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I. INTRODUCTION

Let X,Y be locally compact Hausdorff spaces and @,y be Raddn
outer measures on X and Y respectively. The classical product outer
measure ¢ on X X Y generated by measurable rectangles, without
direct reference to the topology, turns out to have some serious draw-
backs. For example, one can only prove that closed Q& sets (and

hence Baire sets) are ¢-measurable. It is unknown, even when X and
Y are compact, whether closed sets are ¢-measurable. This has led

to consideration of other product measures: the Raddn product outer
measure )\ introduced through linear functionals and the Riesz represent-
ation theorem and the Bledsoe-Morse [1] product outer measure
generated by measurable rectangles and nil sets (sets N for which

ff 1ydpdy = 0 = ff 1 dvdp), again without direct reference to the

topology.

Our aim in this paper is to establish relations between these
three product measures. Our key result is a Fubini theorem for ¢ over
compact sets, even though we do not know whether such sets are
¢-measurable. This enables us to check that the three outer measures
agree on compact sets and that, in the e¢-finite case, the restrictions
of Y, A, ¢ to their respective measurable sets are extensions of each
other. We also give a characterization of when closed sets are
¢-measurable. Since the convolution of two measures on a topological
group is intimately connected to the product measure, our results on
¢, N\, Y enable us to compare three corresponding definitions of
convolution @ * y. Our point of view also enables us to extend, in the
Radon case, the validity of the formula

Sl y antavy) = [1den) = [y Dav () dn )

to the class of all absolutely measurable functions. This extends the
results in Stromberg [8].
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II. NOTATION AND PRELIMINARIES

Throughout this paper we shall use the following notation and
terminology:

1. General Notation.

1.1 The real numbers include + © and -0 = 0+ = 0.

1.2 «w 1is the set of non-negative integers.

1.3 0 is both the empty set and the number zero.

1.4 A~B = {x:x e A and x ¢ B}

1.5 '1A is the characteristic function of A .

1.6 I H is a family of sets, an Ho’ is a countable union, and an

H6 a countable intersection, of sets from H . A qé is a

countable intersection of open sets.

2. Measures.

2.1 m is an outer measure on S if and only if m is a function on
{A: A C S} tothe non-negative reals such that m(0) = 0 and
if A cU B_ then m(A) < Z m(B).
new n new n

2.2 A is an m-measurable set if and only if m is an outer measure
on S, A CS, andfor every T C S,

m(T) = m(TMNA) + m(T~A).

mm denotes the set of all m-measurable subsets of S. It is a
o-field on which m is o-additive.

2.3 f is an m-measurable function if and only if m is an outer
measure on S, f is a function on S to the reals and for every
real number t, {x:{f(x) >t} is an m-measurable set.

2.4 m is o-finite on A if and only if there exists a sequence B such

that m(Bn) < © for each ne¢w and A C U B,.

new
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3. Integrals. The integral we use is the standard one obtained
by a set theoretic definition (cf. Munroe [6], Halmos [4]). Thus, if m
is an outer measure on S, f is an m-measurable function, and
f(x) > 0 for all x ¢ S then

©
ff dm = 1im+ z tl-m(A.) + o - m(B)
t=1" i=-o !

where for each t > 1,

Ai = {x:’c1 < f(x) < t1+1}

and
B = {x:f(x) =} .

4. Radén Measures. Let S be a topological space.

4.1 m is a Radbn outer measure on S if and only if m is an outer
measure on S such that

(i) open sets are m-measurable;
(ii) for every open o C S, mf(a) = sup{m(K): K compact, K C a};
(iii) for every A C S, m(A) = inf{m(a): « open, o D A} ;
(iv) for every compact K C S, m(K) < o .
The following theorem is well known.
4.2 THEOREM (Generation of Radén outer measures).

Let g be a real-valued function such that for B and C compact

0<gB)<gBUC) KL g(B) +g(C) < »;

if B () C = 0 then g(B U C) = g(B) + g(C), and g(0) = O.

For any A C S, let u(A) = inf sup g(K) .
aopen K compact
a DA KCa
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Then if S is a locally compact Hausdorff space, p is a Raddn
outer measure.

5. Linear Functionals. Let S be a locally compact Hausdorff space.

5.4 C(S) is the set of all continuous functions on S to the finite reals
vanishing outside a compact set.

5.2 L is a positive linear functional on C(S) if and only if
(i) L is a function on C(S) to the finite reals;

(ii) for every f, g € C(S) and finite real numbers a and b,
L(a-f + b.g) = a.L(f) + b-L(g);

(iii) if f > O then L(f) > 0.

