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Abstract

In quantum geometric Langlands, the Satake equivalence plays a less prominent role
than in the classical theory. Gaitsgory and Lurie proposed a conjectural substitute,
later termed the fundamental local equivalence. With a few exceptions, we prove this
conjecture and its extension to the affine flag variety by using what amount to Soergel
module techniques.

1. Introduction

1.1 In the early days of the geometric Langlands program, experts observed that the funda-
mental objects of study deform over the space of levels κ for the reductive group G. For example,
if G is simple, this is a one-dimensional space. Moreover, levels admit duality as well: a level κ
for G gives rise to a dual level1 κ̌ for the Langlands dual group Ǧ. This observation suggested the
existence of a quantum geometric Langlands program, deforming the usual Langlands program.

The first triumph of this idea appeared in the work of Feigin and Frenkel [FF91], where they
proved duality of affine W-algebras: WG,κ � WǦ,κ̌. We emphasize that this result is quantum
in nature: the level κ appears. For the critical level κ = κc, which corresponds to classical geo-
metric Langlands, Beilinson and Drinfeld [BD99] used Feigin–Frenkel duality to give a beautiful
construction of Hecke eigensheaves for certain irreducible local systems.

1.2 The major deficiency of the quantum geometric Langlands was understood immediately:
the Satake equivalence is more degenerate.

For instance, in the classical case where κ = κc is critical, the compatibility of global geomet-
ric Langlands with geometric Satake essentially characterizes the equivalence. Concretely, this
means that for an irreducible Ǧ-local system σ on a smooth projective curve, one expects there
to exist a canonical Hecke eigensheaf Aσ with eigenvalue σ.

This does not hold in the quantum setting. For instance, if κ is irrational, then the Satake
category is equivalent to Vect and the Hecke eigensheaf condition is vacuous. For rational κ, one
hopes for a neutral gerbe of irreducible Hecke eigensheaves. This is known for a torus, but the
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gerbe is not2 canonically trivial; cf. [Lys15, § 5.2]. For general reductive G, we are not aware of
any conjecture explicitly describing the relevant gerbe.

We remark that quantum geometric Langlands for rational κ is closely tied to the theory
of automorphic forms on metaplectic groups; cf. [GL18]. It is well known that Hecke eigen-
values form too coarse a decomposition in the metaplectic setting. Indeed, already in the first
announcement [Hec36] of his eponymous operators, Hecke himself made this observation.

Es sei zum Schlauß noch erwähnt, daß für die Formen halbzahlinger Dimension, wie die
einfachen Thetareihen und deren Potenzprodukte, sich eine ähnliche Theorie nicht aufbauen
läßt. Da nämlich für diese die Zuordnung zu einer Stufe und zu einer Kongruenzgruppe
bekanntlich nicht mehr so einfach wie bei ganzzahliger Dimension ist, so kann man die Opera-
toren Tm nur für Quadratzahlen m = n2 definieren, und man erhält so einen Zusammenhang
nur zwischen den Koeffizienten a(N) und a(Nn2).

(In conclusion, it should be mentioned that a similar theory cannot be developed for
forms of half-integral weight, such as simple theta functions and monomials in them. Since
the assignment of a level and a congruence group is not as easy as for integer dimensions, the
operators Tm can only be defined for square numbers m = n2, and a relationship is obtained
only between the coefficients a(N) and a(Nn2).)

In the study of metaplectic automorphic forms, one often repeatedly finds the guiding princi-
ple that it is more fruitful to study Whittaker coefficients than Hecke eigenvalues. Indeed, above
Hecke exactly observes the gap that appears between the two in the metaplectic context, and
that Whittaker coefficients provide the finer information. See [GP80] for a classical application
of these ideas.

We refer to [GGW18] for further discussion and more recent perspectives.

1.3 In the geometric setting, Gaitsgory made significant advances in applying the above per-
spective. In [Gai08b] and [Gai16b], Gaitsgory, pursuing unpublished ideas he developed jointly
with Lurie, formulated a series of conjectures regarding κ-twisted Whittaker D-modules on the
affine Grassmannian GrG = LG/L+G and the affine flag variety LG/I.

Let κ be a nondegenerate level for G and let κ̌ denote the dual level for Ǧ. Let Whitsph
κ denote

the DG category of κ-twisted Whittaker D-modules on GrG, and let Whitaffκ denote the similar
category for LG/I.

We write ̂̌gκ̌ for the affine Lie algebra associated to Ǧ and κ̌, and let̂̌gκ̌–modL+Ǧ and ̂̌gκ̌–modǏ

denote the DG categories of Harish-Chandra modules for the pairs (̂̌gκ̌,L+Ǧ) and (̂̌gκ̌, Ǐ),
respectively. We refer to § 2 for further clarification of the notation.

Conjecture 1.3.1 (Gaitsgory–Lurie [Gai08b, Conjecture 0.10]). There is an equivalence of
DG categories

Whitsph
κ � ̂̌gκ̌–modL+Ǧ. (1.1)

Conjecture 1.3.2 (Gaitsgory [Gai16b, Conjecture 3.11]). There is an equivalence of DG
categories

Whitaffκ � ̂̌gκ̌–modǏ . (1.2)

2 However, in this abelian setting, recent work [Lys21] of Lysenko indicates that the gerbe is sometimes canonically
trivial. More specifically, this is true in the absence of certain 2-torsion. Whether this phenomenon has a non-abelian
counterpart remains unclear.
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We now state a preliminary version of our main result and then discuss the hypothesis that
appears in it.

Theorem. Suppose that κ is good in the sense of § 3.4.4. Then Conjectures 1.3.1 and 1.3.2 are
true.

1.3.3 Briefly, a level κ is good if and only if after restriction to every simple factor of g, κ
either is irrational or is a rational level whose denominator is coprime to the bad primes of the
root system. We recall that the latter always lie in {2, 3, 5}. For G of type A, there are no bad
primes, so every level is good in this case. For an explicit description for general G, see Table 1.

1.4 Related works
As emphasized by Gaitsgory in the initial papers [Gai08b] and [Gai16b], Conjectures 1.3.1 and
1.3.2 provide quantum analogues of theorems in classical local geometric Langlands, i.e. for κ or
κ̌ at the critical level. We presently review these statements.

1.4.1 For κ = κc critical, Conjecture 1.3.1 is known from work of Frenkel, Gaitsgory, and
Vilonen and is a variant of the geometric Satake equivalence.

In this case, heuristically we have κ̌ = ∞; to interpret this carefully, we refer to [Zha17] for
details. Standard arguments then give

̂̌g∞–modL+Ǧ = QCoh(ǧ[[t]] dt/L+Ǧ) = QCoh(BǦ) = Rep(Ǧ).

Here the action of L+Ǧ on ǧ[[t]] dt is the gauge action.
Then, by [FGV01], the composition

Rep(Ǧ) → D(GrG)L+G → Whit(GrG) (1.3)

is an equivalence, where the first functor is the geometric Satake functor [MV07] and the second
functor is given by convolution on the unit object of the right-hand side.

We emphasize that, unlike with the Satake equivalence, the equivalence Rep(Ǧ) ∼−→
Whit(GrG) is an equivalence of derived categories, not merely abelian categories. This amounts
to the cleanness property of spherical Whittaker sheaves from [FGV01] and the geometric
Casselman–Shalika formula from loc. cit.

Remark 1.4.2. That (1.3) is an equivalence is special to integral levels. That is, at non-
integral levels, the spherical Hecke category produces only a small part of the spherical
Whittaker category. This failure, especially at rational levels, accounts for part of our interest in
Theorem 1.3.

1.4.3 For κ = κc critical, a version of Conjecture 1.3.2 is the main result of [AB09]. This
deep work of Arkhipov and Bezrukavnikov was one of the most significant breakthroughs in
geometric Langlands and underlies seemingly countless advances in the area since.

1.4.4 By the above discussion, for κ = κc, Conjecture 1.3.1 is a sort of variant of the geo-
metric Satake theorem. One of Gaitsgory’s key insights is that in quantum geometric Langlands,
Hecke operators play a diminished role, while Conjecture 1.3.1 plays the fundamental role that
Satake plays in the classical theory.
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1.4.5 For κ̌ = κ̌c critical, Conjecture 1.3.1 is the main result of [FG09b], where Frenkel and
Gaitsgory construct an equivalence

̂̌gcrit–modL+Ǧ � QCoh(Opunr
G ).

Here the right-hand side is the ind-scheme of unramified (or monodromy-free) opers for G; this
category is the κ→ ∞ limit of Whitκ(GrG) as above, and is defined in loc. cit. For the centrality
of this result in the geometric Langlands program, see [Gai15, § 11].

Conjecture 1.3.2 in this case is a folklore extension of the main results of [FG09a] and [FG06a],
but whose complete proof is not recorded in the literature.

1.4.6 Finally, let us discuss the previously known cases of Conjectures 1.3.1 and 1.3.2. In the
original paper [Gai08b], Gaitsgory proved Conjecture 1.3.1 for κ irrational, and in fact a stronger
version of it, as we describe below. As far as we are aware, no other cases of the conjectures have
been obtained.

1.5 Factorization
In fact, Gaitsgory conjectured more, related to the factorization of the Beilinson–Drinfeld affine
Grassmannian.

In Conjecture 1.3.1, he conjectured an equivalence of factorization categories; cf. [Gai08b]
and [Ras15a]. Similarly, in Conjecture 1.3.2, it is expected that the equivalence should be one of
the factorization modules for the (conjecturally equivalent) factorization categories appearing in
Conjecture 1.3.1.

When κ = κc, these goals are implicit in the original work. In the spherical case, this is
spelled out in [Ras21a, Theorem 6.36.1]. In the Iwahori case, a weak version of the compatibility
with factorization module structures was shown in [Ras16, Theorem 10.8.1].

1.6 The role of this paper
In the decade since their formulation, Gaitsgory has been advancing an ambitious program to
establish the fundamental local equivalences. We refer to [ABC+18] for an overview of this
project; [Gai08b], [BG08], and [BG08] for early work on it; and [Gai16a], [Gai17], [Gai18a],
[Gai18b], [Gai19], [GL19], and [GL18] for some of Gaitsgory’s recent advances in this project.

Gaitsgory’s program, though still incomplete, represents a new paradigm for Kac–Moody
algebras, quantum groups, and quantum geometric Langlands. It is full of lovely, innovative
constructions and numerous breakthroughs. It is also quite sophisticated, as seems always to be
the case when working with factorization algebras.

Our work is not intended to supersede the eventual conclusion of Gaitsgory’s project. Rather,
we regard the equivalences of Conjectures 1.3.1 and 1.3.2 (i.e. forgetting factorization) to be
interesting results in geometric representation theory and geometric Langlands.

