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Abstract
Survey weighting allows researchers to account for bias in survey samples, due to unit nonresponse or

convenience sampling, using measured demographic covariates. Unfortunately, in practice, it is impossible

to know whether the estimated survey weights are sufficient to alleviate concerns about bias due to unob-

served confounders or incorrect functional forms used in weighting. In the following paper, we propose two

sensitivity analyses for the exclusion of important covariates: (1) a sensitivity analysis for partially observed

confounders (i.e., variables measured across the survey sample, but not the target population) and (2) a

sensitivity analysis for fully unobserved confounders (i.e., variables not measured in either the survey or the

target population).Weprovide graphical andnumerical summaries of thepotential bias that arises fromsuch

confounders, and introduceabenchmarkingapproach thatallows researchers toquantitatively reasonabout

the sensitivity of their results. We demonstrate our proposed sensitivity analyses using state-level 2020 U.S.

Presidential Election polls.

Keywords: survey weighting, sensitivity analysis

1 Introduction

Given the fall of survey response rates and the increased reliance on online convenience samples,

concerns about bias in surveys are rising. For example, Bradley et al. (2021) discuss bias in

public opinion surveys used to estimateCOVID-19 vaccination rates.Modern surveys nearly always

rely on weighting adjustments, and researchers must carefully examine how survey weights are

constructed. For example, Kennedy et al. (2018) found that a primary driver of bias in the 2016

U.S. Presidential Election was survey weights that failed to account for either education or the

interaction of education with race. Subsequently, many surveys began including these when

constructing survey weights. Despite this, the 2020 U.S. Presidential Election cycle resulted in

national-level public opinionpolling that exhibited someof themost bias the last 40 years. Clinton

et al. (2021) found that the errors of 2016 do not explain problems in the 2020 election polls.

Instead, they find that bias is likely driven by unobservable confounders.

While these polling misses provide an opportunity to retrospectively evaluate these issues,

they also make clear that within any specific survey, the question of how to properly construct

survey weights is an open one. The purpose of our paper is to provide a set of sensitivity analyses

that researchers can use on weighted surveys to analyze sensitivity to two types of confounders:

(1) partially observed confounders, which are measured in the survey sample but not the target

population, and (2) fully unobserved confounders which are not measured in the survey sample

or the target population.While these variables cannot be directly incorporated in the construction

of weights, researchers are often aware of their existence through theoretical concerns.

In summary, we decompose bias in weighted estimators into two observable components—

variation in the outcome and variation in the estimated weights—and two unobservable

components—the correlation of the error in the estimated weights with the outcome, and how

much variation in the ideal (true) weights this error explains. We then propose two sensitivity

analyses. For partially observed confounders, our sensitivity analysis is based on a posited

distribution of the confounder in the target population. For fully observed confounders, we
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propose a two-parameter sensitivity analysis based on the unobserved components of our bias

decomposition, and provide graphical and numerical summaries of robustness.

We extend the sensitivity analyses developed by Hong, Yang, andQin (2021), Huang (2022), and

Shen et al. (2011), which assess the sensitivity in estimating causal effects with weighted estima-

tors. Alternative approaches include sensitivity analyseswhich bound theworst-case bias froman

unobserved confounder for matching estimators (e.g., Rosenbaum and Rubin 1983) andmarginal

sensitivity models that consider a multiplicative error term in weighted estimators (e.g., Soriano

et al. 2023; Tan 2006; Zhao, Small, and Bhattacharya 2019); and approaches that rely on invoking

parametric or distributional assumptions about the underlying data generating processes (e.g.,

Nguyen et al. 2017). An advantage of our framework is its generality; we do not require parametric

assumptions on the data generating process for either the outcome or for sample selection. Our

method is applicable to nonnegative calibration weights and inverse propensity weights (IPWs),

making it relevant for many researchers.

1.1 Running Example: 2020 U.S. Presidential Election
We consider a retrospective analysis of the 2020 U.S. Presidential Election to demonstrate sensi-

tivity analyses to partially and fully unobservable confounders. We evaluate two state-level ABC

News/Washington Post (ABC/Wapo) polls conducted in October 2020. In particular, we exam-

ine polls for Michigan (October 20–25, 2020) and North Carolina (October 12–17, 2020). The

“survey samples” consistof 770 respondents (Michigan)and619 respondents (NorthCarolina)who

reported that they were planning to vote or had already voted.

Wewant to demonstrate estimation of sensitivity parameters, including benchmarking against

observed covariates, which requires we estimate custom weights rather than use the proprietary

ones Hartman and Huang (2022). We construct weights calibrated to a target population defined

using the 2020 Cooperative Election Study (CES) (Schaffner, Ansolabehere, and Luks 2021), fol-

lowing Caughey et al. (2020), which provides rich auxiliary data.1 Our target population includes

verified voters, incorporating the CES weights, commonweight_vv_post. We limit to units who

stated they “Definitely voted” and for whom the retrospective candidate choice for the 2020

Presidential Election is not missing. This defines our “target population” and provides estimates

of candidate support at the state level as a point of reference for our analysis. Using this approach,

we have 1,213 units in our “target population” for Michigan, and 1,101 units for North Carolina.

We construct calibration weights by raking, which, in short, ensures the survey sample is

representative by matching the weighted survey mean of observed demographic characteristics

to known target populationmeans. We include the following covariates in the construction of our

survey weights: age, gender, race/ethnicity, educational attainment, party identification, and an

indicator for born-again Christian.2 For simplicity, we conduct raking only onmarginal population

means, aswell as a two-way interaction between party identification and educational attainment,

but alternative methods can account for higher-order interactions (e.g., Ben-Michael, Feller, and

Hartman 2023; Hartman, Hazlett, and Sterbenz 2021).