Note that if L is a positive linear functional on C(S), L is
continuous in the sense that for each compact K C S there exists
a_, < o suchthat |L(f)|] < a, sup |f(x)| whenever f vanishes
K = K S

outside K .

5.3 For L a positive linear functional on C(S) the outer measure
associated with L is the outer measure m on S such that for
every A CS

m(A) = inf sup L(f) .
a open feC(S)
ACa 0<f< 1a

Note that also

m(A) = inf sup inf L(f) .
aopen K compact feC(S)
ACa KCa 1,

Reformulation of the standard Riesz Representation Theorem
yields the following:

5.4 THEOREM. If L is a positive linear functional on C(S) then
the outer measure associated with L is the unique Raddn outer
measure m on S such that

L(f) = ff dm for every f ¢ C(S) .
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III. PRODUCT OUTER MEASURES
Throughout this part X,Y are locally compact Hausdorff spaces
and p,v are Raddn outer measures on X and Y respectively. Our
aim here is to discuss and compare three outer measures on the

Cartesian product X X Y.

6. Definitions.
A
6.1 ForACXXY,Ax={y:(x,y)eA}.
6.2 R = {aXb:aemp, bem, p@ + v(b) < o} .
v
6.3 N is anil set if and only if [f 1y dudy = 0 = IS 1y dvde .

6.4 L and L are the positive linear functionals on C(X) and C(Y)
® v

respectively given by:

n

L (f)
"

Jfdn
ffdv.

n

L (f)
v

6.5 LP' ® L is the positive linear functional on C(X X Y) such that
v
for every f ¢.C(X), g e C(Y), i h(x,y) = f(x).g(y) then

L ® L(h) = L (f)-L(g).
13 v 3 v

For the existence and uniqueness of L ® L see, e.g., Bourbaki
U v

[2, Theoréme 1, page 89].

6.6 The classical product outer measure ¢ is defined, for
ACX XY, by

d(A) = inf{ 2= w(a) cv(b): F is countable, F C R,
aXbeF

Ac U «}
acF
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6.7 The Bledsoe-Morse product outer measure § is defined, for
ACX XY, by

Y(A) = inf { = w(a) - v(b) : F is countable, F C R,
aXbeF

A~ U « is anilset} .
aecF

6.8 The Radédn product outer measure )\ is the Radén outer measure
associated with I ® L by the Riesz Representation Theorem 5. 4.
1) v

Remark. The definition of )\ guarantees that open sets are \-measurable.
One of the main results in Bledsoe-Morse [1, Theorem 7.7]
states that open sets are also y-measurable. It is unknown
if open sets are ¢ -measurable even when X and Y are
compact.

7. Elementary Properties. The following are immediate consequences
of the definitions or well-known facts.

7.1 ¥ aelh and beM then aXbelm M M () m andif
iy v ¢ ¢ A

p(a) + v(b) < © (a X b e R) then ¢(a X b) = Na X b) =
g(a X b) = up(a)-v(b). Standard Fubini theorems for ¢, ¢, and
A follow from 7.4 by using well-known lines of argument. In
particular, we have:

7.2 If A belongs to the o-ring generated by R then A ¢ qu M mk M m
and ¢(A) = M(A) = Y(A) .

7.3 ¢ < ¢ .

7.4 I o CX XY, o open, then aemlp and

Yla) = sup {¢(K) : K is compact, K Ca}.

This follows from Theorems 7.5 and 7.7 of Bledsoe-Morse [1].
In the definitions of ¢ and ¢ we could replace ® by the family of
open rectangles. Thus

7.5 For every A CX X Y,

$(A) = inf {$(a) : @ is open and ¢-measurable, A Ca}.
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7.6 Letm = ¢,¢, . If m(A) < © and € > 0, then for some
compact rectangle K ¢ R (not necessarily contained in A)

m(A ~ K) < ¢ .

Every closed (}6 in X X Y is ¢-measurable. This follows from
7.6, since every compact Q& in X X Y is ¢-measurable

%
(Halmos [4, Theorem 51 ]).

7.8 Every continuous function on X X Y to the reals is $-measurable
(by 7.7).

8. Comparison of the Product OQuter Measures. A key result for
comparing the three product measures is the Fubini theorem 8.1 below.
It is obtained in spite of the fact that we do not know whether compact sets
are ¢-measurable.

