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Abstract

The greatest lower bound (in fact, £) is found of constants k such that

log log q
<k

q2 log q

for an infinity of rationals p/q.
Corresponding results are given for the inequality if e be replaced by e±2/(, where / is a

positive integer.

Subject classification (Amer. Math. Soc. (MOS) 1970): 10 F 05.

Problems of irrationality and transcendence have occupied mathematicians for a
long time. Over the years many general results have been obtained, in particular
for measures of irrationality or of transcendence for certain classes of numbers.
The numbers e and TT are of obvious interest and Mahler (1932) gave measures of
transcendence for these numbers. Whilst these results yield measures of irrationality
as special cases, it is to be expected that these are far from the real truth and, indeed,
Mahler (1953) found a much improved result for TT.

Apart from quadratic irrationalities, perhaps the simplest number to yield
reasonably precise results is e. For this number the simple continued fraction
expansion was found by Euler (1737) and a more general analysis covering Euler's
procedure was developed by Hurwitz (1891, 1896) to yield the corresponding
expansions for e2/' for any positive integer t. (Euler had already given the expansion
for e17' and the expansion for e2 was discovered by Sundman (1895).) Independent
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derivations of these results were subsequently given by Davis (1945) and by
Walters (1968).

Asymptotic results on rational approximations to e have been derived from the
simple continued fraction expansion by Adams (1966) and general results on
rational approximations to ea(aeQ) by Bundschuh (1971). In particular, the
latter author exhibits positive constants cx, c2 such that

for all rationals p/q, while

e-P-

e-P-
q

>c
log log q

log log q
8 q2logq

has infinitely many solutions in rationals pjq. Similar results are given for e±1/f, t eN.
Results of this character are implicit in the paper of Davis (1945) mentioned above,
since this includes explicit formulae for the pn,qn of the convergents pjqn to the
simple continued fractions for e2/', and asymptotic expressions for these and for

Bundschuh's work is based essentially on the application to certain confluent
hypergeometric functions of Kummer's relation, yielding rational functions
approximating e". These are in fact simply the Pade approximants to e21 lying on
the principal diagonal of the usual Pade table (see Perron (1957)). It was proved
in Davis (1945) that for x= l/t(teN) these, together with certain adjacent
approximants, give the set of convergents to the simple continued fraction for evl.
A similar, but slightly more complicated result holds for evi with t an odd integer.

In view of the continuing interest in the problem it may be appropriate to outline
the derivation of these results, with a somewhat simpler method of establishing the
convergents. For brevity, details are confined to the case of e itself; the methods
used apply generally and the paper just cited may be consulted for the general case.
Specifically, the following result is proved here.

THEOREM 1. For any e > 0 there is an infinity of solutions of the inequality

loglogtf
e-P-

in integers p,q. Further, there exists a number q' = q'(e) such that

. .A log log ?e-P

q q2logq

(1)

(2)

for all integersp,q with q^-q'.
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We first indicate the basic idea. If f{t) is a polynomial and a > 0, and we write

Jo
we have, on putting J<j° = H+lf,

= I+e-"P, that is e « - - = — = —2,
P _eal _ J

where

/ = e-^fifydt, P = e-^fit+Yidt and J=eaIQ.
Jo Jo

Hereafter we take a = 1. We define, for « ̂  0

e. = ^JV/•(/-1)«A, sn=11V*-(*-i)-+idt,

with further integrals Pn, Rn, Tn corresponding respectively to these as P does to
Q above, and In,Jn having the obvious significance. Then we have Qo = 1, So = 0,
Uo = 1, and Po = 1, Ro = 1, To = 2.

LEMMA 1. For «Ssl,

Sn = 2nQn+Un_1, Qn = Un_x+Sn_x, Un_^ S^+Q^.

PROOF. Writing 1 = t-(t-l) gives g»-i = ^n-i-S'n-i- Putting <p = f(f-l), so
that 5?' = 2f-1 = t+(t-1), we have

2n = ̂ ! \Ie~' 9ndt^\ \le~in(pn~19'dt = U*~
Finally,

n\Un= e-*t<pndt= e~4{<pn+tn<pn-1<p')dt
Jo Jo

Jo

Hence

COROLLARY. Sn,Qn,UneN, except that So = 0.
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LEMMA 2. For n^l,

PROOF. Immediate deduction from Lemma 1 on noting the relation between the
P,R, Jand the Q,S,U.

COROLLARY. Rn, Pn, Tn e N.

PROOF. Expanding the exponential in the integral for In and integrating term-by-
term, which is trivially justified, we obtain

r »! ^ ( - 1 ) " («+l) •••(» + *) _ n\ %(-iy
n (2n+l)\£s v\ (2« + 2)...(2n + v+l) (2n+l)\v% v! "W >

say. Since 0 < kn(v) < 1 for n > 0, the series converges uniformly and so approaches
e~~* as n -> oo.

In the integral for Qn, expanding the binomial, integrating term-by-term and
using Tannery's theorem yields the stated result.

The last result follows immediately.

LEMMA 4. For sufficiently large n, PJQn is a convergent to the simple continued
fraction for e.

PROOF. For then

Pn
Qn

e—

and the results follows from Legendre's criterion.

LEMMA 5. Ifax,a%,... are positive integers, a0 an integer,

), *_! = (), x o = l ,

) , y_1=\, yo = ao,

and a sub-sequence of yv\xv tends to a number a,, then

(i) « = [ao,0i,fl2> • • • ] ;
(ii) the convergents to a are yjxv (v ̂  0).

PROOF. The yjxv are the convergents to j8 = [ao,a1,a2>---]> a nd j8 = a, since
yvjxn-+a. for some sequence {vj.
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LEMMA 6. If e = [a0, a1; a2,...] is a simple continued fraction, with convergents

pjqv, then
ao = Po = To = 2> 1o=Uo= 1

and, for n > 1,

Pzn-1 = Ai ' Pin-I — Rn> Pzn = ^n»

9r3m-2 = Qn-> ? 3 » - l = 'S'M. a3n = ^n -

PROOF. The conditions of Lemma 5 are satisfied on taking

(x_ 1 ; x 0 ,Xj,x 2 ,x 3 , . . . ) = (So, (70, 2 I J S i , Ui,...),

O-l> Jo> 7l» J2> J3> • • •) = (^0, 7i> -Pi, -Rl, ^ i , .. .)•

Since Pn/Qn^-e, the results follow.

PROOF OF THEOREM 1. Applying Stirling's formula to the asymptotic expression
for Qn given in Lemma 3, we find

Hence log(gm~Klog« and so n ~ (log 2n)/log log Qn. Thus

_\Jn\ 1 l loglogen
e —

Qn 2nQl 2QllogQn'
(3)

and (1) of Theorem 1 is satisfied on taking p = Pn,q = Qn, with
The relation (2) of Theorem 1 is certainly satisfied by any p/q which is not a

convergent, since then \e—pjq\> l/q2. For any convergent which is not a PJQn,
the next partial quotient is 1, and so in this case \e— p/q\> l/(3<72) and again (2) is
satisfied. The result (3) above shows that, for any e>0, (2) holds for p/q = PJQn

if n is sufficiently large. This completes the proof.

We state here the more general result which may be obtained using the same
ideas.

THEOREM 2. If a = ±2/t, where r eN, and

H/t, t even,

11/(40, todd,
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then, for any e > 0, the inequality

has an infinity of solutions in integers p, q. Further, there exists a number q', depending
only on s and t, such that

p
q

log log q
q*\ogq

for all integersp,q with
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