For example, as discussed above, the κ = κc analogues of our results include the geometric
Casselman–Shalika formula [FGV01] and the deep work of Arkhipov and Bezrukavnikov [AB09].
In fact, as we hope to explain elsewhere, the geometric part of our study of Whitsph

κ , suitably
adapted to the function-field setting, should imply some new function-theoretic results on the
metaplectic Casselman–Shalika formula.

Moreover, while our present results are expected to be interesting outcomes of Gaitsgory’s
methods, we find it desirable to have a more direct argument.
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1.7 Methods
Our techniques are remarkably elementary in comparison to the above work of Gaitsgory or,
for example, [AB09]. Our main input consists of classical methods developed by Soergel and his
school.

1.7.1 In his initial work [Soe90], Soergel showed that a block of Category O for g can
be reconstructed from the Weyl group of G. Fiebig [Fie06] extended this work to Kac–Moody
algebras. As a consequence of Fiebig’s work, the category ̂̌gκ̌–modǏ can be completely recovered
from the combinatorial datum of the root datum of Ǧ and the level κ̌.

To prove Conjecture 1.3.2, we provide a similar Coxeter-theoretic description of Whitaffκ . We
do this by relating Whitaffκ to ĝκ–modI ,3 which allows us to apply Fiebig’s results directly to
Whitaffκ .

We then prove Conjecture 1.3.2 by matching Langlands dual combinatorics. Here we draw
the reader’s attention to Theorem 3.5.6, which is a combinatorial shadow of quantum Langlands
duality.

It is striking that these fundamental conjectures of Gaitsgory have been open for over a
decade, but admit a solution that almost could have been given at the time.

Remark 1.7.2. In fact, Theorem 3.5.6, combined with the description of twisted Hecke categories
as Soergel bimodules, obtained in finite type recently in [LY20], should yield quantum Langlands
duality for affine Hecke categories. Therefore, Soergel’s methods, as applied in the present paper,
should suffice to prove the local quantum geometric Langlands correspondence for categorical
representations generated by Iwahori invariant vectors.

Remark 1.7.3. Because of our reliance on [Fie06], our construction is a little non-canonical.
Indeed, in [Fie06] there is a choice of projective cover of simple objects. With that said, hewing
closer to the Koszul dual picture as in [LY20] would provide canonical equivalences.

Remark 1.7.4. After completing this paper, we learned of the thesis of Chris Dodd [Dod11], which
reproves the results of Arkhipov and Bezrukavnikov [AB09] by a Soergel module argument. Our
argument may be thought of as a quantum deformation of Dodd’s approach. We thank Roman
Bezrukavnikov for bringing this to our attention.

1.8 Comparison
In short, we relate Langlands dual categories using Fiebig’s combinatorial description of blocks
of affine Category O.

Gaitsgory’s program compares these categories via a factorization algebra Ωq (and some of
its cousins), which may also be constructed directly from the root datum of G; cf. [Gai08a],
[ABC+18], and [Gai19].

It would be quite interesting to find a direct relationship between these two perspectives.

3 In finite type, an analogous result appears in the work of Milicic and Soergel [MS97]. Their techniques are not
available in the affine setting, so our methods differ.

We use the perspective of loop group actions on categories to study Kac–Moody representations. We convolve
by an explicit object, constructed from W-algebras.

In contrast, in the finite-type setting, [MS97] relies on good properties of Harish-Chandra bimodules with
generalized central characters. The theory of affine Harish-Chandra bimodules is in its infancy and is much more
difficult than in finite type. As we explain in [CD21], our methods are sufficient to establish similar properties of
a suitable category of Harish-Chandra bimodules in affine type. However, it should also be possible to prove this
equivalence directly by a Soergel module argument; cf. Remark 3.6.2.
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Remark 1.8.1. We highlight one point of departure in our perspective from Gaitsgory’s. At neg-
ative levels, our equivalence is t-exact by construction and matches highest-weight structures.
This was previously anticipated in the spherical case by Gaitsgory, but was ambiguous in the
affine case. After we told Gaitsgory about our results, he found an argument showing that a
similar property must hold for the equivalence he is working on.

In our approach, these properties are key in deducing the parahoric version of the theorem
from the Iwahori version.

2. Preliminary material

In this section, we collect standard definitions and notation. We invite the reader to skip to the
next section and refer back as needed.

2.1 Notation for groups
Let G be a reductive group over C.4

2.1.1 We fix once and for all a pinning (T,B, ψ) of G. That is, we fix T ⊂ B ⊂ G where T
is a Cartan and B a Borel subgroup of G. In addition, for the unipotent radical N of B, we fix
a nondegenerate character ψ : N → Ga.

2.1.2 Given the above data, there is a canonically defined Langlands dual group Ǧ, which
also comes with a pinning. In particular, we have Cartan and Borel subgroups Ť ⊂ B̌ ⊂ Ǧ. Again,
Ň denotes the unipotent radical of B̌.

2.1.3 The data T ⊂ B ⊂ G determine a Borel B− opposite to B, so B− ∩B = T . We denote
its radical by N−. The same applies for Ǧ.

2.1.4 We denote the appropriate Lie algebras by g, b, n, t, b−, n−, ǧ, b̌, ň, ť, b̌−, and ň−.

2.1.5 We write Λ̌G for the lattice of coweights of G, i.e. the cocharacter lattice of T , and
ΛG for the lattice of weights of G, i.e. the character lattice of T . We denote the root lattice, i.e.
the integral span of the roots, by

Q ⊂ ΛG.

In other words, Q = ΛGad where Gad is the adjoint group of G. Similarly, we let Q̌ ⊂ Λ̌Ǧ denote
the coroot lattice, and one has Q̌ = ΛǦad .

2.1.6 We let I denote the set of nodes of the Dynkin diagram of G. For i ∈ I, the
corresponding simple roots and coroots are denoted by

αi ∈ ΛG and α̌i ∈ Λ̌G.

2.1.7 Our choice of pinning defines a standard involutive anti-homomorphism5

τ : g
∼−→ g.

4 Our arguments apply more generally to any split reductive group over a field k of characteristic 0. That is, the
cohomology that appears is purely de Rham, never étale or Betti.
5 One sometimes finds this involution called the Chevalley involution, or the Cartan involution, but the latter
terminology is potentially misleading.
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More precisely, for i ∈ I let ei ∈ n be the unique vector of weight αi such that ψ(ei) = 1. Then
τ is the unique involution such that τ([x, y]) = −[τ(x), τ(y)], τ |t = idt, and

[ei, τ(ei)] = α̌i for i ∈ I.

We observe that τ lifts to an involutive anti-homomorphism on G, which we also denote by τ .

2.2 Loops and arcs
2.2.1 For any affine variety Z of finite type, we let LZ denote its algebraic loop space and

L+Z its algebraic arc space. The former is an ind-scheme, while the latter is an affine scheme.
There is a canonical evaluation map L+Z → Z given by evaluation of a jet at the origin.

For an affine algebraic group Z = H, LH is a group ind-scheme, with L+H ⊂ LH a group
subscheme.

2.2.2 The Borel subgroup B ⊂ G defines the Iwahori subgroup

I := L+G×G B ⊂ L+G ⊂ LG.

Dually, we have a preferred Iwahori subgroup Ǐ ⊂ LǦ. We denote the pro-unipotent radical
of I by I̊ and note the canonical isomorphism

T � I/I̊.

2.3 Weyl groups
The combinatorics of affine Weyl groups plays an important role in this paper. We recall notation
and fundamental constructions below.

2.3.1 We let Wf denote the Weyl group of G and recall that Wf is also the Weyl group
of Ǧ.

2.3.2 The extended affine Weyl group of G is the semidirect product

W̃ := Wf � Λ̌G.

The subgroup of W̃ given by
W := Wf � Q̌

is the affine Weyl group, where we recall that Q̌ is the coroot lattice.

2.3.3 Let Sf ⊂Wf denote the set of simple reflections si for i ∈ I. Let S ⊂W denote the
union of Sf with the set of simple affine reflections as in [Kac90, § 7]. We remind the reader that
the simple affine reflections are indexed by simple factors of G.

The pairs (Wf , Sf ) and (W,S) are Coxeter systems, i.e. Coxeter groups with preferred choices
of simple reflections. We recall that the Bruhat order and length function on W each extend in
a standard way to W̃ .

2.4 Categories
We repeatedly work with DG categories and their symmetries. In this setting, we use the following
conventions.

2.4.1 We let DGCatcont denote the symmetric monoidal ∞-category of cocomplete DG
categories and continuous DG functors as defined in [GR17, § I.1.10]. We denote the binary
product underlying the symmetric monoidal structure by −⊗−; this is the Lurie tensor product.
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For simplicity, we sometimes refer to ∞-categories as categories, and similarly for DG
categories.

2.4.2 Given a t-structure on a DG category C, we let C�0 and C�0 denote the subcategories
of connective and coconnective objects. That is, we use cohomological indexing notation.

We denote the heart of such a t-structure by

C♥ := C�0 ∩ C�0.

2.5 D-modules
We make essential use of categories of D-modules on ind-pro-finite-type schemes such as LG, as
developed in [Ber17] and [Ras15b]. For an ind-scheme X, we denote by D(X) what in loc. cit.
is denoted by D∗(X).

2.5.1 By functoriality, D(LG) carries a canonical convolution monoidal structure. We
denote the corresponding (∞-)category of DG categories equipped with an action of D(LG)
by

D(LG)–mod := D(LG)–mod(DGCatcont).

We use similar notation for other group (ind-)schemes such as Ǐ and LN .

2.6 Invariants and coinvariants
2.6.1 Given a group ind-scheme H and a D(H)-module C, we denote its categories of

invariants and coinvariants by

CH := HomD(H)–mod(Vect,C) and CH := Vect ⊗
D(H)

C,

respectively. See [Ber17] for further discussion.

2.6.2 Similarly, for a multiplicative D-module χ on H, we denote the corresponding
categories of twisted invariants and twisted coinvariants by

CH,χ and CH,χ.

Our multiplicative D-modules will be obtained by one of the following two procedures.

2.6.3 First, any character

λ ∈ Hom(H,Gm) ⊗Z C

determines a character D-module ‘tλ’ of H. In this case, we denote twisted invariants by CH,λ.
We apply this construction particularly for H = T and H = I.

2.6.4 Similarly, given an additive character

ψ : H → Ga,

we obtain a character D-module ‘eψ’ on H. Here we denote twisted invariants by CH,ψ. We apply
this construction for H = LN .