Our primary outcome of interest is the Democratic margin in the two-party vote share

(Democrat (D)–Republican (R)) among those who state a preference for either major party

candidate. Table 1 presents the unweighted and weighted outcomes. The goal of our method

is to determine how sensitive the weighted point estimate is to partially or fully unobserved

confounders. As is common in U.S. presidential elections, the election is predicted to be close

and the estimates are statistically indistinguishable from zero; however, the point estimate

1 In practice, the CES, or any large survey that employs weighting against an administrative file or census used to define the
target population, such as the GSS, Afrobarometer, or Eurobarometer, could conduct a sensitivity analysis.

2 Whether or not to weight on party identification is an open debate. In Section E of the Supplementary Material, we
demonstrate our sensitivity analysis for Michigan without weighting on party.
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Table 1. Unweighted and weighted margin (D–R) in two-party vote share in percentage points. We provide
the CES estimate and the true vote margin as reference.

State Unweighted Weighted CES True election result

Michigan 7.25 (3.59) 4.57 (2.56) 2.06 2.78

North Carolina 0.65 (4.04) −0.37 (2.63) −5.10 −1.35

provides thebest prediction for the substantiveoutcome. Thus,we focuson sensitivity in thepoint

estimate. We describe how to incorporate sensitivity in measures of statistical uncertainty in the

conclusion. Our sensitivity analysis tools allow researchers to transparently reason aboutwhether

their findings—in this case who leads in each state—are robust to the exclusion of confounders

when estimating weights.

2 Notation and Setup

We consider a finite target population with N units. The survey sample consisting of n units is

drawn from the target population (where n << N ); we assume the survey sample is not a simple

random sample, and, as such, is not representative of the target population. Let Si ∈ {0,1} be a

survey inclusion indicator, where Si = 1when a unit is a respondent in the survey and 0 otherwise.

Let Pr(Si = 1) denote the probability of inclusion for unit i.3 Note that for a probability sample

without nonresponse, Pr(Si = 1) represents the sampling probability; for a convenience sample

or a sample with nonresponse, it encodes the product of the sampling probability and response

probability for unit i, both of which may be unknown. Throughout the manuscript, we refer to

the collection of respondents, or units for which Si = 1, as the “survey sample” (denoted S) and

we assume that each unit in the target population has some positive (but possibly unknown)

probability of inclusion in the survey sample (i.e., 0 < Pr(Si = 1) ≤ 1). We denote quantities

calculated over the survey sample with a subscript S (e.g., varS(·)). Our outcome of interest is Y,
which is observed for every unit in the survey sample. Our target estimand is the populationmean

μ = 1
N

∑N
i=1Yi . See Table A.1 in the Supplementary Material for a glossary of terms.

When the survey sample is a simple random sample from the target population, then the

average outcome within the survey sample is an unbiased estimator for the population mean.

However, in most cases, the survey suffers from unit nonresponse, or is a convenience sample,

resulting in a nonrepresentative sample; as such, using the mean outcome within the survey

sample may be a biased estimator of the population mean. We assume that to account for

nonrandom selection into the survey sample, researchers construct survey weights that adjust

the survey to be representative of the target population on observable characteristics.

One way to construct survey weights is to assume that the observable characteristics X are

sufficient, and conditional on these variables, the distribution of the outcome among the survey

respondents and the target population is the same.

ASSUMPTION 1 (Conditional Ignorability of Response (Little and Rubin 2002)) Y |= S | X.

Assumption 1 nonparametrically justifies post-stratification weights constructed by dividing

the population proportion by the survey proportion within intersectional strata defined by X.

Common approaches include conditioning on variables that fully explain sampling or the out-

come, but many alternatives are possible (Egami and Hartman 2021).

When weighting on continuous variables or a large number of strata, post-stratification suffers

from sparsity constraints. In this case, researchers must define a feature mapping X ↦→ φ(X)

from �P ↦→ �P ′

that captures important features of X for use in coarsened post-stratification or

3 While the current setup assumes that the survey sample is a subset of the target population (“nested”), our results extend
to a nonnested setup. See Huang (2022) for discussion.

Erin Hartman and Melody Huang � Political Analysis 3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
3.

12
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2023.12
https://doi.org/10.1017/pan.2023.12


model-based weighting methods. Researchers can construct calibration weights, subject to a set

of moment constraints defined on φ(X). For example, researchers can use “raking” to calibrate

the marginal means on all variables X, letting φ(X) = X. Alternatively, IPWs, in which researchers

directly estimate probability of inclusion and weight inversely proportional to this estimate, may

use φ(X) = X, which are included link-linearly in logistic regression. We focus our conceptual

discussion around IPWs, which are asymptotically equivalent to calibration weights (Ben-Michael

et al. 2021b) but use calibration for estimation. In particular, we employ raking on the margins, a

type of calibrated IPW, in our analysis. A detailed discussion on the construction of surveyweights

is beyond the scope of this paper. See Section B.1 of the Supplementary Material for a discussion

of calibration weights; we refer readers to Haziza and Beaumont (2017) for a thorough review on

how to construct survey weights and related considerations.

How to construct an appropriate feature mapping is an active field of research. For example,

recent methods aim to include higher-order interactions of X (e.g., Ben-Michael et al. 2023)
or rely on kernel methods to account for important features (e.g., Hartman et al. 2021). While

these methods are important for flexibly accounting for observable characteristics, our proposed

sensitivity analysis also evaluates robustness to unobservable confounders.

When relying on model-based weighting adjustments, such as calibration, researchers may

not be able to directly invoke Assumption 1. Instead, they can appeal to a linear ignorability

assumption for consistent estimation of the population mean.

ASSUMPTION 2 (Linear Ignorability in φ(X) (Hartman et al. 2021)) Let Yi = φ(Xi )
�β + δi and

P r (Si = 1) = g (φ(Xi )
�θ+ηi )where g (·) : R ↦→ [0,1]. Linear ignorability holds when δi |= ηi .

