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ON A HOMOTOPY INVARIANT FOR
SIMPLEXES AND ITS APPLICATION

CHUNG-WEI HA

Based on a congruence relation of K. Fan in the integer labelling of pseudoman-
ifolds, we follow an idea of H. Sies and define a mod 2 homotopy invariant d for
a class of continuous functions defined on an n-simplex into Rn+1 \ {0} satisfying
a certain boundary condition. Using the homotopy invariance of d, generalised
coincidence theorems are proved which unify and extend some existence theorems
of K. Fan. Our results also contain Kakutani's fixed point theorem and a new
covering property of simplexes of Shapley's type.

1. INTRODUCTION

Let I = { l , . . . , n + 1}. For x £ Rn+1, the components z< (i £ / ) of x are
indicated by subscripts. We denote E"+ 1 = {x £ Rn+1 : Xi ^ 0 for i £ / } , denote by
An = {x £ R"+1 : £ a:* = 1} the standard n-simplex, and by 5An and int An the

boundary and the interior of An relative to An, respectively. Let T be the class of
continuous functions / = ( / i , . . . , /n+i) denned on An into Rn+1 \ {0} satisfying the
boundary condition:

(1) for each x £ 5A", there exists i £ I such that fi(x) > 0.

Based on a congruence relation of Fan [4] which is fundamental in the integer
labelling of pseudomanifolds, Sies defined in [10], in the most interesting case, for each
/ £ T an integer d(/) £ {0,1} which is a mod 2 homotopy invariant for the class
T. The approach of Sies is analogous to the one by Krasnoselskii [9] who defined the
Brouwer's degree by means of integer labelling. The purpose of this paper is to refine
and improve the idea of Sies. Interesting mapping properties of / £ T can be deduced
if the parity of d(/) is known. Relying on our improvements, conditions sufficient for
d(g) 7̂  d(—/) are obtained when both g and —/ are in T. One of our main results is
Theorem 3 in Section 2 which is proved using the well-known Sperner's lemma and its
dual form formulated by Fan [4] as boundary conditions. By the homotopy invariance of
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d, another useful result is given in Theorem 5 which unifies and extends some existence
theorems of Fan [2, 3 , 4]. In Section 3, Theorem 5 is generalised to the set-valued
setting in two forms which contain the fixed point theorem of Kakutani [8] and a new
covering property of simplexes of Shapley's type (see Aubin [1, Chapter 9]).

Here is some more notation. For a; 6 dAn, we denote I+(x) — {i £ / : X{ > 0} ,

I0(x) = {i£l: xi = 0} . The metric d on K n + 1 is defined by d(x,y) = max{|z,- - yi\ :

i€ I}.

2. A HOMOTOPY INVARIANT FOR SIMPLEXES

We first recall some results of Fan on the integer labelling of pseudomanifolds, on
which our results are based. For further references to these we refer to Fan [4].

Let Mn be a triangulation of A™. An admissible labelling </> of Mn assigns to
each vertex v of Mn an integer 4>{v) satisfying

(2) <f>(v)

(3) 4'(v) + •K1") ¥" 0 if v,w are adjacent vertices;

(4) (j>(v) > 0 if v is a vertex in 5A n .

For any combination ( e i , . . . , e n + i ) of the signs e,- = ± 1 , we denote by a ( e i l , . . . ,
en+i(n + 1)) the number of those n-simplexes of M " , each of which is labelled under
(j> by E i l , . . . , e n + 1 ( n + 1) at its vertices, and we denote by /3(1 , . . . ,n) the number of
those boundary (n — l)-simplexes of Mn, each of which is labelled under <j> by 1 , . . . , n
at its vertices. The congruence relation of Fan referred to in Section 1 asserts that for
any combination ( e i , . . . , en+i) of the signs e^ = ±1 with at least one e< = —1,

(5) a (e i l , . . . I e B + i (n + l ) ) = a ( l , . . . , n + l )+ /9( l > . . . ,n ) mod 2.