2.6.5 Suppose H is an affine group scheme with pro-unipotent radical Hu. We suppose that
H/Hu is of finite type.
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By [Ber17], the canonical forgetful map CH → C admits a continuous right adjoint AvH∗ .
Moreover, there is a canonical equivalence CH � CH fitting into the following commutative
diagram.

C

��

AvH∗

����
��

��
��

CH �� CH

(2.1)

The same is true in the presence of a multiplicative D-module χ.

2.6.6 Now suppose C ∈ D(LG)–mod. Let ψ : LN → Ga denote the Whittaker character of
LN .

In this case, [Ras21b, Theorem 2.1.1] provides a canonical equivalence

CLN,ψ � CLN,ψ. (2.2)

We highlight that this case is more subtle than that of an affine group scheme considered above.

2.6.7 As a final piece of notation, for an ind-scheme X with an action of a group ind-scheme
H, we use the notation

D(X/H,χ) := D(X)H,χ. (2.3)

By [Ras15b, Proposition 6.7.1], this notation is unambiguous.
We remark that in the setting of either (2.1) or (2.2), these coinvariants coincide with

invariants.

2.7 Levels
Recall that a level κ for G is a G-invariant symmetric bilinear form

κ : Sym2(g) → C.

2.7.1 We let κg,c denote the critical level for G, i.e. −1
2 times the Killing form of G. Where

G is unambiguous, we simply write κc.

2.7.2 Suppose G is simple. A level κ is rational if κ is a rational multiple of the Killing form
and irrational otherwise. We say that κ is positive if κ− κc is a positive rational multiple of the
Killing form. We say that a level κ is negative if κ is not positive or critical. In particular, any
irrational level is negative.

For a general reductive G, we say that a level κ is rational, irrational, positive, or negative
if its restrictions to each simple factor are so.

2.7.3 A level κ is nondegenerate if κ− κc is nondegenerate as a bilinear form. For such κ,
the dual level κ̌ for Ǧ is the unique nondegenerate level such that the restriction of κ̌− κ̌ǧ,c to
t∗ and the restriction of κ− κg,c to t are dual symmetric bilinear forms.

2.7.4 For a simple Lie algebra g, the basic level κg,b = κb is the unique positive level such
that the short coroots have squared length 2, i.e.

min
i∈I

κb(α̌i, α̌i) = 2.
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2.8 Twisted D-modules
Given a level κ, there is a canonical monoidal DG category of twisted D-modules, Dκ(LG); see,
for example, [Ras21b, § 1.29]. We again use the notation

Dκ(LG)–mod := Dκ(LG)–mod(DGCatcont).

2.8.1 We recall that the multiplicative twisting defined by κ is canonically trivialized on
L+G and LN . In particular, for

C ∈ Dκ(LG)–mod (2.4)

we can make sense of invariants and coinvariants of L+G and LN with coefficients in C. The
same is true for any subgroup, in particular for I ⊂ L+G. Also, the same applies with a twisting,
such as in the Whittaker setup for LN . We remark that the identification (2.2) of Whittaker
invariants and coinvariants [Ras21b] was proved more generally for Dκ(LG)–mod.

Example 2.8.2. Because Dκ(LG) carries commuting actions of D(LN) and D(I), following the
convention of § 2.6.7 we use the notation

Dκ(LN,ψ\LG/I)
for the appropriate invariants = coinvariants category.

2.9 Affine Lie algebras
2.9.1 Let Lg denote the Lie algebra of LG, considered with its natural inverse limit topology,

that is,
Lg = g ⊗ C((t)) = limn g ⊗ C((t))/tnC[[t]].

Given a level κ, one obtains a continuous 2-cocycle Lg ⊗ Lg → C given by

ξ1 ⊗ ξ2 	→ Resκ(dξ1, ξ2).

Here d is the exterior derivative and Res is the residue. We denote the corresponding central
extension by

0 → C1 → ĝκ → Lg → 0.

2.9.2 We denote by ĝκ–mod♥ the abelian category of smooth representations of ĝκ on which
the central element 1 acts via the identity.

We let ĝκ–mod denote the DG category introduced by Frenkel and Gaitsgory in [FG09a,
§§ 22 and 23]. This DG category is compactly generated and carries a canonical t-structure with
heart ĝκ–mod♥. However, there are some nonzero objects in

ĝκ–mod−∞ :=
⋂
n

ĝκ–mod�−n,

so ĝκ–mod is not the derived category of ĝκ–mod♥.

2.9.3 In [Ras20, §§ 10 and 11], a Dκ(LG)-module structure on ĝκ–mod was constructed,
enhancing previous constructions of Beilinson and Drinfeld [BD99, § 7] and of Frenkel and
Gaitsgory [FG06b, § 22].

2.9.4 Let H be a sub-group scheme of L+G of finite codimension, and consider the
corresponding category of equivariant objects

ĝκ–modH .
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By [Ras21b, Lemma A.35.1], the bounded-below category

ĝκ–modH,+

canonically identifies with the bounded-below derived category of its heart ĝκ–modH,♥, which
consists of Harish-Chandra modules for the pair (ĝκ, H). Moreover, ĝκ–modH is compactly
generated by inductions of finite-dimensional H-modules.

2.9.5 Let κ be a level. With an abuse of notation we let κ also denote the map κ : t → t∗.
The dot action of W̃ on t∗ is defined by having Wf act through the usual dot action and

having Λ̌G act through translations via −(κ− κc); that is, writing ρ for the half-sum of the
positive roots, for any λ ∈ t∗ we have

w · λ := w(λ+ ρ) − ρ, w ∈Wf ⊂ W̃ ,

μ̌ · λ := λ− (κ− κc)(μ̌), μ̌ ∈ Λ̌ ⊂ W̃ .

2.9.6 To discuss integral Weyl groups, we need some more standard facts about this dot
action. Recall that the affine real coroots of ĝκ form a subset of t ⊕ C1. In particular, to such a
coroot α̌ we may associate its classical part α̌cl, i.e. its projection to t. This is a coroot of g, and
in particular we may associate a classical root αcl ∈ t∗.

2.9.7 Via a standard construction, α̌ acts as an affine linear functional on t∗, which we
denote by 〈α̌,−〉, in such a way that, writing sα̌ for the associated reflection in W̃ , one has

sα̌ · λ = λ− 〈α̌, λ+ ρ〉αcl, λ ∈ t∗.

Briefly, this arises via restricting a linear action of W̃ on (t ⊕ C1)∗ to the affine hyperplane of
functionals whose pairing with 1 is 1. We refer the reader to [Dhi21, §§ 3.1 and 3.4], where this
is reviewed in greater detail.

3. Fundamental local equivalences

In this section, we suppose that G is simple of adjoint type. Under this assumption, we prove the
main theorem, i.e. the fundamental local equivalence, for good negative levels. In § 4 we deduce
the same result for general G and general good levels from this case.

3.1 Overview of the argument
The proof of the main theorem requires fine arguments involving combinatorics of affine Lie
algebras. To help the reader understand what follows, we begin with an overview of the main
ideas. This inherently requires referring to concepts that have not been introduced yet, so the
reader may safely skip this material and refer back as necessary.

We omit some technical considerations at this point in the discussion. For example, we do
not carefully distinguish here between abelian and derived categories.

3.1.1 Suppose λ ∈ t∗ is a weight of g. Let us denote the block of Category O for ĝκ containing
the Verma module Mλ by

Oκ,λ ⊂ ĝκ–modI̊ .

In § 3.2.3, we recall that λ determines a subgroup Wλ ⊂W , its integral Weyl group.6 This is a
Coxeter group, i.e. it comes equipped with a set of simple reflections.

6 In spite of the notation, Wλ depends also on κ.
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We make important use of Theorem 3.5.2, which is due to Fiebig [Fie06], following earlier
work of Soergel [Soe90]. This result asserts that if λ is antidominant,7 Oκ,λ is determined as a
category by the data of (i) the Coxeter group Wλ and (ii) the subgroup

W ◦
λ ⊂Wλ (3.1)

stabilizing λ under the dot action of W on t∗; cf. § 2.9.5.

Remark 3.1.2. For us, the most important case is where λ is integral. Here we write Wg,κ in
place of Wλ. In this case, Wg,κ contains the finite Weyl group Wf . If κ is irrational, the two are
equal, and the simple reflections in Wg,κ = Wf are the usual ones determined by our fixed Borel.
If κ is rational, there is one additional simple reflection; we provide an explicit formula for it in
Lemma 3.4.3.

In Theorem 3.2.7, we find a block decomposition for the Whittaker category Whitaffκ on the
affine flag variety for G. These blocks are indexed by Wg,κ-orbits in Λ̌G = ΛǦ.

In Theorem 3.3.3, we show that up to varying κ by an integral translate (which does not affect
the Whittaker category), its neutral block is equivalent to an integral block of Category O for
ĝ−κ. We generalize this to general blocks at good8 levels in Corollary 3.4.8. These identifications
preserve the natural highest-weight structures on both sides. From now on, we assume that κ is
good.

3.1.4 For each block of Whitaffκ , we explicitly compute the combinatorial datum (3.1) of the
corresponding block of Category O for the corresponding Kac–Moody algebra9 and provide a
form of Langlands duality for this datum.

Essentially by construction, for any such block the corresponding integral Weyl group is
Wg,κ, with simple reflections as indicated above. In Theorem 3.5.6, we construct an isomorphism
Wg,κ �Wǧ,κ̌ preserving simple reflections, and that is the identity on Wf .10

Note that for any block of O for the Kac–Moody algebra, the corresponding integral Weyl
group canonically acts on the set of isomorphism classes of simple objects in this block. There-
fore, the above considerations provide an action of Wǧ,κ̌ on the set of isomorphism classes of
simple objects in Whitaffκ , which is canonically identified with Λ̌G = ΛǦ. Again, by construction,
this action coincides with the dot action of § 2.9.5, but for Ǧ rather than G.

In Corollary 3.2.11 and in the proof of Theorem 3.6.1, we check that simple objects of
Whitaffκ corresponding to antidominant weights of Ǧ are also standard objects for the highest-
weight structure on this category. These observations amount to matching the data (3.1) with
the data of affine category O for Ǧ, completing the proof of Theorem 1.3 in the Iwahori case.

3.1.5 In § 3.7, under the hypotheses of this section, we deduce the parahoric version of
Theorem 1.3 from the Iwahori version. In particular, this includes the spherical version of the
theorem.

We do this by identifying the parahoric categories as full11 subcategories of the corre-
sponding Iwahori categories and then identifying the essential images under the isomorphism
of Theorem 3.6.1.