Assumption 2 states that the part of Y orthogonal to φ(X) must be independent of the part of S,
the survey selection process, orthogonal to φ(X) via a suitable link function. See Hartman et al.
(2021) for more details. What Assumption 2 makes clear is that researchers must carefully choose

a featuremapping,φ(X) toaccount for all featuresofX, including interactionsand transformations,

that affect both survey inclusion and the outcome.

Assumptions 1 and 2 are related. The advantage of Assumption 2 is that it allows researchers

to address sparsity in finite data by imposing a parametric assumption, whereas Assumption

1 nonparametrically identifies the population mean. They differ most starkly in the types of

violations that are problematic. Given a set of survey weights constructed using feature mapping

φ(·), we define the weighted estimator as follows:

DEFINITION 2.1 (Weighted Estimator for Population Mean) μ̂ =
∑

i ∈SwiYi .

This estimator could be biased for two reasons: (1) there is an unobserved confounder U
(violating Assumptions 1 and 2) or (2) researchers have failed to construct an adequately rich

feature expansionφ(X) of the observable characteristics, such as by failing to incorporate higher-

order moments or interactions (violating Assumption 2). These ignorability assumptions are

strong and untestable, although some observable implications can be tested. While survey

weights might make the sample representative on the features included in estimation, this does

not imply that these ignorability assumptions hold. Weighting will typically mitigate bias if the

weighting variables are correlatedwith the outcome, although it could exacerbate bias. As we can

never know if Assumption 1 or 2 hold, it is essential we have tools to transparently evaluate their

credibility. The focus of our paper is to help researchers evaluate if their results are sensitive to

the exclusion of unobservable characteristics or more complex observable features.

3 Bias in Weighted Estimators

In the following section, we introduce the bias of weighted estimators when omitting an unob-

servable variable U from estimation of the survey weights. More specifically, under Assumption 2,
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we assume that Y can be decomposed into φ(X)�β +U + ν, where ν |= {X ,U ,S }. Implicitly, this

means U is included in δ = U + ν. Moreover, we assume β and θ are nonzero, indicating there

is a correlation between Y and S, weighting is necessary, and the true weights are not all equal

to 1. This would be violated, for example, if the survey was a simple random sample with no

nonresponse.

The omitted variable setup provides a flexible formulation for assessing violations of

Assumption 2. Without loss of generality, we assume U is orthogonal to φ(X), and could be a

combination of multiple underlying variables. U can always be replaced by the residual from

projecting confounders ontoφ(X). This is importantwhen reasoning about potential confounders;

it makes clear that bias is due to the part of the omitted confounder not linearly explained by the

included covariates. For example, if we have omitted political interest, but we have included age

andeducational attainment in the construction of ourweights,U is the part of political interest not

linearly explained by age and educational attainment. This indicates that potential confounders

well explained by φ(X) are less problematic. If U is associated with selection into the survey,

i.e., correlated with S, then Assumption 2 is violated because δi �⊥⊥ ηi . The goal of the sensitivity

analysis is to assess the robustness of point estimates to the omitted confounder U.
Alternatively, U could be interactions or nonlinear transformations of observable covariates X

not included in φ(X). For example, Kennedy et al. (2018) showed that simply accounting for the

linear combination of race/ethnicity, region, and educational attainment is insufficient; instead,

researchers also needed to account for an interaction between race/ethnicity, region, and educa-

tional attainment.

3.1 Derivation
We begin by defining the vector of estimated weights, w , as those estimated using φ(X), and

the vector of ideal weights w ∗ as those that would have been estimated including φ(X) and U.
Throughout the paper, we will assume, without loss of generality, that both the estimated and

ideal weights are centered atmean 1. Finally, define the error term ε as the difference between the

estimated weights and the ideal weights (i.e., ε :=w −w ∗).

The error in the weights is driven by the residual imbalance in an omitted confounder, after

balancing onφ(X). This general intuition holds regardless of theweighting approach: if imbalance

inU isminimal after adjusting forφ(X), theoverall error fromomittingUwhenconstructingweights

shouldbe low. InSectionC.1 of theSupplementaryMaterial,wederive theerror for IPWs, highlight-

ing where imbalance factors into the error. In the context of our running example, an individual’s

baseline level of political interest is an important predictor of both survey inclusion and many

political outcomes; however, it is not typically incorporated into weight estimation because there

arenopopulationmeasures. If political interest is largely explainedbyvariables included inweight

estimation, such as age and educational attainment, then the residual imbalance in political

interest should be small, and εi should be relatively small.

The bias in μ̂ from omitting the variable U from estimation of the survey weights can be

parameterized with respect to the error term, ε. We formalize this in the following theorem.

THEOREM 3.1 (Bias of a Weighted Estimator) Let w be the weights estimated using just φ(X),
and letw ∗ be the ideal weights estimated using φ(X) and U. The bias in μ̂ from omitting U from
estimation of the weights can be written as

Bias(μ̂) = �(μ̂)−μ

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρε,Y

√
varS(Y ) · varS(w ) ·

R 2
ε

1−R 2
ε

, if R 2
ε < 1,

ρε,Y
√
varS(Y ) · varS(w ∗), if R 2

ε = 1,

(1)
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where ε is the error in theweights from omitting U, R 2
ε is the ratio of variation in the ideal weights

explained by ε (i.e.,R 2
ε := varS(ε)/varS(w ∗)), and ρε,Y is the correlation, or alignment, between ε

and the outcome Y (i.e., ρε,Y := corS(ε,Y )). Quantities denoted with a subscript S are estimated
over the survey sample (i.e., Si = 1). Proof is given in Section C.2 of the Supplementary Materials.

