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Proposition of a net-like m.odel of snow 

ZEMPACHIVVATANABE 
Faculty of Education, Fukushima University, 1- 2 Nakagawara, Motouchi, Fukushima City 960-01, Japan 

ABSTRACT. Thin-section photographs show that snow consists of lumpy parts 
and connecting branches. The model proposed here agrees with this real state. This 
new model is derived from four packing forms of isometric spheres by shrinking the 
original spheres while maintaining and connecting points of contact as a column. The 
texture of the model can be varied by setting the packing form, the shrinking ratio 
and the thickness of connecting branches. When the density and strength of the 
material of the model are set to the values of polycrystalline ice, the model density 
and tensile strength agree with published data for dry compacted snow. 

INTRODUCTION 

The physical properties of snow have often been 
explained by use of models. This paper proposes a new 
model of the texture and tensile strength for dry 
compacted snow. This new model is derived from the 
perfect packing forms of isometric spheres. These original 
forms were introduced by Manegold and others (1931), 
and are distinguished by their coordination number N, 
the number of points of contact between spheres. 

The cubic system is a basic packing form and its N 
value is 6. The other forms have N values equal to 8, 10 
and 12. The form of N = 12 is the densest packing form. 
The model proposed here is derived from the four models 
mentioned above by the following procedure. The radius 
of each sphere shrinks from R to pR, and each of the 
original points of contact become the central axis of a 
column having a radius qR. The model can adopt 
manifold textures by varying the values R, N, p, and q. 
It is termed a "net-like" model because of its structure. 

At first, we assume that the material of the model has 
the same density and tensile strength as polycrystalline 
ice. According to the studies of the author and others 
(Ishida and Shimizu, 1955; Watanabe, 1964), the value 
of R is directly decided by the snow density, though our 
experiments were limited to snow of density less than 
0.45 gem-3. The value of q is decided from experimental 
results on the tensile strength of snow, and the value of p is 
also calculated from the density, Nand q. Thus, we ean 
propose a net-like model whose density and strength 
agree with snow. 

For compacted snow of density greater than 
0.45 g cm -3, we must select a net-like model of N = 6, 
p = 1 and large q. In the case of N = 6 and p = q = 1, the 
air is enclosed in the ice and the density reaches 
0.831 g cm -3 at maximum. Of course we can calculate 
the tensile strength of the high density model, and the 
result agrees well with the data of Keeler and Weeks 
(1968). As mentioned above, this model results in tensile 
strength values that are consistent with real snow. 
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NET-LIKE MODEL 

The perfect packing models of isometric spheres 

According to Manegold and others (1931), there are five 
varieties in the systematic packing forms of isometric 
spheres. These five forms are distinguished by their 
coordination number, N, which can have values of 
4,6,8,10 and 12. 

The form of N= 6 
For N = 6, the isometric spheres are packed in the form 
of a cubic lattice (Fig. 1). The three coordinate axes are 
set as shown in the figure, and each layer of spheres is 
numbered. The radius of each sphere is set to R(cm). 

Theform of N=8 
From the case of N = 6, we move the even-numbered 
layer of spheres perpendicular to the Z-axis along the X­
axis by a distance R. 

The form of N= 10 
As for the form of N = 8, we move the even numbered 

z 

x 

Fig. 1. A perfect packing form of isometric spheres (the 
cubic lattice, N = 6). 
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layer of spheres vertical to the Y-axis by a distance R. 
Then, we can make the form of N = 10. 

Theform of N=12 
In the case of N = 10, the even numbered layer of spheres 
vertical to the Y-axis is moved in the direction of the Z­
axis by a distance R. This form is the densest packing 
form. 

Theform of N=4 
This form is the Wurzite Structure: the centers of the 
spheres are located on the center of gravity and each apex 
of a regular tetrahedron. 

N et-like model 

Introduction of the net-like model 
The net-like model is derived from the forms of 
N = 6,8, 10 and 12 by the following procedure. First, 
the radius of each sphere shrinks from R to 
pR (0 < q ~ 1), and then a line connecting each original 
point of contact becomes the central axis of a column 
having a radius qR (0 <~ p ~ 1) . A part of this 
transformation is shown in Figure 2, where the stippled 
part is the net-like model. The spheres are connected by a 
column that may simply be called a " branch". 

------- r 
t R 

-~- pR 
q.R l 1 

Fig. 2. A part of the net-like model (stippled part). 