7 This is in the sense of affine Kac–Moody algebras. In particular, the definition depends on κ.
8 In our actual exposition, the definition of a good level is essentially rigged so that such a result holds. The
content is rather in Proposition 3.4.5, which provides a concrete description of good levels.
9 Again, this Kac–Moody algebra is essentially ĝ−κ, except that we may need to replace −κ by an integral translate.
10 We are not aware of the identification of Theorem 3.5.6 having appeared previously in the literature.
11 This fully faithfulness only holds at the abelian categorical level.
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3.2 Block decomposition for the Whittaker category
We begin by decomposing the Whittaker category into blocks.

3.2.1 To do so, it will be useful to simultaneously consider the case of twisted Whittaker
categories. Thus, we fix λ ∈ t∗ and a level κ and consider

Whitaffλ := Dκ(LN,ψ\LG/I,−λ).

While these DG categories depend on both λ and κ, we will study them with fixed κ and varying
λ, and for this reason we suppress κ for ease of notation.

3.2.2 For indexing reasons, it will be convenient to rewrite this category as follows. Consider
the automorphism of LG given by

g 	→ τ(g)ρ̌(t−1),
where τ is as in § 2.1.7. This induces an equivalence

Dκ(LN,ψ\LG/I,−λ) � D−κ(I, λ\LG/LN−, ψ) (3.2)

where the ψ on the right-hand side denotes a nondegenerate character of LN− of conductor 1.
In the following discussion, we will think of Whitaffλ via the latter expression.

3.2.3 It will be important for us to consider Whitaffλ as a module for the following version
of the affine Hecke category.

Let Wλ denote the integral Weyl group of λ.12 Recall that this is the subgroup of W that
generated the reflections sα̌ corresponding to affine coroots α̌ satisfying

〈α̌, λ〉 ∈ Z,

where the pairing is via the action at level −κ as in § 2.9.7. For w ∈Wλ, write jw,!∗ for the
intermediate extension of the simple object of

D−κ(I, λ\IwI/I,−λ)♥.

We define Hλ to be the full subcategory of

D−κ(I, λ\LG/I,−λ) (3.3)

generated under colimits and shifts by the objects

jw,!∗ for w ∈Wλ.

By [LY20, § 4],13 Hλ is closed under convolution and so admits a unique monoidal DG structure
for which its embedding into (3.3) is monoidal. In addition, loc. cit. shows that H is the neutral
block of (3.3), i.e. it is the minimal direct summand containing the identity element.

3.2.4 Recall that the Iwasawa decomposition provides LG with a stratification by the double
cosets

IwLN− for w ∈ W̃ .

Let W̃ f ⊂ W̃ denote the subset of elements of minimal length in their left Wf -cosets. We now
describe the affine Whittaker category for a single stratum.

12 Later in the paper, the twist will be fixed at λ = 0, but the group and level will vary. We will accordingly denote
this integral Weyl group by Wg,−κ instead. We hope this does not cause confusion and will reintroduce this change
in notation when it first occurs.
13 While [LY20] is written ostensibly over a finite field and in the finite-type setting, the arguments we cite from
it straightforwardly adapt to the present situation.
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Lemma 3.2.5. For w /∈ W̃ f , the affine Whittaker category on IwLN− vanishes, i.e.

D−κ(I, λ\IwLN−/LN−, ψ) � 0.

For w ∈ W̃ f , !-restriction to any closed point gives an equivalence

D−κ(I, λ\IwLN−/LN−, ψ) � Vect.

Proof. The twistings corresponding to both κ and λ are trivializable on a double coset. Moreover,
ψ is trivial on the stabilizer in LN− of the point w ∈ I\LG if and only if w ∈ W̃ f , which implies
the desired identities. �

For w ∈ W̃ f we denote the corresponding standard, simple, and costandard objects of Whitaffλ
by

jψw,!, jψw,!∗, and jψw,∗.

Explicitly, under the identification with Vect above, they correspond to the relevant extensions
of C[−�(ww◦)] ∈ Vect, where � denotes the length function on W̃ and w◦ the longest element of
Wf .

3.2.6 We next obtain the block decomposition of Whitaffλ . To state it, for any double coset

WλyWf

we write Whitaffλ,y for the full subcategory of Whitaffλ generated under colimits and shifts by the
objects

jψx,∗ for x ∈WλyWf ∩ W̃ f .

Theorem 3.2.7. Each Whitaffλ,y is preserved by the action of Hλ, and the direct sum of inclusions
yields an Hλ-equivariant equivalence⊕

y∈Wλ\W̃/Wf

Whitaffλ,y → Whitaffλ . (3.4)

Proof. For w ∈ W̃ consider the corresponding standard, simple, and costandard objects

jw,!, jw,!∗, and jw,∗ of D−κ(I, w · λ\LG/I,−λ)♥.

We use − I
�− to denote the convolution functor

D−κ(LG/I,−λ) ⊗D−κ(I, λ\LG) → D−κ(LG)

and the induced functor

D−κ(I, w · λ\LG/I,−λ) ⊗D−κ(I, λ\LG/LN−, ψ) → D−κ(I, w · λ\LG/LN−, ψ). (3.5)

For any w ∈ W̃ , if with an abuse of notation we denote its image in W̃ f ∼−→ W̃/Wf again by
w, we claim that there exist equivalences

jw,!
I
� jψe,∗ � jψw,! and jw,∗

I
� jψe,∗ � jψw,∗. (3.6)

Note that in (3.6), the object jψe,∗ belongs to Whitaffλ , whereas jψw,! and jψw,∗ belong to Whitaffw·λ.
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We split the proof of (3.6) into several cases. First, suppose w lies in W̃ f . Then the second
identity in (3.6) follows from the observation that the convolution map

IwI
I× ILN− → IwLN− (3.7)

is an isomorphism. The first identity for such w then follows by the cleanness of jψe,∗ and the
ind-properness of the multiplication map

LG
I× LG→ LG.

Next, suppose w = s is a simple reflection of Wf . The image of the convolution map as in (3.7) is
contained in the locally closed sub-ind-scheme of LG corresponding to the strata ILN− ∪ IsLN−.
As the only stratum of its closure that supports Whittaker sheaves is ILN−, it is enough to
compute the !-restrictions of our convolutions to the identity

i : e→ LG.

Let us write ι for the involution g 	→ g−1 on LG. By base change we may compute the !-fibre as

i!(js,∗
I
� jψe,∗) � ΓdR(I\LG, ι∗js,∗

!⊗ jψe,∗) � ΓdR(P1 \ {0,∞}, ‘et’[−�(w0)]) � C[−�(w◦)],

as desired. A similar calculation on P1 yields the first identity in (3.6) for w = s.
Finally, for general w ∈ W̃ , we write w = wfwf for wf ∈ W̃ f and wf ∈Wf . Choosing a

reduced expression for wf and the corresponding factorizations of jw,! and jw,∗, we reduce to the
cases considered above for twists in W̃ · λ. Given (3.6), the assertions of the theorem follow by
the same argument as for [LY20, Proposition 4.11]. �

3.2.8 Having obtained the block decomposition of Whitaffλ , we now record some properties
of each block as an Hλ module. We begin with some relevant combinatorics.

Recall that Wλ is a Coxeter group. Write Φ̌+ for the positive real coroots and consider the
subset

Φ̌+
λ = {α̌ ∈ Φ̌+ : 〈α̌, λ〉 ∈ Z}.

With this, a reflection sα̌ of Wλ is simple if and only if α̌ is not expressible as a sum of two other
elements of Φ̌+

λ .

Lemma 3.2.9. Each double cosetWλyWf contains a unique element that is minimal with respect
to the Bruhat order. In particular, each Wλ orbit on W̃/Wf contains a unique element yWf that
is minimal with respect to the Bruhat order. Moreover, its stabilizer

yWfy
−1 ∩Wλ (3.8)

is a parabolic subgroup of Wλ.

Proof. Let y be any element of minimal length in WλyWf . We first claim that y � wλy for every
wλ ∈Wλ. Indeed, for any reflection sα̌ of Wλ with corresponding positive coroot α̌, it follows
from the minimal length of y that

sα̌y > y, (3.9)

i.e. y−1(α̌) > 0. The claimed minimality now follows by induction on the length of an element of
Wλ with respect to its Coxeter generators.

We next show that y � wλywf for any wf in Wf . However, it is clear that y � ys for any
simple reflection s of Wf . This implies that for any w ∈ W̃ , we have y � w if and only if y � wsj .
Applying this and a straightforward induction on the length to w = wλy yields the claim.
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It remains to show that (3.8) is a parabolic subgroup of Wλ. To see this, consider
Wy−1λ = y−1Wλy. The positivity property (3.9) of y implies that conjugation by y−1 defines
an isomorphism of Coxeter systems

Wλ �Wy−1λ,

i.e. exchange of their simple reflections. It is therefore enough to show that Wf ∩Wy−1λ is a
parabolic subgroup of Wy−1λ, which is straightforward; cf. the proof of Lemma 8.8 in [Dhi21]. �

3.2.10 Combining Lemma 3.2.9 and Theorem 3.2.7, we obtain the following result.

Corollary 3.2.11. For a double coset WλyWf with minimal element y, the corresponding
object of Whitaffλ,y is clean, i.e.

jψy,! � jψy,!∗ � jψy,∗.

In the following proposition, we collect some properties of the action of Hλ on jψy,!. To state
them, let us denote the set of elements of Wλ of minimal length in their left cosets with respect
to the parabolic subgroup (3.8) by

W f
λ . (3.10)

We additionally recall that Whitaffλ carries a canonical t-structure; namely, an object M is
coconnective, i.e. lies in Whitaff,�0

λ , if and only if

Hom(jψw,!,M) ∈ Vect�0 for w ∈ W̃ f .

Such a t-structure may be seen directly via gluing of t-structures stratum by stratum, and
coincides with the general construction in § 5.2 and Appendix B of [Ras21b]; cf. loc. cit. Remark
B.7.1.

Proposition 3.2.12. For y as in Corollary 3.2.11 and for any w in Wλ, there are equivalences

jw,!
I
� jψy,∗ � jψwy,! and jw,∗

I
� jψy,∗ � jψwy,∗. (3.11)

Moreover, if w lies in W f
λ , then convolution with jψy,∗ yields an isomorphism of lines

HomD−κ(I,λ\LG/I,−λ)♥(jw,!, jw,∗) � HomWhitaffλ
(jψwy,!, j

ψ
wy,∗). (3.12)

Proof. Both assertions follow from (3.6) by standard arguments. Specifically, the proof of
Proposition 5.2 in [LY20] yields (3.11). It follows from (3.11) that convolution with jψy,∗ is t-exact.

Let us show that the latter observation implies (3.12). For any u ∈Wλ, recall that ju,!∗
denotes the simple quotient of ju,!. By t-exactness, we obtain a surjection

jψuy,!
(3.11)� ju,!