Theorem 3.1 decomposes the sources of bias from omitting a confounder in weight estimation.

The terms highlighted in blue are unobserved, whereas the other terms in black can be directly

estimated from the survey data using sample analogs. By treating the weights as fixed, we implic-

itly derive the asymptotic bias. See Section C.2 of the Supplementary Material for a discussion of

the finite-sample case. We provide more details about the interpretation and properties of each

component of the bias formula in the following subsection.

3.2 Interpreting the Drivers of Bias
In this subsection, we discuss the different components in the bias formula from

Theorem3.1: (1)R 2
ε , representing the ratioof the variance in theerror ε and the variance in the ideal

weights; (2) ρε,Y , the alignment between the error in the weights, ε, and the outcome Y ; and (3) a

scaling factor (i.e., varS(Y ) ·varS(w )). The first twocomponents areunobservable,whereas the last

component is directly estimable from the observed data. We show that both of the unobserved

components exist on bounded, standardized ranges, and provide intuition for how to interpret

each component.

3.2.1 Explained variation in ideal weights (R 2
ε ). R 2

ε represents the amount of variation in the ideal

survey weightsw ∗ that is explained by the error term ε. Following Huang (2022), we decompose

the total variation in the ideal weights into two components: (1) the amount of variation in w ∗

explained by the estimated weights w and (2) the amount of variation in the ideal weights w ∗

explained by the estimation error ε:

COROLLARY 3.1 (VarianceDecomposition ofw ∗ (Huang (2022))) Letw be the estimated IPWs, and
letw ∗ be the ideal weights. The variance of the ideal weightsw ∗ can be decomposed linearly into
two components:

varS(w ∗) = varS(w )+ varS(ε) =⇒
varS(w )

varS(w ∗)
+
varS(ε)
varS(w ∗)︸�����︷︷�����︸

:=R 2
ε

= 1.

An implication of Corollary 3.1 is that R 2
ε is guaranteed to be bounded on the interval [0,1].

As the residual imbalance in the omitted confounder U increases, R 2
ε increases. Intuitively, if

imbalance in U across the target population and survey sample is large, the ideal weightsw ∗ will

be very different from the estimated weightsw . As a result, the variance in the estimation error,

varS(ε), will be large, thus increasing R 2
ε . In contrast, if residual balance inU is small, the error will

be small and thus the idealweightsw ∗ will be close to the estimatedweights, leading to smallR 2
ε .

4

Consider our running example, in which retrospective studies showed that voters with lower

levels of educational attainment were underrepresented in the survey sample, relative to the

target population. State polls, particularly in the Midwest, that omitted educational attainment,

despite accounting for other demographic variables, saw significant error in point estimates. If

educational attainment is not well explained by the other demographic characteristics, this will

4 In the scenario that R 2
ε = 1 (i.e., the error from omitting the confounder can explain 100% of the variation in the ideal

weights w ∗), researchers will need to posit values for varS (w
∗) to estimate the bias. This occurs, for example, with no

weighting adjustment and unity weights. However, we argue that if researchers have conducted weighting and accounted
for even a single covariate that can explain any variation in the selection process, R 2

ε < 1.
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lead to a large R 2
ε . The bias is exacerbated by the correlation between this error and the outcome,

since white voters with lower educational attainment were more likely to support Donald Trump

in the 2020 U.S. Presidential Election.

3.2.2 Alignment between the Error and Outcome (ρε,Y ). The alignment5 between the error in the

weights and the outcome, captured by the correlation ρε,Y , also affects the potential for bias.

For example, if positive ε values correspond to large Y values, then this implies that units that

are being overrepresented also have a larger Y value, resulting in positive bias. Conversely, if

negative ε values correspond to large Y values, this implies that units with a large Y value are

underrepresented, resulting in negative bias.

In our running example, assume that the survey sample has higher average baseline political

interest than the target population and also that, conditioning on our weighting variables, indi-

viduals with greater political interest are more likely to vote for a Democratic candidate. Omitting

political interest fromweight estimationwould lead to largerweights placedonDemocratic voters

in the survey, resulting in a bias that overstates Democratic vote share.

3.2.3 Bias Scaling Factor. The final terms in Equation (1), varS(w ) and varS(Y ), are not dependent on

the unmeasured confounder U and are directly estimable from the survey data. They act as a

scaling factor that increases the sensitivity of the point estimate to violations of the assumptions,

even if the alignment ρε,Y and the variance explained by the error R 2
ε are close to zero.

It iswell known that if varS(w ) is large, suchas fromextremeweights, this increases thevariance

in the estimator. This is related to the design effect (Kish 1965), and underscores the importance of

choosing prognostic and substantively meaningful variables to weight on as well as design-stage

considerations that minimize the variance in the weights. This also emphasizes the bias-variance

trade-off when constructing survey weights.

The term varS(Y ) is the variance of the outcome variable Y, related to the “problem difficulty”

in Meng (2018), which is not something that researchers can control. It formalizes the intuition

that if the outcome variable Y has a high degree of heterogeneity, it is potentially more sensitive

to sources of bias.

The bias decomposition highlights an important point: an omitted variable must be related to

both the outcome and the response process in order for there to be bias from omitting it. Even

if the omitted variable is imbalanced between the survey sample and the target population (i.e.,

R 2
ε > 0), if it is not related to theoutcome (i.e.,ρε,Y = 0), therewill benobias. Similarly, if anomitted

variable is related to the outcome (i.e., |ρε,Y | > 0), but is balanced between the survey sample and

the target population (i.e., R 2
ε = 0), no bias will occur. This framework helps formalize the types of

variables that researchers should consider when assessing the sensitivity in their estimates.

