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On the Attractions of Spherical and Ellipsoidal Shells.

By Professor A. GRAY, F.R.S.

(Received 1st June 1914. Read ISth June 1914..)

So far as I am aware, the methods, described below, of finding
the attraction of a uniform shell of matter on a particle placed at
an external or an internal point, are new. They are particular
applications of a method of finding the attraction of a thin shell
of uniform volume density bounded by similar and similarly
situated ellipsoidal surfaces (what some have called a homothetic
shell, and Thomson and Tait an elliptic homceoid) which I explained
in a paper, on the attraction of ellipsoidal shells and of solid
ellipsoids, which was published in the Philosophical Magazine for
April 1907. I give here also a short account of the more general
problem with some additional notes and remarks. The solution
depends on a geometrical theorem of some interest which occurred
to me in thinking over the problem of the ellipsoidal shell, and its
solution by Poisson by a laborious and somewhat difficult process
of integration (Me'moires de I'Institut, t. xv., 1835).

1. Consider a thin uniform spherical shell, of radius a and mass
<T per unit of area, attracting a particle of unit mass at a point P
distant f from the centre C of the shell. (1) Let P be external to
the shell as shown in Fig. 1. An element of area dS at E has
mass <rd&, and its attraction on the unit particle at P is no-dS/i*,
where r denotes the distance EP, and K the gravitation constant.
Resolving along the direction of the resultant attraction of the
shell on the particle, putting d for the angle APE, we obtain for
the attraction F of the whole shell the equation

F = KO- P p r d S , (1)

where the integral is taken over the surface of the shell. Now,
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describing through P a surface concentric with the shell, producing
CE to meet that surface in E' and joining AE', we see that AE' = r,
and L AE'E = 6. Moreover, by radial projection of dS from the
centre C, we obtain an area dS' on the concentric surface such that
dS = dS'. a2//2. Replacing dS in equation (1) by this value we get,
integrating over the concentric surface,

Y = K(r—{C—dS' (*\

But, since AE' = r and L AE'E = 0, dS'co&d/r* is the solid angle
subtended at A by the element of surface dS'. The integral is

B

Figr. 1.

therefore the solid angle subtended by the whole concentric surface
at the internal point A, or 4ir. Hence

.(3)F = K—r ,

that is, the attraction is the same as if the whole mass were col-
lected at C.

(2) Let P be an internal point, as shown in Fig. 2, and a
concentric surface be described through P as before. Corre-
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sponding to dS there is an element of surface dS' as before on the
concentric surface, and again AE' = PE = r, z.APE = ^_AE'E = 0.
Thus, again,

_. a f -r-.costf

Now, however, the integral is the solid angle subtended by the
concentric surface at the external point A. This, of course, is zero,
and therefore F = 0.

Fig. 2.

It will be noticed that, if the shell be incomplete, the attraction
is in each case the product of KO-O?//- by the proper value of the
solid angle subtended at A by the part of the concentric surface
corresponding to the incomplete shell. For example, let P be
external to the shell, regarded as complete. I t is obvious that if
we divide the shell into two segments, by drawing the polar plane
of P with respect to the shell, the solid angles subtended at A by
the corresponding parts of the concentric surface are each 2TT.
Hence the shell is divided by the plane at right angles to CP
drawn through the point P', the inverse of P with respect to the
shell, into two segments attracting equally the unit particle at P.

Of course this last result is obvious from another point of view.
We have only to draw narrow cones through P so as to intersect
the shell. The two elements intercepted by each cone have equal
attractions on the particle at P. The elements fall into two sets,
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one set forming one of the two segments just specified the other
set forming the other segment.

From the result we can easily find a solution of the problem of
dividing a solid sphere into two parts which shall have equal
attractions at any point P. Let the centre be C: on CP as
diameter describe a sphere. This spherical surface divides the solid
sphere into two parts which have equal attractions on a particle
at P. These parts are lens-shaped, one, the farther from P,
convexo-concave, the other convexo-convex. The spherical surface
divides each of the concentric shells, of which the solid sphere may
be regarded as built up, into two segments which join along the
polar plane of P with respect to the shell.

This theorem holds whether the solid sphere be of uniform
density or of density varying as a function of the distance from the
centre. I t also holds whether P be internal or external to the
sphere. For the case of uniform density the theorem can be
verified in this case at once, for the attractions of uniform spheres
of different radii, but of the same density, on a unit particle in
contact with the surface in each case, are proportional to the radii.