I
� jψy,∗ → ju,!∗

I
� jψy,∗ → 0. (3.13)

For an element w of W f
λ , consider the tautological exact sequence

0 → K → jw,! → jw,!∗ → 0.

By definition, K admits a filtration by intermediate extensions ju,!∗ for u < w in the Bruhat
order on Wλ. Convolving with jψy,∗, by t-exactness we again obtain an exact sequence

0 → K
I
� jψy,∗ → jψwy,! → jw,!∗

I
� jψy,∗ → 0.

By our assumption on w, it follows from (3.13) that [K
I
� jψy,∗ : jψwy,!∗] = 0. In particular, jw,!∗

I
� jψy,∗

is nonzero.
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This nonvanishing and the t-exactness of convolution with jψy,∗ imply that the intermediate
extension sequence jw,! � jw,!∗ ↪→ jw,∗ yields a sequence of nonzero maps

jw,!
I
� jψy,∗ � jw,!∗

I
� jψy,∗ ↪→ jw,∗

I
� jψy,∗.

This verifies (3.12) (and also shows that jw,!∗
I
� jψy,∗ � jψwy,!∗). �

Remark 3.2.13. One can show that the clean objects jψy,!∗ constructed above are the only clean
extensions in Whitaffλ . Since we do not use this fact, we only sketch the proof. Specifically, write
� for the Bruhat order on W f

λ . One can in fact show that for any w, x ∈W f
λ , the space of

intertwining operators

Hom
Whitaff,♥

λ
(jψwy,!, j

ψ
xy,!)

vanishes unless w � x, in which case it is one-dimensional and consists of embeddings. This
may be deduced from (3.11) and the analogous classification of intertwining operators between
standard objects of Hλ. The latter may be proved directly or deduced via localization from the
Kac–Kazhdan theorem on homomorphisms between Verma modules.

3.3 Whittaker singular duality
We now use the above-noted properties of the Hλ-action to produce, under necessary hypotheses,
equivalences between the neutral block of Whitaffλ and a block of Category O for ĝ−κ.

3.3.1 Consider the category of (I, λ)-integrable modules for ĝ−κ, which we denote by

ĝ−κ–modI,λ. (3.14)

Recall that this is compactly generated by the Verma modules Mθ for θ ∈ λ+ ΛG, and note that
the integral Weyl group of any such θ is Wλ.

3.3.2 We identify the desired blocks by matching their combinatorics to that of Whitaffe,λ as
follows. Suppose MΘ is an irreducible Verma module in (3.14) such that the stabilizer of Θ under
the dot action of Wλ is given by

Wλ ∩Wf .

Consider the corresponding block of (3.14), i.e. the full subcategory compactly generated by Mθ

for θ ∈Wλ · Θ, and denote it by

ĝ−κ–modI,λΘ .

Theorem 3.3.3. There is a canonical Hλ-equivariant and t-exact equivalence

Whitaffe,λ � ĝ−κ–modI,λΘ . (3.15)

Remark 3.3.4. For emphasis, by definition of Θ, the integral Weyl group of this block is Wλ,
and the stabilizer of Θ in Wλ is Wλ ∩Wf . In particular, on both sides of (3.15) one finds
highest-weight categories whose highest weights are indexed by

Wλ/(Wλ ∩Wf ) �W f
λ ;

for Whitaffe,λ compare (3.10) and (3.8) and recall that we are considering the neutral block, i.e.
specializing to y = e in (3.8).
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Remark 3.3.5. The minus sign in front of the level is an artifact of § 3.2.2. As we will discuss in
greater detail in § 3.4.1, we potentially need to apply an integral translation to κ� κ+ κ′ before
finding Θ as above; in practice, this translation in particular ensures that −κ− κ′ is negative.

Example 3.3.6. Theorem 3.3.3 is always applicable when the twist λ is trivial; namely, by an
integral translation, we may assume that −κ is sufficiently negative, in which case we may take
Θ to be −ρ.
Proof of Theorem 3.3.3. To produce an Hλ-equivariant functor, we will construct a D−κ(LG)-
equivariant functor and then pass to (I, λ)-equivariant objects. After further projecting onto a
block of (3.14), we will show that this is the sought-for equivalence.

We begin by constructing an D−κ(LG)-equivariant functor

F : D−κ(LG/LN−, ψ) → ĝ−κ–mod.

To do so, recall that for any D−κ(LG)-module C one has a canonical equivalence

HomD−κ(LG)–mod(D−κ(LG/LN−, ψ),C) � CLN−,ψ. (3.16)

Explicitly, if we write ins δ for the insertion of the delta function at the identity of LG into
Whittaker coinvariants, the equivalence (3.16) is given by evaluation at ins δ. Applying this to
C � ĝ−κ–mod, we obtain via the affine Skryabin equivalence (cf. [Ras21b])

HomD−κ(LG)–mod(D−κ(LG/LN−, ψ), ĝ−κ–mod) � ĝ−κ–modLN−,ψ � W−κ–mod. (3.17)

Therefore, to produce F we must specify a module for the W−κ-algebra.
We do so as follows. Write Zhu(W−κ) for the Zhu algebra of W−κ and Zg for the center of

the universal enveloping algebra of g. Let us normalize the identification

Zhu(W−κ) � Zg

as in [Dhi21]. Writing χ(Θ) for the character of Zg corresponding to Θ, i.e. via its action on the
Verma module for g with highest weight Θ, consider the associated local cohomology Zg-module
Ri!χ(Θ)Zg. We will take F to be associated to the corresponding W−κ-module

pindW−κ

Zhu(W−κ) Ri!χ(Θ)Zg, (3.18)

where pind denotes the standard induction from Zhu algebra modules to vertex algebra modules,
i.e. the left adjoint to the functor of taking singular vectors.

Passing to (I, λ)-equivariant objects, we obtain a D−κ(I, λ\LG/I,−λ)-equivariant functor

F : D−κ(I, λ\LG/LN−, ψ) → ĝ−κ–modI,λ.

Let us determine F(jψe,∗). To do so, write Cψ for the one-dimensional representation of n− asso-
ciated to the additive character ψ of LN−. As we will explain in more detail below, we then
have

AvI,λ∗ pindW−κ

Zhu(W−κ) Ri!χ(Θ)Zg � AvI,λ∗ pindĝ−κ
g (Ri!χ(Θ)Zg ⊗

Zg
indg

n− Cψ) (3.19)

� pindĝ−κ
g AvB,λ∗ (Ri!χ(Θ)Zg ⊗

Zg
indg

n− Cψ) (3.20)

�
⊕

ξ∈(Wf ·Θ)∩λ+ΛG

Mξ ⊗ det(b∗[−1]). (3.21)
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To see the first identification, (3.19), one may use that (3.18) is an iterated extension of Verma
modules and in particular arises from the first step of the adolescent Whittaker filtration of
W−κ–mod; cf. [Ras21b].

For the second identification, (3.20), if we write K1 for the first congruence subgroup of L+G,
one has a corresponding factorization

AvI,λ∗ � AvK1,λ∗ ◦AvB,λ∗ .

The second identification then follows from the K1-integrability of a parabolically induced mod-
ule, the pro-unipotence of K1 (cf. Theorem 4.3.2 of [Ber17]), and the D(G)-equivariance of
pindĝ−κ

g .
For the third identification, (3.21), for any ξ ∈ λ+ ΛG let us write Mξ,g for the corresponding

Verma module for g. One has by adjunction

Homg–modB,λ(Mξ,g,AvB,λ∗ Ri!χ(Θ)Zg ⊗
Zg

indg
n− Cψ) � Homg–mod(Mξ,g,Ri!χ(Θ)Zg ⊗

Zg
indg

n− Cψ).

The latter vanishes unless ξ ∈Wf · Θ, in which case we continue the above to

�Homg–mod(Mξ,g, indg
n− Cψ) � Homb–mod(Cξ,Resb

g indg
n− Cψ) � det(b∗[−1]),

where in the last step one uses the canonical identification

U(b) � Resb
g indg

n− Cψ.

By our assumption on Θ, each Mξ,g for ξ ∈ (Wf · Θ) ∩ λ+ ΛG generates a block of g–modB,λ

equivalent to Vect; thus we have shown that

AvB,λ∗ Ri!χ(Θ)Zg ⊗
Zg

indg
n− Cψ �

⊕
ξ∈(Wf ·Θ)∩λ+ΛG

Mξ,g ⊗ det(b∗[−1]).

The identity (3.21) then follows by applying pindĝ−κ
g .

The projection of the sum of Verma modules (3.21) onto ĝ−κ–modI,λΘ picks out the summand

MΘ ⊗ det(b∗[−1]);

cf. [Dhi21, Lemma 8.7]. Accordingly, we consider the composition

D−κ(I, λ\LG/LN−, ψ)
F⊗ det(b[1])[dimN−]−−−−−−−−−−−−−→ ĝ−κ–modI,λ → ĝ−κ–modI,λΘ , (3.22)

where the latter map is projection onto the block. Note that while the blocks of (3.14) are
in general not preserved by D−κ(I, λ\LG/I,−λ), they are preserved by Hλ. In particular, by
construction the composition (3.22), which we denote by Ψ, is an Hλ-equivariant functor which
sends jψe,∗ to MΘ.

It remains to show that Ψ is an equivalence. By (3.11) and Hλ-equivariance, we obtain
identifications

Ψ(jψw,!) � Ψ(jw,!
I
� jψe,∗) � jw,!

I
�Ψ(jψe,∗) �Mw·Θ for w ∈Wλ,

where the last identity is a standard consequence of Kashiwara–Tanisaki localization at a negative
level [KT96].14 Similarly, if for θ ∈ λ+ Λ we denote the contragredient dual of Mθ by Aθ, we
obtain identifications

Ψ(jψw,∗) � Ψ(jw,∗
I
� jψe,∗) � jw,∗

I
�Ψ(jψe,∗) � Aw·Θ for w ∈Wλ.

14 It also is straightforward to prove directly; see Lemma 4.0.8 of [CD21].

2717

https://doi.org/10.1112/S0010437X2100765X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2100765X


J. Campbell, G. Dhillon and S. Raskin

Recall that the (co)standard objects jψw,! and jψw,∗ of White,λ are indexed by the minimal-length
coset representatives of Wλ with respect to its parabolic subgroup Wλ ∩Wf , i.e.

W f
λ ,

and either collection compactly generates White,λ.
Similarly, by our assumption on the stabilizer of Θ and the irreducibility of MΘ, the

collections of (co)standard objects Mw·Θ and Aw·Θ, for w ∈W f
λ , each compactly generates

ĝ−κ–modI,λΘ .
It is therefore enough to check that for any y, w ∈W f

λ , the map

Ψ : HomWhitaffλ
(jψy,!, j

ψ
w,∗) → Homĝ−κ–modI,λ(My·Θ, Ay·Θ)

is an equivalence. This again follows from (3.12), as desired. �

3.3.7 While Theorem 3.2.7 realizes the neutral block of Whitaffλ , this may be applied to other
blocks as follows. Fix a double coset

y ∈Wλ\W̃/Wf

with associated minimal element y and block Whitaffλ,y.

