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On the Bezdek—Pach Conjecture for
Centrally Symmetric Convex Bodies

Dedicated to Ted Bisztriczky, on his sixtieth birthday.

Zsolt Langi and Marton Naszodi

Abstract. The Bezdek—Pach conjecture asserts that the maximum number of pairwise touching posi-
tive homothetic copies of a convex body in R? is 2¢. Naszodi proved that the quantity in question is
not larger than 24!, We present an improvement to this result by proving the upper bound 3 - 24!
for centrally symmetric bodies. Bezdek and Brass introduced the one-sided Hadwiger number of a
convex body. We extend this definition, prove an upper bound on the resulting quantity, and show a
connection with the problem of touching homothetic bodies.

1 Introduction

In this paper, RY denotes the d-dimensional Euclidean space, o is its origin, and S9!
is the unit sphere centered at 0. A convex body K in R? is a compact, convex set with
non-empty interior. A positive homothetic copy of K is a set of the form AK + t where
A > 0andt € R? Two convex sets in R? are non-overlapping if their relative interiors
are disjoint. Two non-overlapping convex sets with intersecting closures touch each
other.

In 1971, C. M. Petty [8] proved that the maximum cardinality of a family of pair-
wise touching translates of a convex body K is at most 2¢ with equality if, and only if,
K is an affine image of a cube. As an extension of this problem, K. Bezdek and J. Pach
[2] conjectured in 1988 that the maximum number of pairwise touching positive ho-
mothetic copies of a convex body K in R? is 2¢. They showed that any such family
of homothetic copies has at most 3¢ elements, and if C is a d-dimensional Euclidean
ball, then the maximum is equal to d + 2. In 2006, M. Naszodi [7] improved the first
estimate of Bezdek and Pach by proving the upper bound 2%+!.

Our main goal is to investigate this problem for o-symmetric convex bodies, that
is, for bodies K satisfying K = —K. First, we introduce some notions.

Definition 1.1 We call a set S C R symmetrically antipodal if for any distinct
points p, g € S, there is a hyperplane H such that p € H, g € —H, and both H and
—H support conv S.
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Definition 1.2 Let K € R? be an o-symmetric convex body and S C K. If the
points of S are at pairwise distances 2 in the normed space with unit ball K, we say
that S is a diametral subset of K.

H. Hadwiger [6] formulated the problem of determining the maximum number
of pairwise non-overlapping translates of a convex body K C R? touching K. This
number is known as the Hadwiger number H(K) of K. L. Fejes-T6th [5] extended
this concept to the notion of generalized Hadwiger numbers (see also [3]). Another
variant is the one-sided Hadwiger number [1]. We combine the definitions of [1,5] in
the following manner.

Definition 1.3 Let K C R be an o-symmetric convex body and a > 0. The open
(resp. closed) one-sided generalized Hadwiger number H (K) (resp. HZ(K )) of K is the
maximum number of pairwise non-overlapping translates of aK that touch K and
whose translation vectors are in an open (resp. closed) half-space whose boundary
contains the origin. Furthermore, H_(K) (resp. HZO (K)) is the maximum number
of pairwise non-overlapping translates of K that contain the origin and whose trans-
lation vectors are in an open (resp. closed) half-space whose boundary contains the
origin.

Our results are summarized in Theorems 1.4, 1.5, and 1.6. Theorem 1.6 is an
immediate consequence of Theorems 1.4 and 1.5.

Theorem 1.4 The following statements are equivalent.

(i)  There is an o-symmetric convex body K C R® which has n pairwise touching
homothets.

(ii) There is a symmetrically antipodal set S C R of n points such that o ¢ convS.

(iii) There is an o-symmetric convex body K C R4*! which contains a diametral set S
of n points such that o ¢ conv S.

(iv) There is an o-symmetric convex body B C R4 with H'_(B) > n.

Theorem 1.5 Leta € (0,00), d > 2, and K be an o-symmetric convex body in RY.

Then
_ 1+20)4 1 (1+3a) =2
‘ L~ (
(1.1) H,(K) < od
and
(1.2) H._(K)<3-272.

Moreover, H;O(K) =322 ifand only if K is an affine d-cube.

Theorem 1.6 The cardinality of a family of pairwise touching positive homothetic
copies of an o-symmetric convex body in R is strictly less than 3 - 2471,
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Figure 1 Figure 2

2 Proof of Theorem 1.4

We need the following, rather technical, definition and a lemma.