The crossing state of the branches 
As the value of q increases, the branches become thicker 
and ultimately intersect. Let the angle made by two 
adjacent branches be 0 (radian) as shown by Figure 3. 
The condition for the branches not to intersect or overlap 
is sin(8/2) $ q/p. 8 is 7r/2 in the case of N = 6, and is 
equal to 7r/3 in the case of N = 8, 10 and 12. Then, this 
equation is expressed by the following forms, 

q ~ (1/../2) p 

q ~ (1/2) p 

(N = 6) 
(N = 8, 10 and 12) . 

The structure of the model made by uncrossed branches 

(1) 

The net-like model is introduced by shrinking of the 
spheres of the original form, and therefore the material 
volume is less than the original. In the case where the 
model is composed of uncrossed branches, we define the 
material volume limited to that inside the original sphere 
as Vu (cm3

). For calculation of the volume, each branch in 
Vu is divided by a plane tangent to the original sphere. Vu 
is then given by the next equation (Watanabe, 1980). 

Watanabe: A net-like model of snow 

Fig. 3. The state of two branches in contact (0 is the angle 
made by two branches). 

Vu = (4/3)7rJil[p1 + (N /4){3ej - 2p3 + 2(P2 - ej)3/2}] . 

(2) 

Define n as the number per unit length of the original 
sphere along a line. Then n is equal to 1/(2R). The 
number per unit volume of the shrunken spheres, n', is 
expressed for each coordination number as 

N=6 n' =n3 

N=8 n' = (2/Va)n3 

(3) 
N=lO n' = (4/3)n3 

N= 12 n' = V2n3 
. 

If the model is made of a material whose density is 
Po (g cm-3) , the density of the model, p, is expressed 

P = Po n' Vu· (4) 

In order to bring the model close to snow, the actual 
value of Po is fixed at 0.917 gcm-3

. 

The border model (in the case of N = 6 and p = 1) 
According to Watanabe (1989), the solid angle made by 
an ice bond in snow increases with the increase in snow 
density. Therefore, N of the high-density model must be 
6. 

In the case of N = 6, if P = 1 and q = 1/V2, the 
model has the maximum density possible with uncrossed 
branches, and we name this model the border model. Vu 
of the border model is expressed by substituting the above 
mentioned values into Equation (2); hence, 

Vu = (1/3) 7r Jil (3V2 + 1) = 5.490 R3 . (5) 

The density, p, is calculated by substituting this Vu and n' 
of Equation (3) into Equation (4) 

p = 0.917 x (8 Jil)-l x 5.490 Jil = 0.629 (g cm-3) . 

The model made by crossed branches 
Where the model density is greater than 0.629 g cm-3 it is 
composed of crossing branches and the following relations 
are valid: N = 6, p = 1 and (1/v'2) < q. A sectional 
view of this model is shown in Figure 4; this section is 
perpendicular to the Z-axis and point 0 is the center of a 
sphere. The stippled part is the branch of the border 
model, and Vu of this model must add the volume of parts 
A and B to the volume of the border model. 
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Watanabe: A net-like model of snow 

r 
R 

j 
x 

Fig. 4. A sectional view of the model which is composed of 
crossing branches; the stippled part is the branch of the 
harder model. 

Let VA and VB stand for these additional volumes per 
branch. VA and VB can be found from Figure 5 which is 
an expanded view of Figure 4, where a(cm), b(cm) and 0' 
are defined as a = qR, b = R/V2 and COS-lO' = b/a, 
respectively. The next equations are obtained by using Vw 
and are 

VA = 71" (a2 - b2)(R - a), 

VB = 11" (a2 
- b2)(a - b) - 2 Vw , 

(6) 

where the part of B on a branch has four overlapping 
parts, one of which is shown in Figure 5 by stippling. The 
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o 

Fig. 5. The expanded view of Fig. 4 in the direction of X­
axIS. 

Table 1. q and density, p, of the model 

0.707 
0.629 

0.75 
0.668 

0.80 
0.712 

volume of this part is expressed by Vw • The whole volume 
of part B is equal to 1I"(a2 - b2)(a - b), and this volume 
multiplied by (2()' /271") is the volume which is shown by 
the part ofPP'Q'MQP in Figure 5. Then we assume that 
the next approximate equation is valid, hence 

Vw = 1I"(a2 
- b2)(a - b) (0' /11") 

(the area of the segment QQ'M) 
x..,...:.----:--::--:::--'=--=c=-:-:77:-7:::"-:::-;-

(the area of the figure PP'Q'MQP) 

The area of the segment QQ'M is a2()' - b(a2 - b2)1/2 and 
the area of the figure PP'Q'MQP is equal to (a2 - b2)O', 
thus Vw is shown by 