This fundamental result plays an essential role in two key instances below.

Let / £ T. We define d( / ) in the following way. There exist e, 6 > 0 such
that <f(/(An),0) > 3e and d{f{x),f{y)) < e whenever d(x,y) < 6. Let Mn be a
triangulation of An with mesh less than 6 and let v be a vertex of Mn. The star
of v, denoted by st v, is the union of all ra-simplexes of Mn with v as a vertex. We
first define a labelling <f> on Mn. If v 6 int A n , then there exists i 6 / such that
\fi(v)\ > 3e and so \fi(x)\ > 2e for x e stu. If v £ dAn, then there exists i € / such
that fi(v) ^ 0 and so fi(x) > —e for x 6 stu. We define

{ i if v £ int A" and / ; > 2e on st v;

—i if v E int A" and /,- < —2e on st v;

i if v £ dAn and /< > —e on stu.
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Obviously </> is an admissible labelling of Mn. Though the choice of i or —i in (6)
is not necessarily unique, the parity of a ( — 1 , . . . , —(n + 1)) does not depend on the
triangulation Mn of A7* with mesh fine enough, nor on the admissible labelling <j> of
M n defined as in (6). For the proof of this statement we refer to Sies [10, Lemmas
2.2 and 3.2], which work as well in the present case (see also Krasnoselskii [9], pp.84-
87). We remark that (5) is essential for the proof of the second assertion above. For
a triangulation Mn of A n with mesh fine enough, we shall call a labelling <j> of Mn

defined as in (6) for some e > 0 an admissible labelling generated by / on Mn. Now
we define

*,rs / ° »f « ( - ! , • • • , - ( » » +1 ) ) is even;

[ 1 if a ( - l , . . . , - ( n + l)) is odd.

THEOREM 1 . Let H : A" X [0,1] -> R n + 1 be a continuous /unction and f'(x) =
H(x,s). If f €F for each 0 ̂  a ^ 1, then d(/°) = d ( / 1 ) , that is, d is a homotopy
invariant for the class T.

PROOF: There exist e, 6 > 0 such that d(H(An x [0,1]),0) > 3e and d(H(x,s),

H(y,t)) < e whenever d(x,y) + \s - t\ < 26. Let Mn be a triangulation of An with
mesh less than S, and let v be a vertex of Mn , 0 ^ « ^ l . For \s — t\ ^ 6, if v £ int An,
then there exists i € / such that \Hi{x,t)\ > 2e for x E stw; if v e 0An, then there
exists i E I such that Hi(x,t) > —e for x £ stu. Thus /* and /* can generate the
same admissible labelling on M n and so d(/*) = d(/*) whenever |s —1| < 6. The
theorem now follows. U

A direct consequence of the homotopy invariance of d is the following

THEOREM 2 . let g, -f €f satisfy

(7) for each x £ 9A™, \i > 0, there eidsts k £ / such that /ifk(x) ^ gk{x).

If d(g) ^ d ( - / ) , then there exist x £ A n , A > 0 such that

(8) Xf(x) = g(x).

PROOF: Let H : An x [0,1] -» R"+1 be defined by H(x,s) = (1 - a)g(x)~ sf{x),

g'{x) = H(x,s). Then (7) implies that g' satisfies the boundary condition (1) for each
0 < s < 1. Since d(g) ^ d(—/), by Theorem 1 this can happen only when there exists
x G A™ such that H(x,s) = 0 for some 0 < a < 1. The result follows by taking
\ = s/(l-s). D

We note that (7) is trivially satisfied if g ^ 0 or / < 0 componentwise on dA".

One of our main results is the following Theorem 3, which gives conditions sufficient

for d(g) ^ d(—/). For its proof we make use of Sperner's lemma and its dual form
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by Fan which we formulate in terms of boundary conditions (9) and (10) below. Let
Mn be a triangulation of A™, <j> be an admissible labelling of Mn. We consider the
following conditions:

(9) <j>{v) £ I+{v) for all vertices v of M n in dAn;

(10) (j>(v) £ I0{v) for all vertices v of Mn in dAn.

