color variation seems to indicate that in many cases the 
asteroid variation is due to shape rather than spots. Is it possible to make the model yield 
shape information as well as spot distribution? 

LAOS: The even terms of the spot distribution function h{4>) can be directly 
associated with the shape of the object. By assuming a constant albedo over the surface, a 
rough estimate for the shape is given by R(<t>) - 1 -h(4>). For 39 Laetitia, this relation 
indicates an oblong object with a length-to-width ratio of approximately 3:2. 

KUIPER: When we started our precision photometry of asteroids at McDonald about 
1949, we found that the rule was to have two maxima and two minima in the lightcurve. 
It was concluded that the light variation was primarily due to shape. Variation in surface 
reflectivity could contribute something, but when the variation is 0.3 mag or more, the 
main effect must be due to shape. 

LACIS: Inverting the lightcurve in terms of a spotted sphere gives us little more than a 
geometrical model that is capable of reproducing the observed light variation. However, in 
the case where the observations are made in the equatorial plane of the asteroid, we can 
infer the type of reflectivity law from the strength of the different Fourier terms present 
in the observed lightcurve. At opposition, the geometrical reflectivity is a special case of 
the Lommel-Seeliger law. The assumed Lambert law reflectivity could conceivably refer to 
a more specular type of reflection law. It is just that the presence of odd Fourier terms 
(n = 3, 5,. . .) cannot be accounted for in terms of geometrical reflectivity alone. 

Also, it may be of interest to note that there is a systematic increase in the odd Fourier 
terms and a decrease in the even-order terms as the observing point moves away from the 
equatorial plane of the asteroid. This may be helpful in locating the orientation of the 
rotational axis. 
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