2. We now pass to the more general theorem. It was proved
by Poisson, in the memoir referred to above, that the resultant
attraction of an elliptic homoeoid at an external point is directed
along the internal axis, PQ, of the cone drawn from the external
point as vertex to envelop the homoeoid. The full significance of
his theorem does not seem to have been perceived by Poisson. For
that axis of the cone is the normal to the confocal ellipsoidal
surface drawn through the external point, and the theorem shows
that the family of external confocal ellipsoidal surfaces are the
equi-potential surfaces of the homceoid, a fact of great importance
in view of Green's theory of equivalent distribution. [This was
contained in his celebrated Essay which was published privately in
1828, but remained unknown to the French mathematicians, and
to the scientific world generally, until about twenty years later,
when it was republished in Crelle's Journal.]

Refer to Fig. 3, which represents a section of the ellipsoidal
shell, the attraction of which on a unit particle at P is to be
considered, by a plane containing the internal axis PQ of the
enveloping cone drawn from P as vertex. The confocal surface
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through P is indicated, and to this surface the axis in question is
a normal. The equation of the confocal is

.(5)

and the equations of the outer and inner surfaces of the homoeoid
are

x" y" z'1 a? y-

respectively.

y z a? y z
To ~^~ i> = 1 "•) r. H—rz H — n — K — flJA,

b- c- a' b2 c"
(6)

Pig. 3.

Imagine drawn from P as vertex a narrow cone of solid angle
dm, intercepting two elements of the homoeoid at E and F, and let
the area of the element at E be dS. If the length of the per-
pendicular from the centre on the tangent plane at E be p, the
mass of the element is hppdkdiA/k. Now to dii we have by the
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theory of corresponding points on confocal surfaces a corresponding
element at E', the area of which, rf2, is given by the equation

ab° nd? (7)

where VS is the length of the perpendicular from the centre on the
tangent plane to the confocal at E'.

3. Before proceeding further it is necessary to explain and
indicate a proof of the geometrical theorem by which the attraction
integral is to be transformed. Let the point A on the surface of
the shell correspond to P on the confocal. The point E corresponds
to E', and by the property of corresponding points AE' = EP, that
is, AE' is also equal to r. Let TSa be the length of the perpendicular
from the centre on the tangent plane to the confocal at P, and 6
be the angle between the perpendicular (of length V5) from the
centre on the tangent plane at E' and the line AE'. Let
the angle between the former perpendicular and the line EP
be 0O- [It is important to take the lines EP, AE' in the senses
indicated by the letters, and to take the perpendiculars both
outward or both inward, to avoid any difficulty as to the signs
of the cosines]. Then it can be proved that

This is the geometrical theorem employed. I have not seen it
referred to in works on geometry.

Of course the theorem also holds when the perpendiculars arc
those to the tangent planes which touch at the two points A, E on
the shell. The proof in either case is easy: it is only necessary to
express C7(>, rar, cos#0, cos#, by means of the equation of the confocal
and the coordinates of P and E' when it is found that (8) is verified.
The theorem of course is not confined to the particular case of
ellipsoids.

Since an ellipsoid is confocal with itself, the theorem also holds
when P coincides with A and E' with E. Then EP coincides with
EA and AE' with AE. Hence if pm p be the lengths of the per-
pendiculars from the centre to the tangent planes at the extremities
of a chord drawn to join any two points A, E on an ellipsoid, and
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Om 0 be the angles between AE and p0 and between EA and p
respectively, we have again

(8')

4. This latter case of the geometrical theorem enables us to
prove Poisson's theorem of the direction of the resultant attraction,
and to establish some other results. From P draw a narrow cone,
of solid angle du>, intercepting elements of area dSlt dS2 at E, F on
the shell, and let plt p2 be the lengths of the perpendiculars from
the centre on the tangent planes at E, F, #„ ft, the angles between
these perpendiculars and EF, FE respectively. Then clearly we
have dS1 = r1

2rf(o/cos01, dS2 = r2Vo)/cos02, where r ^ P E , rs = PF.
But by the statement made above, § 2, as to the mass of an element
of the homoeoid, the masses intercepted at E and F are

which, by the values just found for dSlt dS2 are

^pdkrj-dwpj/kcosd^ ^pdk^diapJk

The attractions on a particle of unit mass at P are therefore

and these are equal by (8'). I t is clear, therefore, that the attract-
ing elements fall into two sets, one set on the side of the polar plane
towards P the other set on the side remote from P. The polar
plane therefore divides the homoeoid into two segments which exert
equal attractions on a particle at P.