If (9) holds, then it follows from Sperner's lemma (see Fan [4, Corollary 1]) that

(11) / ? ( l , . . . , n )= 1 mod 2.

If we assume in addition to (10) that Mn restricted to dAn is a further subdivision of
the (first) barycentric subdivision of dAn, then (11) is also true as shown in Fan [4,
Corollary 2]. In what follows, we shall suppose this additional assumption whenever
(10) is assumed. Thus if <f> satisfies either (9) or (10), then by the Fan's congruence
relation (5),

(12) a ( - l , . . . , - ( n + l)) + a ( l , . . . , n + l) = l mod 2.

THEOREM 3 . Let g,-f £T satisfy
(13) for each x £ A™, there exists ie I such that fi(x)gi(x) > 0;
(14) for each x £ dAn, there exist i 6 I+{x) (i £ Io(x), respectively), j £ I

such that fi(x) < 0, fj{x) > 0 and gj(x) ^ 0. Then d(g) ^ d ( - / ) .

PROOF: There exists e > 0 with the property that for each x £ A™, there exists
i £ I such that either fi{x) > 3e and gi(x) > 3e, or fi(x) < —3e and gi(x) < —3e;
for each x £ dAn, there exists j £ I such that fj(x) > 3e. Let 8 > 0 be such
that d(f(x),f(y)) < e, d(g{x),g(y)) < e whenever d(x,y) < S and let Mn be a
triangulation of A n with mesh less than S. We define two labellings <j> and tj) of Mn.

Let v be a vertex of Mn. If v £ int A", then there exists i £ I such that either
fi(x) > 2e and gi(x) > 2e for x £ sti>, or fi(x) < -2e and gi(x) < —2e for x £ stw.

We define

{ i if ov > 2e on st v , v(») = -#")•
—i if gi < —2e on st v

If v £ dAn, then there exist i £ I+(v) (i £ Io(v), respectively), j £ I such that

fi(x) < e, fj(x) > 2e and gj(x) > -e for x £ stu. We define

tf>{v) = j , ij}{v) = i.

It is easy to verify that <j> and ip are admissible labellings generated by g and —/ on
Mn, respectively. To prove d(^) ^ d(—/), since ip satisfies (9) ((10), respectively), by
(12) it suffices to show that

(15) « • ( - ! , . . . , - ( n + 1)) = a* ( l , . . . ,n + 1),
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where the superscript </> or ij> indicates the labelling with respect to which the counting
is performed. Obviously it follows from the definition above that (15) is true if the
equality sign is replaced by the sign ^ . On the other hand, if a is an ra-simplex of
Mn labelled under ij) by 1 , . . . ,n + 1 at its vertices, then none of the vertices of a is
in dAn. Indeed, let cr have a vertex v in e?An, and let w be any vertex of a, possibly
v itself, j = <i>{v), i = iji(w). If w £ int A n , then gj > —e, gi < —2e on cr and so
4>(v) ^ V7(UJ)i if f> G dAn, then fj > 2e, /j < e on cr and so again <£(u) ^ i/)(w). It
would follow that 4>(v) $. { 1 , . . . , n + 1} which is absurd. Thus a is labelled under <f>

by — 1 , . . . , — (n + 1) at its vertices. This proves the equality in (15). D

We may apply Theorems 2, 3 directly to solve (8) without knowing the exact parity
of d(g) or d(—/). We may also use Theorem 3 to determine one of d(g) and d(—/)
if the other is known. Clearly if / G T satisfies

(16) for each x G A n , there exists i £ I such that fi(x) > 0,

then d ( / ) = 0. This is the case if / maps A n into E™+1 \ {0}, in particular if / is
the identity function f(x) = x or a constant function / (x ) = a with a £ R" + 1 \ {0}.