3.3 Performing Sensitivity Analyses
The bias decomposition in Theorem 3.1 provides a natural basis for performing a sensitivity

analysis. By positing values for the unobserved parameters, R 2
ε and ρε,Y , researchers can estimate

bias and evaluate the robustness to residual confounding. In the following sections, we propose

two sensitivity analyses. The first sensitivity analysis (Section 4) shows that when a confounder is

observed across the survey sample but not the target population, Theorem 3.1 can be rewritten as

a function of a single unobserved parameter. The second sensitivity analysis (Section 5) allows

researchers to assess the sensitivity to fully unobserved confounders using a two-parameter

sensitivity analysis. We propose a set of tools that allow researchers to (1) summarize the amount

of sensitivity in their point estimate and (2) benchmark the analysis usingobserved covariate data.

5 We use the term “alignment” based on a similar concept in Kern et al. (2016).
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4 Sensitivity Analysis for Partially Observed Confounders

Researchers typically have greater control over the variables they can measure among survey

respondents, and they may have strong theoretical reasons to believe that a variable is related

to both sampling and the outcome; however, if the covariate is not measured across the target

population, it cannotbe incorporated into theweights, and thus it shouldbeassessed in sensitivity

analyses. We formalize this issue by defining a variable measured in the survey sample, but not in

the target population, as a partially observed confounder, denoted by V. This extends to excluded

functions of observables, for example, higher-order moments or interactions of the observable

covariates.

In this section,wepropose a sensitivity analysis that evaluates robustness to partially observed

confounders against a hypothetical distribution of this confounder in the target population. These

confounders can be identified using theory, but in Section D.2 of the Supplementary Material, we

suggest a data-driven approach for detecting such confounders. This is useful in settings when

researchers are unsure from a purely substantive standpoint whether or not a partially observed

variablemust be included in theweights. A summary of our suggested approach for detecting and

evaluating sensitivity to partially unobserved confounders is provided in Figure 1.

Recall that the error in theweights is drivenby the residual imbalance in anomitted confounder

(see Section C.1 of the Supplementary Material for details). With information about V across

the survey sample, the sensitivity analysis can be reduced to one sensitivity parameter: the

distribution of V in the target population.We focus here onhow to incorporate such aparameter in

calibration weighting, and discuss additional details for IPWs in Section D.1 of the Supplementary

Material.

With calibrationweighting, raking on themargins, a sensitivity analysis for partial confounding

reduces to including an additional moment constraint for �(V ), or the posited population mean,

across a range of plausible values for the population mean. Calibration will solve for weights

that will simultaneously meet the original and the additional moment constraints, even without

knowing the joint distribution of the original covariates with the partially observed covariate. The

resulting error in the weights can be directly calculated and used to estimate bias. When V is

binary, �(V ) is bounded on [0,1]; this is easy to extend to categorical variables with three levels,

but difficult to visually evaluate beyond that. A limitation to this approach is that when �(V ) is

unbounded, researchers must specify a theoretically relevant range for �(V ), informed through

substantive knowledge or existing data on �(V ) from similar target populations. If researchers

do not have a strong substantive prior for a reasonable range of �(V ), it may be helpful to

redefine�(V ) in termsof standarddeviations from the sample average (seeNguyen et al. (2017) for
more discussion). This naturally extends when raking across additional moments or interactions,

although it requires the researcher to specify more parameters.

4.1 Running Example: 2020 U.S. Presidential Election
Existing literature indicates that political participation is also correlated with propensity to

respond to surveys (Peress 2010); however, it is not commonly incorporated into survey weights

because it is not available in target populationsdata. To illustrate our proposed sensitivity analysis

Figure 1. Sensitivity analysis for partially observed confounders.
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Figure 2. Plot of estimates for two-way vote margin (D–R) as the proportion of politically interested individ-
uals in the target population changes.

for partially observed confounders,we focuson theMichiganpoll.Weuse interest in theupcoming

electionasaproxy forpolitical participation, andposit it is apartially observedconfounder. Below,

to visually demonstrate sensitivity analysis for a partially observed confounder, we recode this as

a binary variable.6

In the survey, 67%of the respondents areencodedas “very closely” following the2020election,

using the estimated weights. The sensitivity analysis varies the proportion of individuals in the

targetpopulationwhoarepolitically interested, from0%to100%, thenatural rangeof thevariable,

and re-estimates the weights and evaluates how the point estimate changes. (See Figure 2 for

visualization.) The range could be reduced with a strong substantive argument or external data.

We see that the point estimate is very insensitive to excluding political interest, moving very

little across the entire range of the sensitivity parameter, and that the substantive result (i.e.,

Democratic two-way vote share is greater than 0) is robust to omitting this partially observed

confounder. Confidence intervals include 0 across the full range of the sensitivity parameter. We

argue that the analysis is very insensitive to this partially observed confounder, and researchers

neednot include it in theweights in this survey. In SectionD.2.1 of the SupplementaryMaterial, we

confirm that this political interest variable is, in fact, not a partially observed confounder using our

algorithm for detecting such confounders; political interest is rendered irrelevant to the outcome

using only fully observed covariates within the survey sample.

5 Sensitivity Analysis for Fully Unobserved Confounders

In this section, we introduce a sensitivity analysis for fully unobserved confounders. The method

uses Theorem 3.1 as the foundation for a two-parameter sensitivity analysis. Researchers posit

values for both the alignment, ρε,Y , and the variation in the ideal weights explained by the error,

R 2
ε , to evaluate potential bias in μ̂. We summarize our approach in Figure 3.

To help researchers conduct the sensitivity analysis, we propose three methods that allow

researchers to (1) summarize the degree of robustness in their point estimate using a single

“robustness value,” (2) graphically evaluate robustness to fully unobserved confounders with bias

contour plots, and (3) benchmark potential bias using observed covariates.