Definition 2.1 Let K C R? be a convex body that contains o in its interior, and let
A > 0. Furthermore, let L be a hyperplane of R and L* be one of the two closed half-
spaces of R? bounded by L. Then we call the set Ly := {t € L* : AK + ¢ touches L}
the AK-translate of L into L*.

We note that L) is a translate of L.

Lemma 2.2 Let K C R? be an o-symmetric convex body, and \K + x be a posi-
tive homothet of K touching K. Let L be a supporting hyperplane of K, and Ly be the
AK-translate of L into the half-space that does not contain K. Then x is in the closed
half-space that is bounded by Ly and contains K (see Figure 1).

Proof Suppose that x is not in the closed half-space that is bounded by Ly and con-
tains K. Then by the definition of L) we have that AK + x is contained in the open
half-space that is bounded by L and does not contain K. Hence, AK + x does not
touch AK + x, a contradiction. ]

Proof of Theorem 1.4 Let ey, ..., e, be the standard basis of R2, To prove the
equivalence of (i) and (ii), we regard R4*! and R¥ as the affine subspaces

A:={x e R": (x,e4,) = 0}

and
A={xecR": (x,¢) =0fori=d+1,d+2}
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of R¥*2, respectively. We also need the following affine subspaces:
Ty :={vER™: (ve45) = 1}
Ty := {v e R™: (veq1) = 1};
T:={veR¥": (ves,) =1and (v,es,) = 0}.

Note that T and T; are hyperplanes in R%*2, T is a d-flat, and T C T). (see Figure 2).

First, we prove that (i) implies (ii). Consider a family { \\K +x; : i = 1,2,...,n}
of pairwise touching homothets of the 0-symmetric d-dimensional convex body K in
R?. We let K; := \;K + x; + €4, and note that {K; : i = 1,2,..., n} is also a family
of pairwise touching homothets of K, which is contained in T. We set

X' = {x/ ==+ Niegsy +eqn €ERT2 i =1,2,.. . n}.

Observe that X’ C T;.

For any pair of distinct indices 7, j, let L(i, j) be an affine (d — 1)-flat which sepa-
rates K; and K in T. Furthermore, let Hy(i, j) := aff(L(i, j) U {x;}) for k € {i, j}.
Observe that H;(i, j), H;(i, j) C Ti, and they partition T} into four closed convex
cones, exactly one of which contains both x/ and x/. We denote this cone by C(i, j).

By Lemma 2.2 and the construction of X', we have that X’ is a subset of C(i, ).
Thus, we have shown the following property of X'.

(%) For every pair of distinct indices i, j there is a cone C(i, j) in T} containing
X'. The cone C(i, j) is the intersection of two closed half-spaces Z; and Z;
of Ty, such that x/ € relbd Z;, xj’» € relbdZj, and L(i, j) := (relbd Z;) N
(relbd Z;) is an affine subspace of T'with dim L(i, j) = d — 1. Furthermore,
C(i, j) is symmetric about any line of the form {z + tesy; : t € R}, where
z € L(i, j).

Let X'/ denote the image of X’ under the central projection from the origin 0 onto
the hyperplane T, of R¥*2. More specifically, let

X”':{ix»+e F i1 n}
. /\il d+1 \; d+2 - Yt :
Note that X’/ is contained in the open half-space {v € T, : (v, e442) > 0} of T5. Con-
sider the image S of X"" under the orthogonal projection of T, onto the hyperplane
A = R, From (x) and the previous remark, S is a symmetrically antipodal set in
R such that o ¢ convS.

Now we prove that (i) implies (i). Let S C RY"! be a symmetrically antipodal
set of n points such that 0 ¢ convS. Reversing our consideration in the previous
part, we may clearly construct aset X’ = {x/ : i = 1,2,...n} such that X’ C T,
i == (x/,eqe1) > 0, and X satisfies (x).

Let x; := x] — Ajegyy fori =1,2,...,n. Clearly, x; € T. Set

TN =1, n}
)\,'+/\]' ’ ’ ’

K := conv{
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and note that K is an o-symmetric compact, convex set in A = R4,

Assume that dim K = d. We want to show that {\;K +x; — ez :i = 1,2,...,n}
is a family of pairwise touching positive homothets of the convex body K in A = R
Clearly, it is sufficient to show that K; := A\;K +x; and K; := ;K + x; touch in T for
everyi # j.

Since x; + ﬁ(xj —Xi) = xj + A,-/\Tj,\,(xi — Xxj), we obtain that K; and K intersect.
It remains to show that, say, K; and K; are separated by a (d — 1)-dimensional affine
subspace in T.