Vw = (a - b)(a2B' - b(a2 - b2)1/2) . (7) 

Vu of the crossed-branches model is equal to the 
volume that adds 6(VA + VB) to Vu of the border model, 
and is expressed as 

Vu =5.490Ji! + 6{(11" (a2 
- b2)(R - b) 

- 2(a - b) (a2B' _ b(a2 _ b2)1/2)} , 
(8) 

where 5.490RJ is the volume of the border model as 
shown in Equation (5). Substituting a=qR and 
b = R/V2 into Equation (8), it follows that 

V = RJ(5.490 + 5.521(/- 1/2) 

- 12(q - 1/V2){1 cos-1 (l/V2q) (9) 

- (l/V2)(i _1/2)1/2}) . 

Substituting Equation (9) for Vu into Equation (4), the 
density of the model is calculated from the value of q as 
shown in Table 1. 

In this table, the first line is the value of q and p for the 
border model. In the case of q = 1, the model corresponds 
with snow and ice in which the air is enclosed. 

CORRESPONDENCE BETWEEN THE MODEL 
AND SNOW 

On the size of the unit sphere 

Ishida and Shimizu (1955) measured the air flow 
resistance through snow layers. They considered that 
the snow was a set of isometric ice spheres, and found that 
the radii of the spheres were within a certain range 
according to snow density. 

Watanabe (1964) measured the height of capillary rise 
of water in compacted snow whose density p (g cm-3 ) was 
in the range of 0.15 ~ 0.45 g cm - 3, and expressed the radii 
of the isometric spheres R(cm) by the approximate 
equation 

0.85 
0.752 

0.90 
0.787 

R = 0.15 p, 

0.95 
0.813 

1.00 
0.831 

(10) 
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where R is in the range pointed out by Ishida and 
Shimizu (1955) and almost agrees with the value 
obtained from the projection of untied snow particles. 
Therefore, we make the assumption that R of the net-like 
model is described by Equation (10) . 

On the coordination nUn1ber 

Thin-section photographs of snow block taken at equal 
distances were analyzed to determine separate branches, 

and the solid angle of branches was measured by using 
spherical geometry (Watanabe, 1989). Figure 6 shows the 
distribution chart of the solid angle of compacted snow 
with density of 0.39 g cm- 3

• 

6 . 
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10 SA = I. 3 0 (ste r. ) 

a = 0.52 ( // ) 

N ' 
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4 
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o 0.5 1. 0 1. 5 2.0 
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2. 5 3.0 3. 5 
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Fig. 6. The distribution of the solid angle of ice bonds 
(snow density is 0.39 g cm -3). 

The mean value is equal to 1.30 (ste r.) and the 
standard deviation is 0.52. The upper scale N in this 
figure is the coordination number of the net-like model, 
and for N equal 12,10,8 and 6 corresponds to 7r/5, 7r/4, 
7r/3 and 7r/2 (ster. ), respectively. The observed frequency 
of solid angle at N = 12, 10, 8 and 6 was high and we can 
say that the model predicts well the structure of real snow. 

The relation between the density and the mean value 
of the solid angle SA for five snow samples is shown in 

1. 6 

1.4 

1. 2 
SA 

1. 0 

08 

0 6 
(ste r. ) 

0.2 0 .3 

DENSITY 

• 6 

• 8 

• 10 

• 12 

0. 4 
(g cm - 3 ) 

Fig. 7. The mean value of solid angle SA versus snow 
density. 

N 

Watanabe: A net-like model of snow 

Figure 7. N on the right side in the figure is the 
coordination number. SA increases with p, and is roughly 
expressed as 

SA = 3.6p - 0.06 . (11) 

Thus, N must be a small value for snow density greater 
than 0.3gcm-3

. 

On the tensile strength 

The tensile strength of the model 
When a tension or pressure F (g W cm-2) is applied to one 
of the spheres in the model in the direction of one of the 
axes shown in Figure I, the force is carried in one of three 
ways depending on the coordination number (Fig. 8) . 

In the case of N = 8, if F is applied in the direction of 
the Z-axis, it is separated into two forces as shown in 
Figure 8b. If this separate force is /, / / F is equal to 1/ J3 
(Watanabe, 1991 ). When N = 12 (Fig. 8c) , F is applied 
in the direction of the Y-axis, and / / F is equal to 1/ J6. 
Table 2 shows carrying states afforce (Watanabe, 1991). 