COROLLARY 4 . If f £ T satisfies one of the following conditions:

(17) for each x £ dAn, there exist i G I+(x) (i £ Io{x), respectively), j £ I

such that fi(x) ^ 0 and fj{x) > 0;

(18) for eacA x £ dAn, there exist i £ i+(x) (i £ I0(x), respectively), j £ /
sucA that fi(x) > 0 and fj(x) ^ 0,

PROOF: Let / = g in Theorem 3. If (17) holds, then (13) is is trivially satisfied
and so the result is a special case of Theorem 3. The proof when (18) is assumed is
similar and can be obtained by a modification of the proof of Theorem 3. D

THEOREM 5 . If f e T satisfies (16) and either (17) or (18), then for any contin-

uous function g : An -> R" + 1 \ {0}, there exist x £ A n , A > 0 such that A/(x) = g(x).

PROOF: Clearly d(g) — 0 and by Corollary 4 d ( - / ) = 1. The result now follows
from Theorem 2. D

Theorem 5 extends Fan [2, Theorem 1] on the equilibrium value of a finite system
of convex and concave functions. We refer to Aubin [1, Chapter 11] for related results.
We can also obtain the coincidence theorems of Fan [3, Theorem 2] and [4, Lemma]
using Theorem 5 by assuming first g > 0 componentwise and then using a limiting
process.
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3. GENERALISED COINCIDENCE THEOREMS

We fix a compact convex set Y in R™+1 \ {0}. Let Q denote the class of upper
semicontinuous set-valued maps G defined on A n such that for each x G A n , the value
G(x) is a nonempty closed convex subset of Y. The well-known fixed point theorem
of Kakutani [8] states that if G £ Q with Y = A™, then there exists x G A n such
that x £ G(x). Its proof in Kakutani [8], involving approximation by piecewise linear
functions, can be adapted to some more general situations (see Ha [5] for one). We
obtain in the following Theorem 6 a common generalisation of Kakutani's fixed point
theorem and to the set-valued setting of Fan [2, Theorem 1] (see Aubin [1, p.328] for
another extension), [3, Theorem 2] and [4, Lemma]. We shall only sketch its proof and
refer for further details to Kakutani [8] and Ha [5].

THEOREM 6 . Let G £ G, and let f £ T satisfy (16) and either (17) or (18).

Then there exist x £ A n , A > 0 such that A/(z) G G(x).

PROOF: For each m = 1,2, . . . , let Tm be the m t h barycentric subdivision of A n .
For each vertex vm of Tm, we choose wm £ G(ym) arbitrarily and define gm(vm) =
wm. By extending gm linearly inside each n-simplex of Tm, we obtain a continuous
function, denoted still by gm, on A n into R J + 1 \ {0}. Clearly d(gm) - 0. By (16) and
either (17) or (18), d ( - / ) = 1 and so by Theorem 5 there exist xm G A n , Am > 0 such
that Am/(a5m) = gm(xm). For each m = 1,2,... , there exists an n-simplex <rm of Tm

such that xm G erm and Tm = gm(<Tm) is a simplex (possibly of lower dimension) in
Y. Since Y is compact and / is bounded away from 0, by passing to subsequences if
necessary, we may assume that {xm} converges to a point x G A n , Am —> A in R + , and
that there exists a simplex r in Y whose vertices are the limits of the corresponding
sequences of vertices of Tm, and {flm(sm)} converges to a point in r as TO —» oo. It
follows from the upper semicontinuity of G and the convexity of G(x) that T C G(X) .

Hence Xf(x) G G{x). D

By exchanging the roles of / and G, we obtain another generalisation to the

set-valued setting of Theorem 5.