Let L := L(1,2) be the (d — 1)-dimensional affine subspace in T described in ().
Then

L={xeT:{(x,u)=0}={xe€T:{xu = (xem)=0}

for some vector u € A = R%. We may assume that, say, (1,x,) > 0. Then the
symmetry of the cone C := C(1,2) in () yields that (u, x,) < 0.

Let u; == u — %edﬂ for i = 1,2. It is simple to check that (u;,x) = 0 for
any x € L, and (u;,x/) = 0. An easy computation yields that (u;,x}) < 0 and
(up,x7) > 0, and thus

C={xe€T :(u,x) <0and (uy,x) > 0}.
Observe that the symmetry of the cone implies that (1, x,) /Ay = —(u, x1) /A1

From (%) it follows that (u;,x;) < 0and (up,x;) > 0 fork = 1,2,...,n. After
substituting the definitions of u; and u,, and x| = xx + A¢eg1, we have that

<u7x1> <M,Xk> <M,X1>
AT TN

(2.1) —

We show that L separates K; and K;. By symmetry, it is sufficient to show that
(u,x) > 0 for any x € Kj. By (2.1), for every j, k we have

)\1 )\1
<u7x1 + m(xj _xk)> = (u,x1) + m (<u7xj> - <M,xk>)
A1 Aj Ak
> _—— _—— =
> {4 - oy (i em) = ) =0

which yields our statement if dim K = d. If dim K < d, a similar argument may be
applied.

Now we show that (i) implies (iii). Let S C R**! be a symmetrically antipodal
set such that o ¢ convS. For any pair of distinct points p,q € S, let H, ; denote a
hyperplane such that p € H, 4, q € —H, 4, and both H, ; and —H,, ;, support conv S.
Let S, 4 be the strip bounded by H, , and —H,, 4, and let C be an o-symmetric cube

with S C C. Set
Ki=Cn () Spa)-

PgES
p#aq
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Note that K is an o-symmetric convex body in R S is a diametral set in K, and
0 ¢ conv S. Thus (ii) yields (iii). Since (iii) clearly implies (ii), we have that (ii) and
(iii) are equivalent.

The equivalence of (iii) and (iv) is easy to show, hence we omit it. Observe that S
in (iii) corresponds to the set of translation vectors in (iv). [ |

3 Proof of Theorem 1.5

Our proof is based on the idea of the proof of the theorem of [1]. We begin with a
variant of the lemma of [1].

Lemma 3.1 Let f be a function on [0, 1] with the properties f(0) > 0, f is positive
and monotone increasing on (0, 1], and f(x) = (g(x))k for some concave function g

with k > 0. Then . )
F(x) := %/0 f(z)dz

is strictly increasing on (0, 1].

Proofof Lemma 3.1 Let 0 < x < y < 1. We want to show that F(x) < F(y) or,

equivalently, that
fy) (x)f(x)/ I )dz</ f(2) dz.

This inequality trivially holds if f(x) = f(y), and thus we may assume that f(x) <
f(y). Let L(z) := ‘% (z—x)+g(x) for z € [0, y]. Note that since g(z) is concave

and k > 0, we have f(z) > (L(z)) for every z € [x, y], and f(z) < (L(z))* for every
z € (0,x]. Thus, it is sufficient to prove that

gk — (g(x)k
(g(x))k

After integrating and simplifying, we obtain that

(3.1) T:= /y(L(z))kdz — /X(L(z))kdz > 0.
X 0

@D =) ()= (g6 (r56) —xg() "
ke @R+ D) — gy —

Note that from 0 < f(z), z € (0, 1], we have that L(0) > 0, which yields that
0< g()f') < 29 Thys, the second member of T is nonnegative, and the inequality in
(3.1) immedlately follows. [ |

T =

Proof of Theorem 1.5. First we present a detailed proof of (1.2) and discuss the case
of equality. Next, we outline the proof of (1.1), which is essentially the same as that
of (1.2).

Letv € S9~!andlet K+t;, K+ty, . .., K+t, be pairwise non-overlapping translates
of K such thato € K +t; and a; := (t;,v) > 0fori =1,2,..., 1. Set

h(x) = {p € R?: (p,v) = x}.
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i h(0) 1h(1)

Figure 3

Without loss of generality, we may assume that #(—1) and k(1) are supporting hy-
perplanes of K. Note that K +¢; is between h(—1) and h(2), and it is contained also in
2K, fori =1,...,n (see Figure 3). Let V4( - ) (resp. V4—1(-)) denote d-dimensional
(resp. (d — 1)-dimensional) volume. Then

(3.2) /_21 Vo, ( (iL:JIK + t,») N h(x)) dx = nVy(K).