Proposition 3.3.8. Convolution with the clean object

jy,∗ ∈ D−κ(I, λ\LG/I,−y−1 · λ)

yields a t-exact equivalence

Whitaffy−1·λ,e
∼−→ Whitaffλ,y.

Proof. The argument for Proposition 5.2 in [LY20] applies mutatis mutandis. �

3.4 Application of Whittaker singular duality and the classification of good levels
3.4.1 We would like to relate an arbitrary block Whitaffλ,y of Whitaffλ to Kac–Moody repre-

sentations. Via Proposition 3.3.8, we should apply Theorem 3.2.7 to Whitaffy−1·λ,e. Therefore, we
would like to produce a suitable Verma module in

ĝ−κ–modI,y
−1·λ. (3.23)

It will be useful to expand the collection of available Verma modules. For example, if −κ is
positive rational and the twist y−1 · λ is trivial, there are no irreducible Verma modules in
(3.23). To address this, note that for any integral level κ′ for G one has a tautological t-exact
equivalence

D−κ(I, y−1 · λ\LG/LN−, ψ) � D−κ+κ′(I, y−1 · λ\LG/LN−, ψ).

We may further increase our supply of integral levels and characters as follows. Write Gs for
the simply connected form of G and Is for the Iwahori subgroup of its loop group. Then the
tautological embedding

D−κ(Is, y−1 · λ\LGs/LN−, ψ) → D−κ(I, y−1 · λ\LG/LN−, ψ)

induces an equivalence of neutral blocks.

3.4.2 To analyze when we may find the desired Verma modules, we will need some basic
properties of the relevant integral Weyl group. So for an arbitrary level κ◦ let us denote by Wg,κ◦
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the integral Weyl group of 0 ∈ t∗ at level κ◦, i.e. what was denoted by W0 in the notation of
§ 3.2.3.

To describe the simple reflections in Wg,κ◦ , recall the canonical identification of W with the
semidirect product

Wf � Q̌.

For any finite coroot α̌ we denote by sα̌ the corresponding reflection in Wf , and for an element
λ̌ of the coroot lattice Q̌ we write tλ̌ for the corresponding translation in W . In addition, let
us write θ̌s for the short dominant coroot, θ̌l for the long dominant coroot, and r for the lacing
number of g.

Lemma 3.4.3. For any κ◦ and integral level κ′, there are canonical identifications

Wg,κ◦ �Wg,−κ◦ �Wg,κ◦+κ′ (3.24)

intertwining their inclusions into W . If κ◦ is irrational, then Wg,κ◦ �Wf , i.e. they coincide as
subgroups of W . If κ◦ is rational, write it as

κ◦ =
(
−h∨ +

p

q

)
κb,

where h∨ is the dual Coxeter number, p and q are coprime integers, and κb is the basic level. Then
Wg,κ◦ has simple reflections given by the simple reflections of Wf and the additional reflection

s0,κ◦ =

⎧⎨⎩sθ̌s
tq·θ̌s if (q, r) = 1,

sθ̌l
tq/r·θ̌l if (q, r) = r.

(3.25)

Proof. Recall the standard enumeration of the affine real coroots as

Φ̌ � Φ̌f × Z,

where Φ̌f denotes the finite coroots. With this enumeration, the element α̌n ∈ t ⊕ C1, for α̌ ∈ Φ̌f

and n ∈ Z, is given by

α̌+ n
κ◦(α̌, α̌)

2
1.

In particular, α̌n belongs to Wg,κ◦ if and only if

〈α̌n, 0〉 = n
κ◦(α̌, α̌)

2
is an integer, which straightforwardly implies the claims of the lemma. �

3.4.4 Having explicitly identified the Coxeter generators of the integral Weyl group, we will
now obtain for most levels highest weights with prescribed stabilizers within it. Let us formulate
this problem precisely. If we write ΛGs for the weight lattice and recall that Is denotes the
Iwahori subgroup of LGs, then

ĝκ◦–modIs

is compactly generated by the Verma modules Mλ for λ ∈ ΛGs . In particular, this category has
highest weights consisting of the weight lattice. Let us say that a level κ◦ is good if for any finite
parabolic subgroup W◦ of Wg,κ◦ there exists an integral level κ′ and a simple Verma module

Mν ∈ ĝκ◦+κ′–modIs

whose highest weight has stabilizer W◦. Let us classify the good levels.
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Table 1. Bad primes for each simple Lie algebra.

g n(g)

An 1
Bn 2
Cn 2
Dn 2
E6 2 · 3
E7 2 · 3
E8 2 · 3 · 5
F4 2 · 3
G2 2 · 3

Proposition 3.4.5. Every irrational level is good. A rational level

κ◦=
(
−h∨ +

p

q

)
κb,

where p and q are coprime integers, is good if and only if q is coprime to the number n(g)
associated to g in Table 1.

Proof. For κ◦ irrational, the claim is clear as Wg,κ◦ �Wf . For κ◦ rational, which we may take
to be negative, a weight λ ∈ ΛGs is antidominant if and only if

〈λ+ ρ, α̌i〉 � 0 for i ∈ I and

{
〈λ+ ρ, θ̌s〉 � −p if (q, r) = 1,
〈λ+ ρ, θ̌l〉 � −p if (q, r) = r,

as follows from (3.25). Let us write ωi, with i ∈ I, for the fundamental weights and write the
dominant coroots as sums of simple coroots

θ̌s =
∑
i∈I

niα̌i, θ̌l =
∑
i∈I

miα̌i for ni,mi ∈ Z�0.

Recall the standard correspondence between finite parabolic subgroups W◦ of Wg,κ◦ and
nonempty faces of the above alcove, which associates to a face the stabilizer of any interior
point. It follows that, after the transformation λ 	→ −λ− ρ, we are looking for points of ΛGs

within the alcove with vertices at

0 and

⎧⎪⎨⎪⎩
p

ni
ωi for i ∈ I if (q, r) = 1,

p

mi
ωi for i ∈ I if (q, r) = r.

Recalling that we are free to replace p by any element of p+ qZ, it is straightforward to see that
we can find points of ΛGs in the interior of every face of the alcove if and only if for each i ∈ I

one has {
p ∈ (ni, q) for i ∈ I if (q, r) = 1,
p ∈ (mi, q) for i ∈ I if (q, r) = r.

To see this, note that these conditions are tautologically equivalent to being able to realize each
vertex of the alcove as a point of ΛGs , so they are necessary. To see that they are sufficient,
suppose they are satisfied. Via this assumption, for any positive integer N we may replace p
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with an element of p+ qZ so that
p

ni
∈ Z�N for all i ∈ I.

In particular, we may assume that N is greater than the number of vertices of the alcove, i.e.
N > |I| + 1. In this case, every face of the alcove contains an interior point expressible as a
convex combination of the vertices with coefficients in (1/N)Z. As such a convex combination is
a point of ΛGs , we are done.

Finally, recalling the ni and mi for each type (cf. Plates I–IX of [Bou02]) yields the entries
of Table 1. Specifically, if ni is prime, then p ∈ (ni, q) if and only if (ni, q) = 1; and if ni is
composite, then each of its prime divisors occurs as another ni′ . �

3.4.6 In what follows, we will be most concerned with the Whittaker category on LG/I,
i.e. Whitaffλ for λ = 0. In this case, we replace λ by the level κ.

In other words, Whitaffκ := Whitaff0 . We similarly denote the summands Whitaff0,y of this category
considered in Theorem 3.2.7 by Whitaffκ,y.

3.4.7 Let us obtain for good levels κ◦ the Kac–Moody realization of blocks of the Whittaker
category. Fix a double coset, whose minimal-length element we denote by y, in

Wg,κ◦\W̃/Wf .

Corollary 3.4.8. If κ◦ is good, then for any y as above, the corresponding block Whitaffκ,y
admits an equivalence with a block of ĝκ◦+κ′–modI,y

−1·0 for some integral level κ′.

Proof. By Proposition 3.3.8 and Theorem 3.2.7, it is enough to produce a simple Verma module
in

ĝκ◦+κ′–modI,y
−1·0

whose (antidominant) highest weight Θ has stabilizer under the dot action of W given by

y−1Wg,κ◦y ∩Wf .

By (3.9), it is equivalent to produce a simple Verma module in

ĝκ◦+κ′–modI

whose highest weight y · Θ has stabilizer given by

Wg,κ◦ ∩ yWfy
−1. (3.26)

The latter is provided by Proposition 3.4.5, as desired. �
Remark 3.4.9. As in Remark 3.3.4, and at the risk of redundancy, we emphasize that by con-
struction, the integral Weyl group of the above block is identified as a Coxeter system with Wg,κ,
and the stabilizer of Θ in Wg,κ is Wg,κ◦ ∩ yWfy

−1.

3.5 From ĝ-modules to ̂̌g-modules
3.5.1 To relate blocks of Category O for ĝ−κ and ̂̌gκ̌, we would like to use the following

result of Fiebig.
Let k be an affine Lie algebra with Cartan subalgebra h. Fix α ∈ h∗ such that the Verma

module Mα is simple, and write Oα for the corresponding block of Category O for k. Let us write
Wα for the integral Weyl group of α and W ◦

α for its subgroup stabilizing α under the dot action.
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Theorem 3.5.2 [Fie06, Theorem 4.1]. As an abelian highest-weight category, Oα is determined
up to equivalence by the Coxeter system Wα along with its subgroup W ◦

α.

Remark 3.5.3. Theorem 3.5.2, as written in [Fie06], applies to symmetrizable Kac–Moody alge-
bras, and in particular affine Kac–Moody algebras. Recall that the latter consists of a Laurent
polynomial version of the affine Lie algebra along with a degree operator t∂t. One may apply it
to the present situation as follows. At any noncritical level, Category O for the affine Lie algebra
canonically embeds as a Serre subcategory of Category O for the affine Kac–Moody algebra;
namely, one sets t∂t to act by the semisimple part of −L0, where L0 is the Segal–Sugawara
energy operator.

