
11 
Weak coupling 

Perturbation theory forms one of the mainstays in the development of 
modem theoretical particle physics. Indeed, the successes of perturbative 
quantum electrodynamics lie at the heart of our nearly universal adoption 
of renormalizable quantum field theory as the framework with which 
to describe elementary particle interactions. As our space-time lattice 
represents a regulator for ultraviolet divergences, in principle all pertur­
bative results could be reproduced in this formalism. The basic expansion 
parameter g~ represents the temperature in the analog statistical system. 
At low temperatures the important degrees of freedom are low energy 
excitations involving gentle long-wavelength variations of the fields. In 
magnetic systems the analogous excitations are referred to as spin waves 
and perturbation theory is a spin wave expansion. 

Perturbative analysis did not motivate the original formulation oflattice 
gauge theory. Highly developed methods for calculation already exist for 
other cutoff schemes such as that of Pauli and Villars (1949) or dimensional 
continuation (Ashmore, 1972; Bollini and Giambiagi, 1972; t'Hooft and 
Veltman, 1972). Because of this, perturbation theory on a lattice has 
received little attention and remains rather awkward. In this short chapter 
we merely sketch spin wave techniques for lattice gauge theory. We will 
only evaluate the lowest order contribution to the average plaquette. It 
is somewhat ironic that this weak coupling regime has played such a minor 
role in lattice gauge theory and yet it is exactly this region to which we 
must go for a continuum limit, as will be discussed in the next chapters. 
The main virtue of the lattice remains in non-perturbative analysis. 

We limit this discussion to the pure gauge theory with partition function 

z= f(dU)eXP(-P5 (1-(I/n)ReTr Uo»' (ILl) 

As the inverse coupling P becomes large, this integral is increasingly 
dominated by Uo near the identity. Perturbation theory begins with a 
saddle point approximation taken at this maximum of the exponentiated 
action. We parametrize the plaquette operators 

Uo = exp(i'\«w~), (11.2) 
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78 Quarks, gluons and lattices 

where the matrices A<X generate the group and are normalized as in eqs 
(6.6-7). To leading order we have 

l-(I/n) ReTr Uo =(I/(4n»wowo+0(wb), (11.3) 

and Z becomes 

Z = f(dU) exp( -(p/(4n»wowo+0(Pw4». (11.4) 

For large p the exponential is highly suppressed unless 

w = O(p-i) = O(go). (11.5) 

Thus the w4 terms in eq. (11.4) are of order the coupling constant squared; 
To proceed we would like to evaluate the leading behavior of the integral 

in eq. (11.4) in the Gaussian approximation. Here we encounter a technical 
difficulty in that the integrand is not damped in all directions when 
considered as a function of the link variables Uij' Indeed, a gauge 
transformation can arbitrarily alter any given link and yet leave the action 
unchanged. Gauge fixing is an essential first step in the perturbative 
analysis. Our integrand receives a Gaussian damping only for those 
directions which do not represent gauge degrees of freedom. 

The details of the gauge choice will be unimportant to the discussion 
here. One possibility is to set all timelike links to the identity, i.e. work 
in the' temporal' gauge, and then on the spacelike surface t = 0 to do the 
additional gauge fixing necessary to eliminate the freedom of time­
independent gauge transformations. If we now select any particular link, 
its value will be driven to the identity when p goes to infinity. There is a 
non-uniformity to this limit because links far from the hypersurface t = 0 
are less constrained than those near it. For this technical reason we impose 
an infrared cutoff by working on a finite lattice. 

After the gauge fixing, one quarter of the links are no longer variables. 
The remaining links are driven to the identity, about which we can expand 

Uii = I + iA<xwr} + O(wij ), 

w<X = I: wr + 0(w2). 
o tjEo j 

(11.6) 

(II. 7) 

The integration measure in the vicinity of the identity takes the simple form 

(11.8) 

where the weight J wiH ultimately be absorbed as an irrelevant constant. 
Here ng is the number of group generators. Now the partition function 
assumes the form 

Z = Kfn dngwijexp[( -IPwD-1w)+ 0(pw3)]. (11.9) 
{ij} 
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Here K is an overall constant factor and D-l is a large matrix operating 
in the space of the variables wei' In this form the partition function looks 
much like that discussed for a free field in chapter 4. The operator D is 
the propagator for the gauge g1uons and enters into the Feynman diagrams 
of the theory. The O(pw3) terms are of order the coupling constant. They 
generate the vertices of the perturbative expansion. 
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Fig. 11.1. The average plaquette for SU(3) lattice gauge theory. The curves are the 
leading strong and weak coupling approximations and the points are from Monte 
Carlo analysis on 4' and 6' lattices. 

For actual calculations these lattice propagators are quite cumbersome. 
However we can obtain some information on the average plaquette with 
very little effort. As our integral is now Gaussian, its value is a determinant 

Z = K IDjPI1(1 +O(p-l». (11.10) 

The matrix D has the .dimensionality of the parameter space after gauge 
fixing; consequently, it is a square matrix of 3ng N4 rows. Here the factor 
of 3 is the number of non-fixed links per site. Removing a factor of P from 
each row of the matrix, we find 

Z = K'IDlip- 3n.N'/2(1 +O(P-l». (lUI) 

For the average plaquette this implies 
P = -(lj(6N4»(ojop)logZ 

(11.12) 
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This result has a simple interpretation in statistical mechanics. We have 
3ng N4 physical variables distributed over 6N4 plaquettes. If we give each 
degree offreedom lkT = 1/(2P) average energy, then we obtain exactly eq. 
(11.12). This simple counting of variables receives corrections at higher 
temperatures where the non-linear interactions come into play. 

In figure 11.1 we summarize the leading strong and weak coupling 
results for the gauge group SU(3) 

P = I-P/18-P2/216+0(fJ3) 

= 2/P+O(P- 2). (11.13) 

The points in the graph are the true values for the plaquette from Monte 
Carlo analysis. 

Problems 

I. Show that in the weak coupling regime the parameter b3 of the last 
chapter behaves as 

b3(P) = 3(1-4/P+O({J3». 

2. What is the leading weak coupling behavior for the average plaquette 
in Z2 lattice gauge theory? 
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