8.1 THEOREM. If C C X X Y and C is compact, then

$(C) = fficdvdp = ff1cdp.dv.

The proof of this theorem is given after proving Lemmas A and B
below.

A
LEMMAA. I CCX X Y is compact, t> 0, T :{x:v(Cx)<t},
then T is open andfor any A C T

S(CM (A X Y)) < t-p(a).
A
Proof. For each x ¢ T there exists open px D Cx with
v(ﬁx) < t. Then X X px is openand C ~ (X X ﬁx) is compact,

whence its projection w  onto X is compact and thus @ = X ~ 7
x X x

is open. Now x ¢ a ,
/(\J
= : (@ C
a {u B } T

X

and thus T is open.
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The remainder of the conclusion is trivial if p(A) = . Hence
let ACT, p(A) < ®, ¢ >0. Let B beopen, ACB,

p(B) < p(A) + <

Since U o D A, by 4.1 there exists a countable subset of A,
xeA x

say {a_: new} C A, such that
n

p(a~ U aa): 0
new n

Let
a
new n

a a
n m<n m

Then the o' and o' are p-measurable and disjoint. Since C
n

is compact, C CD X E, for some D and E compact.

A
For each x ca , C CB so
a X a
n n

cCNAxY c U (a'nXﬁa)U(a/"XE).

new n

Hence

GCNAXTY) < 2 pl)vp, )

new n
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Thus
$(C M (A X Y))<t-p(a).

LEMMAB. ¥ CCX XY, ACX and for every x ¢ A,

A
v(C ) > t then
< 2

6(C M (A X Y)) > t-u(Aa).

Proof. Let ¢(C M (A X Y)) < w, ¢ > 0. Choose a, X bi e R

for i € w such that

cNAaxy c U (aiXbi)

icw

and
b p.(ai) . v(bi) <H(CM(AXY)) + €.
icw

Let B = U (a, Xb)).
icw i i

Then

A
¢(CM(AXY) +e > ¢B) = [ v(B ) dpux

A
> fA v(B) du(x)
A
2 fA v(C) du(x)
> teop(A).

Proof of Theorem 8.4. Let 1 < t < o and for each integer n
let
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Then by Lemmas A and B,

n n+1
€ p(a) < 9(CN (A X ¥) < 7 p(a)

and ¢(C M(B X Y)) = 0.

Thus

oo oo}
T tep(A) < T 6(C N (A X Y))
n=-ow o n=-oo n
® +
=90 < = " LA
n= - n
© n
=t = tep(A) .
n= - o
A

Since by Lemma A, {x : v(CX) < u} is open for each u,

f v(éx)du(x) < o and (see 3)

A ® n
fv(C)dp(x) = lim = t o (A) .
X n
t=>1+ n=-o

Hence
A
$(C) = [ v(C) aplx) = [f 1 x v)dv(y)du() .

Similarly
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8.

.3

o(C) = [f 1 b, y)dp ) dv(y) -

THEOREM. Let C C X X Y be compact. Then

Proof.

$(C) = Q) = ¢(C) .

This follows immediately from 8.1 and the Fubini theorem

for ¢ and ) (remark following 7.1).

COROLLARY. For open « C C X Y,

Proof.

Yl@ = ra@ < ¢l .

This follows from 8.2, 7.4 and 4.1 (ii).

THEOREM. (i) V< x < 6 .

(ii) mq) C Tn)\ - mtp .
(iii) I A €m¢ and ¢(A) < o then
b(A) = \A) = $(A).

(iv) If Aemx and )\(A) < o then
Y(A) AMA).

"

Thus, if p and y are o-finite on X and Y respectively then
the measure LlJ/qu is an extension of the measure )\/m)\ which in

turn is an extension of the measure ¢/, .

Proof.

¢

(i) Follows immediately from 8.3, 4.1 (iii) and 7.5. To

check part of (ii) and (iii), let A ¢ m¢ . I ¢(A) < o then there

exists an (Ro')é set B suchthat A CB and ¢(B ~ A) = 0.

Then, by 7.2, B em)\ M m¢ and, by (i), A\(B ~ A) = U(B ~ A) =

so that Aem)\ﬂm

Ach
€M

e > 0.

" and Y(A) = AA) = ¢(A). To see that
even when ¢(A) = o, let TCX X Y, »T) < © and

Then, by 7.6 there exists a compact K¢ ® such that

MT ~K) < €. Since ¢(A M K) < o, we have A M Kem)\

and therefore
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MT M A) + AT ~A) < MTMNKMA) + )T ~ (KM A)) + 2

1

AT) + 2¢.