6 We define political interest “1‘’ for individuals who responded that they were following the 2020 election “very closely,”
and “0” otherwise.
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Figure 3. Summary: sensitivity analysis for unobserved confounders.

5.1 Numerical Summary: Robustness Value
We propose a standardized numerical summary of sensitivity, in the form of a “robustness value,”

RVb∗ , to allow researchers to succinctly assess the plausible existence of fully unobserved con-

founders. Researchers must first specify a substantively meaningful threshold b∗ at which bias

would change the substantive conclusion. The robustness value then represents the minimum

amount of variation that the error term ε must explain in both the ideal weights w ∗ and the

outcome Y in order for the bias to be large enough to change the substantive result.7 Following

Cinelli and Hazlett (2020) and Huang (2022), the robustness value is estimated as follows:

RVb∗ =
1

2

(√
a2
b∗
+4ab∗ − ab∗

)
, where ab∗ =

(μ̂−b∗)2

varS(Y ) · varS(w )
. (2)

Researchers canpick different target values, b∗, that are substantivelymeaningful; for example,

in the context of U.S. election polling, if researchers are interested in estimating a candidate’s

vote share, a logical value is b∗ = 0.5, which represents the threshold for where candidate’s

vote share changes past the 50% threshold, thus changing the prediction that the candidate will

win or lose. Similarly, if the outcome is vote margin, a logical value is b∗ = 0, which indicates

where the predictedwinning candidatewould change. Other natural b∗ also include substantively

meaningful deviations from the point estimate, such as a 20% difference. In the conclusion, we

discuss how to additionally incorporate uncertainty in the estimation ofweights using a percentile

bootstrap to determine the bias necessary to change the statistical significance of the results

(Huang and Pimentel 2022).

RVb∗ is bounded on an interval from 0 to 1. When RVb∗ is close to 1, this implies that the error

in the weights must explain close to 100% of the variation in bothw ∗ and Y in order for the bias to

substantively change the point estimate. On the other hand, when RVb∗ is close to 0, then if the

error in the weights can account for even a small amount of variation in w ∗ and Y, the resulting

bias will be large enough to alter the substantive result of the point estimate.

5.1.1 Running Example: 2020 U.S. Presidential Election. Recall from Section 1.1 that the point estimate

forourweightedABC/Wapopoll projectsBiden towin thepopular votebya4.57p.p.margin (±2.56

p.p.) in Michigan, and Biden to lose the popular vote by a −0.37 p.p. margin (±2.63 p.p.) in North

Carolina. We let b∗ = 0, indicating that we are interested in bias that would change the predicted

winning candidate. For the Michigan poll, RVb∗=0 = 0.11; the error in the weights needs to explain

11%of the variation inboth theoutcomeand the idealweights to reduce theestimatedvotemargin

to zero. Researchers need to substantively defend if this is plausible. For the North Carolina poll,

RVb∗=0 = 0.01; the error only needs to explain 1%of the variation inboth theoutcomeand the ideal

weights to reduce the estimated vote margin to zero. As such, we conclude that there is a greater

7 When R 2
ε = ρ2ε,Y = RVb∗ , then the bias will equal μ̂−b∗.
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Table 2. Point estimate and robustness value for ABC/Wapo 2020 U.S. Presidential Election poll.

Point estimate Standard error RVb*=0
Michigan 4.57 p.p. 2.56 p.p. 0.11

North Carolina −0.37 p.p. 2.63 p.p. 0.01

degree of sensitivity in the North Carolina poll to an omitted variable substantively altering the

predicted winner.

5.2 Graphical Summary: Bias Contour Plots
While the robustness value is a useful summary measure, RVb∗ only represents a single point

of the combination of {ρε,Y ,R
2
ε } that could lead to substantively meaningful bias. However, the

estimation error may not equally explain the alignment and the variation in the ideal weights.

To provide a fuller understanding of how bias may vary across different {ρε,Y ,R
2
ε } values, we

propose the use of bias contour plots. To construct the bias contour plots, researchers evaluate

the bias at values of ρε,Y in the range [−1,1] on the x-axis and R 2
ε in the range [0,1) on the y-axis.

The bias is calculated using Equation (1). This approach fully captures potential bias across the

range of both of the sensitivity parameters.

The contour plots allow researchers to visualize the “killer confounder” region, which rep-

resents the values of {ρε,Y ,R
2
ε } for which the bias is large enough to substantively change the

meaning of the point estimate. The boundary of the killer confounder region is defined by b∗ (i.e.,

the same threshold value chosen for the robustness value); RVb∗ is one point on the boundary of

the killer confounder region, where ρε,Y = R 2
ε . As such, it is important to report bias contour plots

in order to assess the full set of possible parameter values that may result in a killer confounder.

If the area of the killer confounder region dominates much of the plot, then the point estimate

is very sensitive to fully unobserved confounders; in contrast, if the area is relatively small and

contained to regions that are defensible as unlikely, then the result is robust.

5.2.1 Running Example: 2020 U.S. Presidential Election. Figure 4 presents the bias contour plot for the

ABC/Wapo polls for Michigan and North Carolina. The killer confounder region, shaded in blue,

represents the sensitivity values where the estimated margin (D–R) would be opposite of the

substantive finding from our estimated vote margin; the blue line represents values of {ρε,Y ,R
2
ε }

where b∗ = 0. There are two key takeaways to highlight from the bias contour plots. First, for

Michigan, we see that even if the omitted variable is relatively well balanced (i.e., R 2
ε = 0.05 on

the y-axis of theMichigan plot), if the error is highly alignedwith the outcome, i.e., correlatedwith

the outcome by more than 0.5 on the x-axis, the omitted variable would be a killer confounder.

Similarly, if the error in the weights is not highly aligned with the outcome (i.e., ρε,Y = 0.05),

but is highly imbalanced (i.e., R 2
ε = 0.75), the confounder would also be a killer confounder.