In this table f / F is the proportion of force which is 
applied to only one branch, and f / F multiplied by the 
number of carrying branches of F and the number of 
spheres per unit area equals the actual number of 
branches per unit area. As shown in the table, the actual 
number of branches depends only on N, not on the axis. 

If the strength of the material of model is represented 
by 0"0 (g-W cm-2

) , then the strength of the branch is 
expressed by 7r( qR)2 0"0 . In that case, the tensile strength 
or compressive strength, 0", of bulk snow can be expressed 

0" = 7r(qR)20"0 x (the actual number of branches). 

(12) 

A 

IF 
B I F 

C 

IF 
I I I 

I F flY tt/ 
/ f "'" / \ o / 0 

I 
0 0 0 0 

Fig. 8. The carried forms of force in the model. 

In the case of the coordination numbers of 6,8, 10 and 12, 
the actual number of bra nches are n2, 2/ v'3n2, 4/3n2 and 
V2n2, respectively (Table 2). 

The tensile strength of snow 
Measured values of the strength of snow show large 
scatter. The author measured the tensile strength of snow 
at about -3 to - 5°C using a centrifugal separator, and 
developed the equation (Watanabe, 1974) 

log O"t = 3.24 log p + 4.28 , (13) 

where p is the density of compacted snow and O"t is the 
tensile strength. Application of this equation is limited to 
0.1 ~ P ~ 0.45 because of the snow samples used in 
deriving the equation. 
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Watanabe: A net-like model of snow 

Table 2. Carrying state of force in the model 

A (N) 6 8 10 12 
B (axis) X Y Z X Y Z X Y Z X Y Z 
C (x n) 1 1 2/..;3 1 2/..;3 2/..;3 1 3/-/6 2/..;3 
D (x n2

) 2/..;3 2/..;3 1 4/3 2/..;3 2/..;3 Y2 2/..;3 .;6/2 
El 1 1 2 1 2 2 3 2 
E2 1 1/..;3 1 1/..;3 1/..;3 1 1/-/6 1/..;3 
F (x n2

) 1 1 2/..;3 1 1/..;3 4/3 1/..;3 1/..;3 v'2 1/-/6 1/..;3 

A: coordinate number 
B: axis (direction offorce) 
C: number of spheres per unit length 
D : number of spheres per unit area perpendicular to the axis 
El: number of branches for F (number) 
E2: number of branches for F If/F) 
F: actual number of branches per unit area 

(where n = 1/2R: R is the radius of original sphere) 

Next, the author measured the tensile strength of a 

polycrystalline ice, ait. at approximately -3°C. The 
average value from more than 100 measurements 
(Watanabe, 1991) is 

O"it = 21.9 (kgWcm-2) (14) 

where the standard deviation is 4.4. 

The net-like model of snow 

The model for density less than 0.45 g cm- 3 

We try to find a model whose density and strength match 
snow. The tensile strength of snow, calculated by 
Equation (13), is shown in the second column in Table 
3. We assume that the strength of the material in the 

model (0'0) is equal to ait in Equation (14) . Equation (12) 
is then rewritten as 

0" = 7r(qR)2 x 21.9 X 103 

(15) 
x (the actual number of branches) , 

where the actual number of branches contains the factor 
n2 = (1/4R2

). Thus R in Equation (15) is eliminated. 
The values of q in Table 3 are obtained by substituting 

O"t as calculated from Equation (13) for 0" in Equation 
(15), and then solving for q. Next, let us find the value of 
p. n' from Equation (3 ) and Vu from Equation (2) are 
substituted into Equation (4), where q is shown as Table 
3. Equation (4) then has only two factors of p and p, 
thereby giving the values of p in Table 3. Thus, Table 3 

Table 3. q and p of the model where strength agrees with snow 

Coordinate number 
p O"t 6 8 10 12 

q P q P q P q P 

0.45 1369 0.28 0.97 0.26 0.92 0.24 0.86 0.24 0.83 
0.40 935 0.23 0.93 0.22 0.88 0.20 0.83 0.20 0.80 
0.35 606 0.19 0.89 0.17 0.84 0.16 0.80 0.16 0.77 
0.30 368 0.15 0.85 0.14 0.80 0.13 0.76 0.12 0.74 
0.25 204 0.11 0.80 0.10 0.76 0.09 0.72 0.09 0.70 
0.20 99 0.08 0.74 0.07 0.71 0.07 0.67 0.06 0.66 
0.15 40 0.05 0.68 0.05 0.64 0.04 0.61 0.04 0.60 
0.10 11 0.03 0.59 0.02 0.56 0.02 0.54 0.02 0.52 

p (in g cm -3): density 
O"t (in g W cm -2): measured value of tensile strength 
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shows a model whose density and strength match snow. R 
is decided by Equation (10). 