THEOREM 7 . Let G G Q satisfying one of the foJiowing conditions:
(19) for each x G 9 A n , there exists y G G(x) such that j/j = 0 for all i G Io{x);

(20) for each x G dAn, there exists y G G(x) such that yt = 0 for all i G l+(x) .
Tien for any continuous function / : A" -> R"+ 1 \ {0}, tAere exist x G A n , A > 0
such that A/(£) G G{x).

PROOF: We show that if g is a piecewise linear approximation of G obtained
similarly as in the proof of Theorem 6, then there exist x £ A n , A > 0 such that
A/(x) € g{x). Let T be a barycentric subdivision of order J? 1, and let v be a vertex
of T . If v G int A" , we choose w G G(v) arbitrarily and define g(v) = w. If v £ 9 A n ,
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we choose w G G{v) such that IOJ = 0 for all i G Io{v) when (19) holds, and Wi = 0
for all i G I+{v) when (20) holds, and define g(v) = w. By extending g linearly inside
each n-simplex of T, we obtain a piecewise linear approximation to G, denoted still
by g, which is a continuous function on A™ into R™+1 \ {0}. Let x G dAn and let

v1,... ,vm be the vertices of T in dAn such that x = ^3 ak"Dk, where m ^ n + 1,
fc=i

m m
ak > 0 for 1 ^ A; ̂  m and X) a * = 1 • Thus g(x) = ^ «*wfc • If (19) is assumed,

fc=i fc=i
then for t G IQ{X), vk = 0 and so wk = 0 for 1 ^ k < m , that is, flr,(a;) = 0. If
(20) is assumed, then by the construction of the barycentric subdivision T , there exists
i G I+{x) such that u* > 0 and so to* = 0 for 1 ^ A; ^ m, that is, <7i(a;) = 0. In either
case by Theorem 5 (with the roles of / and g exchanged) there exist x G A n , A > 0
such that A / ( E ) — g(x). The theorem now follows from the same limiting process as
in the proof of Theorem 6. D

Theorem 7 is closely related to Fan [3, Theorem 2] and [4, Lemma], from which
some interesting covering properties of simplexes were deduced. A covering property
of simplexes important in game theory is the generalisation by Shapley of the classical
theorem of Knaster-Kuratowski-Mazurkiewicz (see Aubin [1, Theorem 9.15]). As a
simple consequence of Theorem 7 when Y = An and (20) is assumed, we obtain a
new covering property of simplexes of Shapley's type. We denote by e1 = ( 1 , . . . ,0),
. . . , e n + 1 = ( 0 , . . . , 1) the standard basis of R n + 1 . Let A be the family of nonempty
subsets of I. For a G A, we denote by AQ the face of A n which is the convex hull of
{e* : t £ o } so that A n = A / , and denote by ca the barycenter of A a .

THEOREM 8 . If {Aa : a G A} is a closed covering of A" such that for each

aeA\{i}

tAen t iere exists a subfamily B of A such that

C\{A0 : 0 G B} jk 0

and c/ is in the convex hull of {cp : /3 G B}.

P R O O F : For x e A n , let J(x) = {a£A:x£ Aa}. W e define

G(x) = conv {ca : a G J{x)},

and define / to be the constant function f(x) = cj. The complement U of ( J { J 4 Q :
a (fc J(x)} in A™ is a neighbourhood of x. Moreover, for any y G U, J(y) C J(x)

and so G{y) C G[x). This shows that G is upper semicontinuous on A™. Obviously
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(20) is satisfied and so by Theorem 7 there exists x £ A n such that / (£ ) £ G(x). The
theorem now follows by defining B — J(x). D

The well-known Sperner covering property of simplexes as formulated by Fan [3]
says that if {Ai : i £ 1} is a closed covering of A" such that A/\{,} C Ai for all i £ / ,
then f\ Ai 7̂  0. Thus Theorem 5 reduces to Sperner's theorem when Aa is not empty

only when a is a singleton in A. We refer to Ha [6] and Ichiishi [7] for related results.
Finally we note that Shapley's theorem follows similarly from Theorem 7 when (19) is
assumed.
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