This showcases the importance of considering both sensitivity parameters when assessing the

plausibility of a killer confounder.

Second, we see that the killer confounder region for North Carolina is larger than that

for Michigan. As such, consistent with the robustness value, there is a greater degree of

sensitivity to an omitted confounder altering the estimated result in North Carolina than in

Michigan.

5.3 Formal Benchmarking
Both bias contour plots and the robustness value are useful methods for summarizing overall

sensitivity in a point estimate. However, in practice, it is challenging to assess whether or not they

are substantivelymeaningful. In the context of our running example in Michigan, it can be difficult
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Figure4.Bias contourplots. Theshadedblue region represents thekiller confounder region, inwhich thebias
is large enough to reduce themargin to or below zero, changing the predictedwinner.We also plot the results
from formal benchmarking, where each point represents the parameter value of an omitted confounderwith
equivalent confounding strength of an observed covariate.

to answer whether or not it is plausible for an omitted confounder to be strong enough to explain

11% of the variation in both the ideal weights and the outcome process. Similarly, it is challenging

to know from visual inspection the plausibility of the killer confounder region.

To address these challenges, we propose a procedure that allows researchers to use observed

covariates tobenchmarkpotential parameter values. Furthermore,we introduce severalmeasures

of relative confounding strength to help researchers assess sensitivity.

DEFINITION 5.1 (Benchmarked Error) Define a benchmark error term for observed covariate j as

ε̂−(j ) :=w−(j )−w ,

where w−(j ) represents the weights estimated using all covariates in φ(X), except for the jth
covariate (i.e.,φ(X−(j ))).

For example, for education ε̂−(j ) is the error, defined as the difference between our estimated

weights and those estimated omitting education. In this setting, ε̂−(j ) captures the residual imbal-

ance in educational attainment, after accounting for all other demographic variables.

We consider the confounding strength of an omitted confounder in terms of both the variation

explained in the true weights and the alignment of the error and outcome. Formal benchmarking

allows researchers to estimate the parameter values for an omitted confounder with equivalent

confounding strength to an observed covariate, defined below. We can extend this to estimate

the parameter values for an omitted confounder with confounding strength proportional, but not

equivalent, to the benchmarked confounding strength. See Section B.2 of the Supplementary

Material.

DEFINITION 5.2 (Equivalent Confounding Strength) An omitted confounder U has equivalent

confounding strength to an observed covariate X(j ) if

varS(ε)/varS(w
∗) = varS(ε̂

−(j ))/varS(w
∗), (3)

corS(ε,Y ) = corS(ε̂
−(j ),Y ), (4)

where ε̂−(j ) is defined in Definition 5.1.
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An omitted confounder with equivalent confounding strength explains the same amount of

variation in the true weights as an observed covariate X(−j ), given φ(X−(j )) (Equation (3)) and has

the same level of alignment to the outcome as the benchmarked covariate (Equation (4)).

Using formal benchmarking, we can estimate the sensitivity parameters as

R̂ 2
ε =

R̂
2−(j )
ε

1+ R̂
2−(j )
ε

, ρ̂ε,Y = ρ̂
−(j )
ε,Y , (5)

where R̂
2−(j )
ε := varS(ε̂

−(j ))/varS(w ), and ρ̂
−(j )
ε,Y := corS(ε̂

−(j ),Y ) can be directly estimated using

the benchmarked error term ε̂−(j ). The benchmarked bias is estimated by plugging the values of

Equation (5) to Equation (1). This procedure can be extended to account for subsets of covari-

ates, thereby allowing researchers to posit parameter values, given the aggregate confounding

strength of different combinations of covariates. Similarly, in two-stepweighting approacheswith

a second-stage nonresponse adjustment to theweights, researchers could benchmark against the

design weights.

An alternative is to estimate theminimum relative confounding strength (MRCS), or how many

times stronger (or weaker) the confounding strengthmust be, relative to the benchmarked covari-

ate, in order to change the substantive direction of a point estimate.

MRCS(j ) =
μ̂−b∗

B̂ias(φ(X−(j )))
.

An MRCS larger than 1 implies that the omitted confounder must be stronger than the observed

covariate in order to be a killer confounder. Similarly, if the MRCS is smaller than 1, then a

confounder weaker than the observed covariate would be a killer confounder.

The MRCS is especially useful in cases when researchers have a strong understanding of how

observed covariates relate to survey sample selection and the outcome. For example, Kennedy

et al. (2018) found that white voters in Midwestern states with lower levels of educational attain-

ment underrepresented in many 2016 surveys. As such, researchers conducting surveys in subse-

quent elections could investigate the relative confounding strength of these observed covariates.

An MRCS greater than 1 implies that an unobserved confounder has to be stronger than the

confounding strength of these important observed covariates to be a killer confounder, which

may be unlikely given the strength of these covariates. In such a case, we would conclude that

our results are insensitive.

Benchmarkingallows researchers to incorporate their substantive knowledge inunderstanding

sensitivity. However, it is important to emphasize the limits of the benchmarked and summary

measures.Our sensitivity frameworkallows researchers to transparently discuss theplausibility of

unobserved confounders and the impact of their omission on the point estimates. However, none

of our summary measures can fully eliminate the possibility of killer confounders. In particular,

while a large MRCS value may indicate a large degree of robustness, it could also mean that none

of the observed covariates used to benchmark are sufficiently explanatory of the outcome or the

survey inclusion probability. This emphasizes the need for researchers to evaluate observable

covariates that are highly prognostic in thediagnostics.Without strong substantive understanding

of such covariates, the sensitivity analyses here have limited diagnostic value. Therefore, consis-

tent with Cinelli and Hazlett (2020), we do not propose any thresholds or cutoff values for the

robustness value or MRCS; similarly, we caution researchers from blindly using benchmarking

across observed covariates, as the plausibility of fully unobserved confounders still depends on

researchers’ substantive judgment and context.