The coordinate number of snow decreases with the 
increase of snow density as before, so the area in Table 3 
bounded by the thick line is the portion of the table 
applicable to real snow. 

The modelfor density between 0.45 and 0.63gcm-3
• 

0.45 g cm-3 is the maximum snow density in the 
measurement set and 0.63 g cm -3 is the density of the 
border model. Where snow density is greater than 
0.45 g cm-3

, considering the value of q in Table 3, p = 1 
is satisfactory. The tensile strength of the model of p = 1 is 
shown in the second column of Table 4. 

Table 4. Comparison of tensile strength of the model with 
calculated values (density between 0.45 and 0.63) 

O"t (kgW cm-2
) 

Model Calculated 

0.45 
0.50 
0.55 
0.60 
0.629 

1.37 
3.22 
6.01 
7.77 
8.60 

3.42 
5.14-
7.17 
9.47 

10.91 

The strength of snow, 0" (kgW cm-2
) , was derived 

theoretically by Ballard and Feld (1966) to be 

( -2A) 
0" = k exp 1 _ A ' (16) 

where k is a constant and>' is the porosity of snow. Of 
course, A is equal to (1-1.09p). Later, Keeler and Weeks 
(1968) measured the strength of snow and their measured 
value of tensile strength nearly agreed with the values of 
Equation (16) by letting k = 27. They expressed O"t by the 
equation 

( -2>.) 
O"t = 27 exp 1 _ A . (17) 

Butkovich (1956) also measured the tensile strength of 
snow. He tested only high-density snow (0.4 < p), but his 
measured values almost agree with the values given by 
Equation (17). 

The model of density greater than 0.63 
The density of the border model is 0.63 g cm -3 as before. 
In the case of the density greater than 0.63 g cm -3, it is 
clear from the previous discussion that N = 6, p = 1 and 
1/ v'2 < q. The first column in Table 5 is the density of 
the model, the second column is the strength which is 
decided from Equations (4) and (9), and the third column 
is the value calculated using Equation (17). 

The values of the second columns of Tables 4 and 5 

Watanabe: A net-like model of snow 

Table 5. Comparison of tensile strength of the model with 
calculated values (density greater than 0.63) 

O"t (kg W cm-2
) 

Model Calculated 

0.65 
0.70 
0.75 
0.80 
0.831 

9.12 
10.65 
12.34 
14.72 
17.20 

12.00 
14.66 
17.47 
20.13 
22.11 

are shown in Figure 9. Calculated and model strengths do 
not always agree, but the measured values of snow 
strength are generally scattered over a wide range as were 
the measured values of Keeler and Weeks (1968). Thus, 
we can say that the net-like model of snow has the same 
tensile strength of snow. 

CONCLUSION 

This paper proposes a new "net-like" model, derived 
from the systematic packing forms of isometric spheres by 
shrinking the spheres and connecting them with a 
cylindrical column. The texture of the model can be 
varied according to the setting of the packing form, the 
shrinking ratio and the radius of the connecting branch. 
In order to approximate the model to snow, the density 

<kg w cm- 2 ) 

30r-----.------.------.------.----, 

20 

10 

at 8 

6 

4 

2 

o 

0.5 0.6 0.7 0.8 

DENSITY 

Fig. 9. Comparison of the tensile strength ofmodel with the 
calculated values for high-densiry snow. 
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Watanabe: A net-like model of snow 

and tensile strength of the modeled material are set to 
correspond to polycrystalline ice. 

The author measured the tensile strength of dry 
compacted snow with density less than 0.45(gcm- 3), and 
has been able to make the net-like model agree in density 
and tensile strength. In the case of the model for density 
greater than 0.45 gcm- 3

, the shrinking ratio of original 
spheres is equal to I, and the density and strength are 
decided by the thickness of the connecting branches. 
Then, we can calculate the strength of model for each 
density range respectively. 

These calculated values agree well with the data of 
Butkovich, Keeler and others. For the higher densities, 
the model corresponds to the border state of SnOw and ice. 
The density was 0.831 g cm - 3 and the tensile strength was 
17.2 (kgWcm-2

) . 

Watanabe (1974) measured the specific surface of 
snow whose density was less than 0.4; the specific surface 
of the model can be calculated, and the values are almost 
equivalent. 
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