We separate the above integral into two parts and estimate them separately. First
note that

2 " 2
(3.3) / o ( ( U K+ti) mh(x)) dx < / Vi1 QK N h(x)) dx = 2971 V(K).
0 i=1 0

Set f(x) := V4_1(K N h(x — 1)), and observe that f(0) > 0, f is positive and
monotone increasing on (0,1], and f(- )flﬁll is concave by the Brunn—Minkowski
inequality. By Lemma 3.1,

/_Olvd_l((gj (K +1; ) mh(x)) dx = Z/ Vo (KN (hx— 1) — ;) dx
:gfmmwséfﬂmﬂ%@

Vd(K)

}:vdleh<%»
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_ Yl (V) nho) < Yl v,k A ko))

T2fm N ~2f()
1 Va1 QKNAO) 4,
=5 Vd(K)—VdA KN h0)) =2 V4(K).

This inequality, combined with (3.2) and (3.3), yields (1.2).

Now we prove the equality part of the theorem. Assume that # = 3-2972, Then by
Lemma 3.1, we have two possibilities. One is that f(0) = 0,and a; = 0 or a; = 1 for
eachi = 1,...,n. The other one is that f(0) > 0and a; =0foreachi=1,...,n.

If f(0) > 0, thena; = 0 foreachi = 1,...,n, and hence,

{((K+t:)Nh(0):i=1,2,...,n}

is a family of pairwise non-overlapping translates of K N k(0) in h(0), each of which
contains o. Thus, [8] implies that # < 297!, which contradicts our assumption.

Assume that f(0) = 0,andag; = Oora; = 1fori = 1,...,n. Observe that
the family {(K + ;) N h(0) : a; = 0} tiles 2K N h(0), hence a; = 0 for 2¢~! values
of i, and K N h(0) is an affine (d — 1)-cube. There is only the obvious way such
that translates of K N h(0) tile 2K N h(0), and so we obtain that {t; : a; = 0} is
an o-symmetric set. Moreover, {K +¢; : i = 1,2,...,n} is a family of pairwise
non-overlapping translates of K, all containing the origin. By [8], the cardinality of
this family is at most 2%, with equality if and only if K is an affine d-cube. On the
other hand, since n = 3 - 2?72, we obtain that card{i : a; = 1} = 2972, Hence
card{+t;:i=1,...,n} = 2971 +2.2972 = 24 and K is an affine d-cube.

Next, let K := [—1,1]% Note that there are 3 - 2972 vectors (v, Vs, ...,vy) €
{-1, l}d whose coordinates satisfy the inequality v; — v, > 0. The translates of K
by these vectors are pairwise non-overlapping, and each of them contains the origin.
Thus, (1.2) is sharp for the cube.

Finally, we outline the proof of (1.1). Let aK +1t;, aK +1,, . .., aK +1, be pairwise
non-overlapping translates of K that touch K. Let v, t;, a;, h(x) be as above. Note that
aK + t; is between h(—«) and k(1 + 2a,), and it is contained also in (1 + 2)K, for
i=1,...,n Thus,

n

(3.4) /Hm o ( (,U ak + t,») n h(x)) dx = nod V,(K)

- =1

and

(3.5) /OHM Vo, ( (L:Jl ak + ti) N h(x)) dx

1+2a 1
< / Va1 ((1 +2a)Kﬂh(x))dx—/ Vi_1(KNh(x)) dx
0 0

(1 +20) -1

: Va(K).
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Set f(x) := V4_; (aK N h(x — «)), and observe that the conditions of Lemma 3.1

are satisfied by f. We may assume that a;,...,a,, < a < dms1,...,a,. Then by
Lemma 3.1,

/Oa Vi (iQ(O‘K +4)) Nh() dx
zi:/oa flx)dx < i:/oaf(x) dx%

o V(K) 4
= W ;Vdfl ((aK +t;) N h(0))

_oVaK) (( U(ak + 1) Nh())

a?V4(K)
= 2f(a) [Va-1((1+20)K 0 h(0)) = Va1 (K M h(0))]
d—1 _
- % Va(K).
This inequality, combined with (3.4) and (3.5), yields (1.1). -
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