Moreover, for any narrow cone taken with its axis on one side
of the axis of the enveloping cone, another cone of equal solid angle
can be taken on the other side of the latter axis in the same plane
with it, and equally inclined to it. By such pairs of cones the
homoeoids can be exactly exhausted, and so Poisson's theorem of
the direction of the attraction at P is established.

A similar method to that just employed for the point P can be
used to show that the attraction on a particle at any internal point
is zero. It is only necessary to draw cones with their vertices at
the point chosen, and apply the theorem (8') as before. All
reference to the homoeoid as found by pure strain from a uniform
spherical shell is thus rendered unnecessary. We shall obtain
presently another proof of this theorem.
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A proof of Poisson's theorem of the direction of the attraction
was given by Steiner (Grelle, Bd. 12, 1834) after the announcement
of the theorem in 1833. This, however, involved the assumption,
to be justified by derivation of the homoeoid from the spherical
shell, that two elements intercepted by the same narrow cone, have
masses in the ratio of the squares of their distances from the vertex
of the cone. Steiner's proof is reproduced in the Phil. Mag. paper
(loc. cit).

5. We can now find the magnitude F of the resultant. We
have, if r denote the distance EP, dS the area of an element at E,
p the length of the perpendicular from the centre on the tangent
plane at E, and 60 the angle EPQ,

dkC _rfS
\P "^ ( ) -

The integration is taken over the homoeoid. The difficulty in
Poisson's investigation was the evaluation of this integral, and its
accomplishment was a rather troublesome and lengthy process.

If in (9) we make the substitution given by (7), we get

(10),

or by the relation (8), since nr0 is the same for every element,

p, i dk abc fcos0</2
t =*KO- , = I=^-SXOI ; ( 1 1 )

* v/(a2 + u)(62 + i*)(c2 + w) J i-

In (10) and (11) the integrations are to be taken over the confocal
surface. Clearly the integral in (11) is the solid angle subtended
at the point A by the surrounding confocal surface, and is therefore
4JT. Hence we have

(12)

which is equivalent to Poisson's result. From this (see Phil. Mag.,
loc. cit. supra) the potential of the homoeoid at P, and at any other
point is easily obtained.
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We can proceed in exactly the same way when P is within the
homoeoid, by taking a confocal ellipsoidal surface through P. We
have then for the equation of the confocal

a? ya z2

73 77 + Ti ~ + ~i 17 = *»

and get by the same process the same equation (12), except that u
is replaced by - u. Here, however, the integral is the solid angle
subtended by the closed surface of the confocal at the external
point A, and is zero. Hence F is zero at P.

As in the case of the spherical shell, if the homceoid is incom-
plete its attraction is given by estimation of the corresponding solid
angle subtended by the confocal at A.

Also, it can easily be shown that the parts of the confocal
corresponding to the two segments, into which the shell is divided
by the polar plane, subtend each an angle 2ir at the point A, so
that these segments exert equal attractions at the external point P,
as proved more simply above.

6. I t is clear that the surface of which the equation is

contains the intersections of all the polar planes of point P
(coordinates / , g, h) with respect to the surfaces (common centre C)
obtained by giving different values to A in the equation

Hence if /, g, h be the coordinates of the point P at which the
unit particle is situated, and an ellipsoid, of which the equation
(referred to the same axes as are used for the homceoids) is (13),
be described from the point of coordinates (\f, \g, \h) as centre, it
will contain the intersections with the surfaces of all the polar
planes of the point P with respect to the family of surfaces repre-
sented by (14). Thus it will divide each homoeoid characterised by
an assigned value of k into two segments which exert equal attrac-
tions on a particle at P.

Further, if a solid ellipsoid be constructed by placing together
concentric homoeoidal shells, of which the equations of the succes-
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sive surfaces are given by varying k, and which have each uniform
volume density, varying in any manner from shell to shell, the
ellipsoidal surface of which the equation is (13) will divide the
solid ellipsoid into two parts which attract equally a unit particle
at P. This holds even when P is within the solid ellipsoid. The
centre of this surface is the mid-point of CP, and obviously CP is
a diameter.

Thus the results stated in the first part of this paper for
spherical distributions have their exact counterparts in the general
case of ellipsoidal distributions.
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