A similar argument yields the other part of (ii) and (iv), if we
replace ’(Ro_){)' by 'Qél and use 7.4.

We conclude this section by giving a characterization of when
open sets are ¢-measurable.

8.5 THEOREM. All open sets in X X Y are ¢-measurable if and
only if for every open a with ¢(a) < o,

¢l@ = sup o(K) .
K compact
K Ca

We first prove Lemma D.

LEMMA D. All open sets in X X Y are ¢-measurable if and
only if all open « with ¢(@) < o are ¢-measurable.

Proof. Suppose for every open a with ¢(@) < ©, aech .

$
Let v be open, ¢(T) < .
Then there exists open p DO T with ¢(B) < «.
Then ¢(B M ¥) < © and hence M v is ¢-measurable, so

O(T) = ¢(TM B M ) + (T~ M v)

=¢(T M v) + &(T ~v).

Proof of Theorem 8.5. Suppose all open sets are ¢-measurable.
Given open « with ¢(@) < @0 and &€ > 0 there exist by 7.5 and
7.6, compact K with ¢(e ~ K) < ¢, and open v D K ~ o with
d(v) < (K ~na) +e . Let

C = K~ Y.
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Then C is compact, C Ca, and

$(C) > ¢(K) - o(v)
> $(K) - ¢(K ~a) -¢
= ¢l M K) - ¢
> ¢l M K) + ¢la~ K) - 2¢
> ¢l - 2¢.

Conversely, if o is open, ¢(a) < o and

6 (2) = sup $(K),
K compact
K Ca

then there exists B C a, a countable union of open rectangles,
with ¢() = ¢(@). Then since B is ¢-measurable,

dl@ ~B) = ¢l - $(B) = 0 and thus o is $-measurable.
Application of Lemma D completes the proof.

8.6 COROLLARY. If opensets in X X Y are ¢-measurable and
@, v are o-finite on X, Y respectively then ¢ = )\ .

Proof, This follows from 8.2, 8.5, and 7.5.

9. Examples and Remarks. The examples below show certain
directions in which the theorems of Section 8, particularly 8.4, cannot
be extended.

9.4 Remarks. Let ' = {a Xb: ac¢ mp.’ b eMm} and for each
- v
ACX XY let

6(A) = inf { = w(a) - v(b) : F is countable,
aXbeF

FCp', AC U a}.
acF

The essential difference between ¢ and 6 is thatif 0 # a C X,

w(a) = 0, b C Y and y is not o-finite on b then 6(a X b) =
p(a) v(b) = 0, but ¢(a X b) = .
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However, if ¢(A) < o then &(A) = 6(A) and thus many of
the results in this paper will hold as well for 6 as for ¢ .
Further comparisons are made in the examples below.

9.2 We may have ¢ = \ but # )\, even in the ¢-finite case.
Proof. Let X and Y be the real line with the ordinary topology,
p and v be Lebesgue measure on X and Y respectively. Then
¢ and )\ are equal to Lebesgue measure on X X Y.
Let A be the set constructed by Sierpinski [7] which is not
¢-measurable but intersects any straight line in the plane in at

most two points.

Then

ff 1,dpdy = 0 = ff 1,dvdp,

i.e. A 1is a nil set, and hence y(A) = 0. Since A is not
¢-measurable, we have &(A) # 0.

i
o

9.3 We may have A X-measurable, \(A) = o and ((A)

Proof. Let g be Lebesgue measure on X, the real line with
the ordinary topology, and let v be counting measure on Y, an
uncountable set with the discrete topology.

Then if « is openin X X Y, we easily check that

dl@) = Ma) = Z  pu{x:(x,y) €a}
yeY

and hence ¢ = ).

Let A = {0} X Y. ¥ « is open, aD A, then i) = o,
and hence ¢(A) = A(A) = o, but A is a nil set and hence
$(A) = 0. Note that in this case the o-algebra generated in
X X Y by the open rectangles does not include all the open
sets of X X Y.

Note also that 0 = 6(A) # inf 6(a) = ® and hence
@ open
aD A

the outer measure 6 (of 9.1) does not have the property of
approximation from above by open sets.
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9.4 For some X and Y all open setsin X X Y are ¢-measurable

and ® = ¢(X X Y) # sup ®(K) = 0
K compact
KCXXY

and hence ¢(X X Y) # MX X Y).