3.5.4 To apply Theorem 3.5.2 in our situation, we must relate W−κ,g and Wκ̌,ǧ.
To do so, fix a level κ◦ for g. Let us write Q̌ for the coroot lattice and Q for the root lattice

of g. Associated to κ◦ is a map

(κ◦ − κg,c) : Q̌→ Q⊗Z C,

where κg,c denotes the critical level for g. In particular, we may consider the sublattice of Q̌
given by

Q̌κ◦ := {λ̌ ∈ Q̌ : (κ◦ − κg,c)(λ̌) ∈ Q}.
Suppose that κ◦ is noncritical. Recall that if we write κ̌ǧ,c for the critical level for ǧ, then by
definition the dual nondegenerate bilinear form of κ◦ − κg,c is κ̌◦ − κ̌ǧ,c. It follows that we have
a canonical identification

− (κ◦ − κg,c) : Q̌κ◦ � Qκ̌◦ : −(κ̌◦ − κ̌ǧ,c). (3.27)

3.5.5 With this, we may canonically identify the integral Weyl groups on the opposite sides
of quantum Langlands duality.

Theorem 3.5.6. For any level κ◦, under the identification W �Wf � Q̌ one has

Wg,κ◦ �Wf � Q̌κ◦ . (3.28)

Moreover, for a noncritical level κ◦, there is a canonical isomorphism of Coxeter systems

Wg,κ◦ �Wǧ,κ̌◦ . (3.29)

Remark 3.5.7. As G and Ǧ in general have different affine Weyl groups, there is, perhaps,
something surprising about Theorem 3.5.6.

Proof of Theorem 3.5.6. We begin with (3.28). Recall from the proof of Lemma 3.4.3 that for a
finite coroot α̌ and an integer n, the affine coroot α̌n belongs to Wg,κ◦ if and only if

〈α̌n, 0〉 = n
κ◦(α̌, α̌)

2
is an integer. This integrality condition may be rewritten as

nκ◦(α̌) ∈ Zα,

which in turn is equivalent to nα̌ ∈ Q̌κ◦ . As the affine reflection in W corresponding to α̌n is
explicitly given by sα̌tnα̌, it follows that we have an inclusion

Wg,κ◦ ⊂Wf � Q̌κ◦ (3.30)

and that the left-hand side includes the translations tnα̌ for nα̌ as above. To see that (3.30) is
an equality, it suffices to show that Q̌κ◦ lies in the left-hand side. But if we write an element λ̌
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of Q̌ as a linear combination

λ̌ =
∑
i∈I

niα̌i for i ∈ I,

we have that κ◦(λ) lies in Q if and only if κ◦(niα̌i) lies in Q for all i ∈ I. Considering the
affine coroots (α̌i)ni for i ∈ I and composing the translational parts of their reflections yields the
desired equality.

Let us use the equality (3.28) to prove (3.29). Via (3.24), we may assume that κ◦ is negative.
Under this assumption, we will show that the composite identification

Wg,κ◦
(3.28)� Wf � Q̌κ◦

(3.27)� Wf �Qκ̌◦
(3.28)� Wǧ,κ̌◦

is an isomorphism of Coxeter systems; that is, we claim that the sets of simple reflections are
exchanged under the identification

− (κ◦ − κg,c) : Wf � Q̌κ◦� Wf �Qκ̌◦ . (3.31)

If κ◦ is irrational, this is clear, as both sides are Wf . Otherwise, let us write the level as

κ◦ =
(
−h∨ +

p

q

)
κb, (3.32)

where p and q are positive coprime integers. Recall the affine simple reflection s0,κ◦ from Lemma
3.4.3. Applying (3.31) to it and writing θs for the short dominant root and θl for the long
dominant root, we obtain

− (κ◦ − κg,c) s0,κ◦ =

{
sθl
tp·θl if (q, r) = 1,

sθst
p·θs if (q, r) = r.

(3.33)

To finish, recall that κ̌◦ is given by

κ̌◦ =
(
−h∨̌g +

q

pr

)
κ̌ǧ,b,

where h∨̌g and κ̌ǧ,b are the dual Coxeter number and basic level for ǧ, respectively. Comparing
the analogue of (3.25) for ǧ to (3.33) shows the intertwining of the affine simple reflections by
(3.31), as desired. �

3.5.8 We may apply these results as follows. Suppose that κ and κ̌ are dual levels and that
κ′ is an integral level for Gs. Suppose we are given a y ∈ W̃ of minimal length in Wg,−κ+κ′y and
a simple Verma module

Mμ ∈ ĝ−κ+κ′–modIs,y
−1·0.

Suppose we are further given a simple Verma module Mν̌ in ̂̌gκ̌–modǏs , such that the stabilizers
of μ and ν̌ are identified via

y−1Wg,−κ+κ′y �Wg,−κ+κ′
(3.24)� Wg,κ

(3.29)� Wǧ,κ̌. (3.34)

Corollary 3.5.9. In the above situation, there is a t-exact equivalence

ĝ−κ+κ′–modIs,y
−1·0

μ � ̂̌gκ̌–modǏsν̌ .
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Proof. For either category, which we temporarily denote by C, and the finite-length objects in
its heart, which we denote by C♥,c, the canonical map

Db(C♥,c) → C

realizes the latter as the ind-completion of the former. To see this, note that since the blocks
contain a simple Verma module, C♥,c indeed consists of compact objects, and the fully faithfulness
may be checked from Verma to dual Verma modules. Either C♥,c is a block of Category O for
the corresponding affine algebra, whence we are done by the assumptions on μ and ν̌, the
identification of Coxeter systems (3.34), and Theorem 3.5.2. �

3.6 The tamely ramified fundamental local equivalence
Recall that we have assumed G to be simple of adjoint type.

Theorem 3.6.1. For a good, negative level κ, there is a t-exact equivalence

Whitaffκ
(3.2)� D−κ(I\LG/LN−, ψ) � ̂̌gκ̌–modǏ . (3.35)

Proof. Recall our identification from § 3.2.4 of the isomorphism classes of simple objects in the
left-hand side of (3.35) with the coset space

W̃/Wf .

We showed in Lemma 3.2.9 that each orbit of Wg,−κ on the latter contains a minimal element
y with respect to the Bruhat order. In Corollary 3.4.8 we showed that the corresponding block
Whitaffκ,y of the left-hand side of (3.35) identifies with a block of twisted Is-integrable modules for
ĝ−κ+κ′ , for an integral level κ′. As discussed in the proof of Corollary 3.4.8, its integral Weyl
group identifies as a Coxeter system with Wg,−κ, and with this identification the stabilizer of the
highest weight of a simple Verma module is given by

Wg,−κ ∩ yWfy
−1. (3.36)

On the other hand, if we denote by Λ̌G the cocharacter lattice of T , i.e. the character lattice of
Ť , recall that W̃ is explicitly

W̃ �Wf � Λ̌G,

Consider its action on Λ̌G, where Wf acts by the dot action and an element λ̌ in Λ̌G acts as
translation by λ̌. Acting on −ρ̌ yields a W̃ -equivariant identification

W̃/Wf � Λ̌G. (3.37)

With this, recalling that κ is negative, the restriction of (3.37) along the composition

Wǧ,κ̌
(3.29)� Wg,κ ↪→ W̃

yields the standard level-κ̌ dot action of Wǧ,κ̌ on Λ̌G. Moreover, under the equivalence (3.37),
for any reflection sαn in Wǧ,κ̌ associated to a positive coroot αn of ̂̌gκ̌ and any element x of W̃ ,
one has that

xWf � sαxWf if and only if 〈αn, x · (−ρ̌) + ρ̌〉 � 0, (3.38)

where we view αn as an affine linear functional on t as in § 2.9.5. To see this, note that if we
write Φ+ for the positive real coroots of ǧ and Φf for the finite coroots of ǧ, both sides of (3.38)
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are equivalent to
x−1(α) ∈ Φ+ ∪ Φf .

Using (3.38), we may describe the block decomposition of̂̌gκ̌–modǏ

as follows. In its usual formulation, by the work of Deodhar, Gabber, and Kac [DGK82], blocks
correspond to Wǧ,κ̌ dot orbits on Λ̌G, and each contains a unique simple Verma module. Under
the identification of its highest weights with W̃/Wf via (3.37), each orbit of Wǧ,κ̌ contains
a minimal element y with respect to the Bruhat order. By (3.38), the corresponding Verma
module is antidominant, i.e. simple, and has stabilizer

Wǧ,κ̌ ∩ yWfy
−1. (3.39)

Comparing (3.36) and (3.39), we are done by Corollary 3.5.9. �
Remark 3.6.2. Having obtained the tamely ramified fundamental local equivalence for good
levels, let us outline a variant of the proof that may be desirable.

Presently, we relate blocks of Whitaffκ and ̂̌gκ̌–modǏ by relating the former to ĝκ–modI and
applying Fiebig’s results. However, it should be possible to adapt the arguments of Bezrukavnikov
and Yun on V-functors provided in [BY13, §§ 4 and 5] to Whitaffκ and thereby identify each
block with a category of (possibly singular) Soergel modules. Comparing this with the similar
identification provided by Fiebig, and matching the combinatorics exactly as in the proof of
Theorem 3.6.1, should yield the desired equivalence.

This would remove the assumption of goodness on κ, and such a description of the Whittaker
category should be equally applicable in other sheaf-theoretic contexts, such as metaplectic
Whittaker sheaves over function fields.

3.7 Parahoric fundamental local equivalences
3.7.1 Recall the canonical bijection between the simple roots of g and ǧ, which were indexed

by I. In particular, to a standard parahoric subgroup

P ⊂ LG,

which corresponds to a subset J of I, we may associate a dual parahoric

P̌ ⊂ LǦ.

3.7.2 Let us obtain a parahoric extension of the tamely ramified fundamental local
equivalence. In particular, we continue to assume that G is simple of adjoint type.