5.3.1 Running Example: 2020 U.S. Presidential Election. Figure 4 contains benchmarking against

observed covariates for our running example. Each point, representing the bias of a confounder
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Table 3. Formal benchmarking results for the ABC/Wapo polls for Michigan and North Carolina. The
estimated bias is reported in percentage points.

Michigan North Carolina

Variable R̂ 2
ε ρ̂ε,Y MRCS Est. bias R̂ 2

ε ρ̂ε,Y MRCS Est. bias

Party 0.18 −0.11 −2.44 −1.87 0.10 −0.13 0.31 −1.17

Age 0.26 0.01 37.63 0.12 0.18 −0.04 0.74 −0.49

Education 0.34 0.02 8.75 0.52 0.36 0.02 −0.71 0.52

Gender 0.04 −0.07 −8.14 −0.56 0.12 −0.01 5.07 −0.07

Race 0.13 0.04 7.86 0.58 0.04 −0.08 0.81 −0.45

Born again 0.10 0.04 10.02 0.46 0.05 0.13 −0.46 0.80

with equivalent confounding strength as the estimated benchmarked R 2
ε and ρε,Y , is labeled with

the observed covariate. Numeric results are presented in Table 3.

There are several key takeaways to highlight from the formal benchmarking results. First, we

see that omitting a confounder with similar confounding strength as party identification, one of

the strongest predictors of vote choice in U.S. politics, would result in the largest bias, given the

other covariates included in weighting, understating Democratic support by 1.87 p.p. in Michigan,

and 1.17 p.p. in North Carolina.

Second, the benchmarking results allow us to consider the full range of the sensitivity parame-

ters. For example, in the North Carolina poll, omitting a variable similar to born-again Christian

results in a large alignment ρε,Y (0.13), but a relatively low R 2
ε (0.05). This implies that while

this variable is well balanced across the survey sample and the target population, the error is,

as expected, highly explanatory of outcome. Variables with similar confounding strength could

result in significant bias. In contrast, benchmarking against age results in a fairly large R 2
ε (0.18),

indicating high imbalance, but the error has a low correlation with the outcome. These covariates

represent the types of confounders that, if omitted, would result in reasonably large magnitudes

of bias.

Finally, the MRCS estimates have large magnitudes in Michigan, meaning that an omitted

confounder would have to be substantially (more than two times) stronger than any of the

observed covariates to result in enough bias to alter the estimated outcome that Biden wins the

popular vote, our chosen b∗. Different choices of b∗ would change the MRCS. In contrast, we see

that in North Carolina, the MRCS estimates for several covariates are less than 1. In particular, an

omitted variable need only be 30% as strong as party identification, or 70%–80% as strong as age

or race/ethnicity to be a killer confounder.

5.3.2 Takeaway. From the sensitivity analysis, the Michigan results are quite robust; the error from a

confounder would have to explain a large degree of variation in either the outcome or the ideal

weights to overturn the prediction that Biden wins the popular vote in Michigan. For example, a

confounder would have to be over twice as strong as party identification, one of the strongest

predictors of vote choice in American politics. In contrast, a relatively weak confounder would

change the estimated results in North Carolina.

6 Concluding Remarks

The social sciences rely heavily on surveys to answer a broad range of important questions. In the

face of rising nonresponse and growing reliance on convenience samples, survey weights are a

powerful tool that allow researchers to address nonrepresentative survey samples. Our proposed

suite of sensitivity analysis tools allow researchers to reason about potential bias due to partially
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and fully unobserved confounders. This includes tools for estimatingbias, summary statistics, and

graphical analyses with formal benchmarking against observed covariates.

This paper addresses the sensitivity of a point estimate to omitting a confounder, and, as such,

doesnot explicitly account for changes in theuncertainty estimates.Ourbiasdecompositionholds

within finite samples; thus, researchers can apply a percentile bootstrap, calculating an adjusted

weighted estimate conditional on the sensitivity parameters over repeated bootstrap samples, to

construct valid intervals (Huang and Pimentel 2022; Soriano et al. 2023; Zhao et al. 2019). These
confidence intervals account both for changes in the estimate from omitting a confounder and

changes in estimated standard errors.

We focus on sensitivity to the decisions a researcher makes in the construction of survey

weights. However, there is an increased emphasis on the use of outcome modeling in survey

analysis, suchas throughmodel-assistedestimation (Breidt andOpsomer2017) anddoubly robust

estimation (Chen, Li, and Wu 2020). Our framework readily extends to such settings. Researchers

can consider the sensitivity in survey weights, given an outcomemodel, by replacing Y in our bias

decompositionwith the residual of the Y from the prediction from the outcomemodel. SeeHuang

(2022) for a more detailed discussion.

Finally, we note that the application in this paper is situated in a very well-studied and highly

theorized substantive area. Multiple papers have evaluated the bias in public opinion polling

during the 2016 and 2020 U.S. Presidential Elections (i.e. Kennedy et al. 2018; Hartman et al.
2021, to name a few). As a result, the example is particularly useful for discussing how to perform

the sensitivity analysis. However, we note that if researchers are operating in less theorized

substantive areas, reasoning about the plausibility of omitted variablesmay bemore challenging.

We emphasize that the utility of a sensitivity analysis will always be dependent on a researcher’s

understanding of the survey context, and cannot be used to replace substantive knowledge. We

propose a suite of tools to allow researchers tomore transparently reason about sensitivity aswell

as better incorporate their contextual knowledge into the analysis. The sensitivity analysis and all

of the corresponding sensitivity tools can be implemented using our R package senseweight.
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