Proof. Let X # 0, p(X) = 0, Y be an uncountable set with
the discrete topology, v = counting measure on Y. For any

A CX X Y, if the projectionof A onto Y is countable, then
®(A) = 0, and if the projection of A onto Y is uncountable,
then ¢(A) = wo. Thus every subset of X X Y is &é-measurable.

IV. CONVOLUTION OF MEASURES

Throughout the next two sections, X is a locally compact,
Hausdorff topological group, p and v are Raddn outer measures on X,
and ¢, )\, ¢ denote the product outer measures of p and v introduced

in Section 6.

There are many ways of defining a convolution of p and v.
The ultimate goal is to find a measure £ such that the equation

(1) [feey Haptav(y) = [£at = [[fx-y )dvly)dp )

holds for as large a class of real-valued functions f on X as possible
including the continuous functions with compact support.

10. Convolution and Absolute Measurability.

10.1 Preliminary Definitions

1. Forany A CX, A* = {(x,y) : X‘Y-1€A}

2. For any function f on X and x,y ¢ X
-1
f¥(x,y) = f(x-y ")

3. For any topological space S and A C S, A is absolutely

measurable if and only if A ¢ M Ih where M is the family
meM m

of outer measures m on S such that open sets are m-measurable.

A real-valued function f on S is absolutely measurable if and only

if {x:f(x)< t} is absolutely measurable for every real t.
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We note that the family of absolutely measurable sets is a o-field
which contains the Borel sets as well as the analytic sets and their
complements. The following lemma is known and follows readily from
the definitions.

10.2 LEMMA. Let h be a functionon S to S', m be an outer

measure on S and m'(A) = m(h_i(A)) for any A C S'. Then

.1. m' is an outer measure on S':

2. I ACS' and h—1(A) is m-measurable then A is_
m'-measurable.

.3. I S and S' are topological spaces, h is continuous,

A CS' and A is absolutely measurable, then h_i(A) is
absolutely measurable.

Now, we also easily check that, for any A C X, (1A)* = 1A*

so that if we formally substitute 1, for f in equation (1) above, we get

A
Jf 1 ps dudv = £(A) = S 1,y dvdp .

The Fubini theorem therefore leads us to consider the following definitions
of convolution.

10.3 Definition. For any A C X,

4. (p* v)¢(A) = o(A%*)
2. (u* v))\(A) = £(A%)
3. (u*v)qJ(A) = Y(A%) .
In view of Lemma 10.2, for m = ¢, A\, § we see that

(e v)m is an outer measure on X that, for any A C X, A is (u* v)m-

measurable whenever A% is m-measurable, and that, for any function
£, [f dpkv) = J £k dm.

11. Properties of the Convolutions. The properties of (¥ v

for m = ¢, N, ¢, follow from properties of m and the applicability
of the Fubini theorem.

11.1 THEOREM. Let p and v be o-finite and m = ¢, N, . K
f is a real-valued function on X such that f* is m-measurable,
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in particular if f is continuous, and ff d(p* u)m exists then

Jf ooy Hapavly) = [ra@ev) = [fiy Dav(y)dpt).

Proof. This follows immediately from the Fubini theorem applied
to [ f¥*dm and 7.8.

11.2 COROLLARY. Let p and v be o-finite and m = )\, ¢. Then
for any absolutely measurable function f on X,

Jfeey Hapaviy) = ffd@ru)_ = [[i6y D dv (y)du .

Proof. This follows immediately from 11.1, 10.2.

11.3 THEOREM. If p and v are o-finite then, for any compact
K CX,

(H*v)¢ (K) = (t-l*v))\ (K) = (“*")Lp(K)'

Proof. Let C be an ascending sequence of compact rectangles
such that m(X X X ~ U cn) = 0 for m = ¢, \, .
new

Since K% is closed in X X X then by 8.3 we have for every
neow,

o (K* M Cn) = AK* M cn) = P(Kx M cn).

Passing to the limit, we get the desired result.

11.4 THEOREM. I u(X) + v(X) < o then (u* v))\ is a Raddn outer

measure on X .

Proof. This follows from the fact that A is a Raddén outer
measure on X X X and straightforward computations using

the continuity of the map h(x,y) = x'y-1

Note that the condition p(X) + v(X) < «© is essential in 11.4
as can be seen by taking Lebesgue measure on the line for p and v.
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Then )\ is 2-dimensional Lebesque measure and (p¥ v))\(A) = o for

any interval A of positive length.
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