Theorem 3.7.3. For a good, negative level κ, there is a t-exact equivalence

Dκ(LN,ψ\LG/P ) � ̂̌gκ̌–modP̌ . (3.40)

Proof. It is enough to produce an equivalence, which we denote provisionally by a dotted line,
fitting into the commutative diagram

D−κ(P\LG/LN−, ψ)♥,c
∼ ������

π!∗
��

̂̌gκ̌–modP̌ ,♥,c

Oblv
��

D−κ(I\LG/LN−, ψ)♥,c
(3.25) ̂̌gκ̌–modǏ,♥,c

(3.41)
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where we normalize the pull-back π!∗ associated to π : LG/I → LG/P to be t-exact. Here, as in
the proof of Corollary 3.5.9, the superscripts ♥ and c denote compact objects in the heart, which
in the present situation are equivalent to finite-length objects in the heart. Noting that both
vertical arrows in (3.41) are full embeddings of Serre subcategories, it is enough to show that the
essential images of the simple objects under are intertwined by (3.35). To see this claim, recall
that we denoted the subset of simple roots corresponding to the dual parahorics P and P̌ by J.
With this, the simple objects on the Whittaker side lying in the essential image are intermediate
extensions from the orbits

IxLN− for x ∈ W̃ ,

where x satisfies the three conditions

sjx < x ∀ j ∈ J, xsi < x ∀ i ∈ I, and WJxsi < WJx ∀ i ∈ I. (3.42)

The simple objects on the Kac–Moody side lying in the essential image have highest weights λ̌
satisfying

sj · λ̌ < λ̌ ∀ j ∈ J. (3.43)

Write λ̌ = x · −ρ̌ for x ∈ W̃ acting as in (3.37). We may assume that x is of maximal length in
its left Wf coset, in which case (3.43) is equivalent to x satisfying the three conditions

sjx < x ∀ j ∈ J, xsi < x ∀ i ∈ I, and sjxWf < xWf ∀ j ∈ J. (3.44)

We finish by noting that (3.42) and (3.44) describe the same subset of W̃ , namely the unique
elements of maximal length in double cosets WJxWf such that the double coset satisfies

x(Φ̌f ) ∩ Φ̌J = ∅,
where Φ̌f denotes the finite coroots and Φ̌J the coroots of the Levi associated to J. �

3.7.4 We finish with two remarks.

Remark 3.7.5. Applying Theorem 3.7.3 in the maximal case, i.e. for the parahorics given by the
arc groups L+G and L+Ǧ, we obtain the spherical fundamental local equivalence for good levels,
namely

Whitsph
κ := Dκ(LN,ψ\LG/L+G) � ̂̌gκ̌–modL+Ǧ. (3.45)

One can reasonably ask whether the methods of this paper can be directly applied to obtain
this without first proving Theorem 3.6.1. The arguments indeed apply mutatis mutandis, where
one works throughout with double cosets of Wg,κ rather than one-sided cosets, exactly as in the
proof of Theorem 3.7.3.

In this approach, to cross Langlands duality one needs the parabolic variant of Fiebig’s
theorem, Theorem 3.5.2. This is indeed true, and may be deduced from the usual case by an
argument similar to that for Theorem 3.7.3.

Remark 3.7.6. We would like to record here the expectation that for dual parahorics P and P̌ as
above, local quantum Langlands duality exchanges the operations of taking P and P̌ invariants.
For the Iwahori and arc subgroups, this has already appeared in the literature [ABC+18, Gai18c].
However, while one has a canonical bijection between the affine simple roots for g and ǧ, we do
not expect an interchanging of the corresponding invariants of more general parahoric subgroups.
Indeed, already the analogue of Theorem 3.7.3 will typically fail, unless κ̌ is integral and g is
simply laced.
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4. Proof in the general case

In this final section, we spell out how to deduce the general case of the conjectures from the case
where G is of adjoint type and κ is a negative level. While we write the reductions in the tamely
ramified case, they apply mutatis mutandis in the parahoric cases as well.

4.1 Good levels for general G
Recall the notion of a good level for a simple group; see § 3.4.4 and Proposition 3.4.5. Let us say
that a level κ for a reductive group G is good if it is good after restriction to each simple factor
of G.

The following reductions show that the general case of Conjectures 1.3.1 and 1.3.2 for reduc-
tive G and good κ follow from the case of G being simple of adjoint type and κ being a good,
negative level. In particular, via Theorems 3.6.1 and 3.7.3, we obtain the fundamental local
equivalences for general G at good levels.

Remark 4.1.1. The reductions from the case of a general connected reductive group at a negative
level to an adjoint group at a negative level yield, in combination with the results of § 3, t-exact
equivalences.

By contrast, at a positive level one cannot hope for a t-exact equivalence. To see this, note
that the Verma modules in ̂̌gκ̌–modǏ are now of infinite length, whereas any compact object in
the heart of Whitκ is of finite length. So the arguments of § 3 cannot be applied directly.

Instead, the equivalences at positive level are deduced from the negative-level cases by duality
for DG categories. This makes essential use of the renormalizations of the appearing derived
categories, and the equivalences are of infinite cohomological amplitude. For example, if κ̌ is a
positive integral level, they send the abelian category of positive energy representations of the
loop group LǦ at level κ̌, i.e. ̂̌gκ̌–modLǦ,♥,

into objects of Whitκ concentrated in cohomological degree −∞.

4.2 Finite isogenies
Suppose we are given a finite isogeny of pinned connected reductive groups

ι : G1 → G2.

The morphism i yields a closed embedding of affine flag varieties and hence a fully faithful
embedding

Dκ(LN1, ψ\LG1/I1) → Dκ(LN2, ψ\LG2/I2). (4.1)

Consider the Langlands dual isogeny of connected reductive groups

ι̌ : Ǧ2 → Ǧ1.

Associated to ι̌ is a fully faithful restriction map̂̌gκ̌–modǏ1 → ̂̌gκ̌–modǏ2 . (4.2)

To see the claimed fully faithfulness, one may use the following lemma.

Lemma 4.2.1. Suppose one is a given a fibre sequence of quasi-compact affine group schemes

1 → K → H → Q→ 1,
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where K is of finite type, the pro-unipotent radical Hu is of finite codimension in H, and pt/K
is homologically contractible, i.e.

H∗(pt/K,Q) � Q.

Then for any D(Q)-module C, the restriction map CQ → CH is fully faithful.

Proof. For C � D(Q), this is exactly the assumption of homological contractibility. The case of
general C follows from taking its cobar resolution as a D(Q)-module and using the commutation
of Q and H invariants with colimits. �

We may apply the lemma to Ǐ2 → Ǐ1, as the kernel identifies with the kernel of ι̌. Combining
these assertions, we obtain the following result.

Proposition 4.2.2. Suppose that one has an equivalence of the form (1.2) for (G2, κ) and
(Ǧ2, κ̌). Assume that it exchanges the full subcategory generated under shifts and colimits by
the Whittaker sheaves

jψ
λ̌,!

for λ̌ ∈ Λ̌G1

with the full subcategory generated under shifts and colimits by the Verma modules

Mλ̌ for λ̌ ∈ Λ̌G1 .

Then it induces an equivalence of the form (1.2) for (G1, κ) and (Ǧ1, κ̌), fitting into a commutative
diagram as follows.

Dκ(LN,ψ\LG1/I1)
∼

(4.1)

��

̂̌gκ̌–modǏ1

(4.2)

��

Dκ(LN,ψ\LG2/I2)
∼ ̂̌gκ̌–modǏ2

4.3 Products
By the preceding subsection, we may replace our group, after passing to a finite quotient thereof,
by the product of a semisimple group of adjoint type and a torus. We next reduce to the case of
a single factor.

Suppose that G factors as a product of pinned connected reductive groups G � G1 ×G2.
Associated to this is a tensor product decomposition

Dκ(LN,ψ\LG/I) � Dκ1(LN1, ψ1\LG1/I1) ⊗Dκ2(LN2, ψ2\LG2/I2).

On the Langlands dual side, we obtain a decomposition Ǧ � Ǧ1 × Ǧ2 and a similar tensor
product decomposition ̂̌gκ̌–modǏ � ̂̌g1,κ1

–modǏ1 ⊗ ̂̌g2,κ2
–modǏ2 .

In particular, to provide an equivalence as in (1.2) for G1 ×G2, it is enough to do so for G1 and
G2 separately.

4.4 Tori
Let us dispose of the torus factor of G. Given dual tori T and Ť , it is clear that both sides of
(1.2) canonically identify as ⊕

λ̌∈Λ̌T

Vect,
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corresponding to the components of the affine Grassmannian of T and the Fock modules for ̂̌tκ̌,
respectively.

4.5 Positive level
We have reduced the conjecture to simple G of adjoint type and arbitrary κ. We now reduce to
negative κ via cohomological duality.

For a connected reductive group G, there is a canonical Dκ(LG)-equivariant duality

Dκ(LG/I)∨ � D−κ(LG/I).

This induces a duality of the Whittaker invariants (cf. [Dhi21, § 4]), i.e.

Dκ(LN,ψ\LG/I)∨ � D−κ(LN,−ψ\LG/I). (4.3)

On the Kac–Moody side, recall that semi-infinite cohomology (defined with respect to any
compact open subalgebra) induces an Dκ(LG)-equivariant dualitŷ̌gκ̌–mod∨ � ̂̌g−κ̌–mod;

see [Ras20, § 9]. Accordingly, passing to Ǐ invariants, we obtain a duality

(̂̌gκ̌–modǏ)∨ � ̂̌g−κ̌–modǏ . (4.4)

Accordingly, an equivalence as in (1.2) at level κ follows by duality from such an equivalence at
level −κ.

We now check the compatibility of the above with the assumption of Proposition 4.2.2 con-
cerning essential images. For dual categories C and C∨, let us write Cc and (C∨)c for their full
subcategories of compact objects and denote their induced identification by

D : Cc,op � (C∨)c.

Lemma 4.5.1. Fix any λ̌ in Λ̌G, and write ρ and ρ̌ for the half-sums of the positive roots and
the coroots of G, respectively. With respect to the duality datum (4.3), we have

Djλ̌,! � jλ̌,∗[−2〈ρ̌, ρ〉].
With respect to the duality datum (4.4), normalized with respect to the Lie algebra of the
Iwahori Ǐ, we have

DMλ̌ �M−λ̌−2ρ̌.

The proof of the lemma is straightforward; cf. Lemma 9.8 of [Dhi21] for the assertion
regarding Verma modules.
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370 (2015), 1–112; MR 3364744.

Gai16a D. Gaitsgory, Eisenstein series and quantum groups, Ann. Fac. Sci. Toulouse Math. (6)
25 (2016), 235–315; MR 3530159.

Gai16b D. Gaitsgory, Quantum Langlands correspondence, Preprint (2016), arXiv:1601.05279.
Gai17 D. Gaitsgory, The semi-infinite intersection cohomology sheaf-II: the Ran space version.

Preprint (2017), arXiv:1708.07205.
Gai18a D. Gaitsgory, A conjectural extension of the Kazhdan–Lusztig equivalence, Preprint (2018),

arXiv:1810.09054.
Gai18b D. Gaitsgory, The semi-infinite intersection cohomology sheaf, Adv. Math. 327 (2018),

789–868.
Gai18c D. Gaitsgory, Winter school on local geometric Langlands theory: Program, Preprint (2018),

available online at https://lysenko.perso.math.cnrs.fr/Notestalkswinter2018/program1.pdf.
Gai19 D. Gaitsgory, On factorization algebras arising in the quantum geometric Langlands theory,

Preprint (2019), arXiv:1909.09775.
GGW18 W. T. Gan, F. Gao and M. H. Weissman, L-groups and the Langlands program for covering

groups: a historical introduction, Astérisque 398 (2018), 1–31; MR 3802417.
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