LAPLACE TRANSFORMS AND GENERALIZED
LAGUERRE POLYNOMIALS

P. G. ROONEY

1. Introduction. Various sets of necessary and sufficient conditions are
known in order that a function f(s), analytic for Re s > 0, be represented as
the Laplace transform of a function in L,(0,), 1 < p < « . Most of these
theories are based on the properties of some inversion operator for the trans-
formation—see, for example, (7, chap. 7). However in the case p = 2 a number
of representation theorems of a much simpler type are available. One of these
is due to Shohat (5) who has in effect shown that a necessary and sufficient
condition for such a representation, with p = 2, is that

2 gl < =,
n=0
where

_ - n\1 .,
Shohat’s proof makes use of the Laguerre polynomials.

Recently the author has given (4) necessary and sufficient conditions that
f(s) be the Laplace transform of a function of the form #F(t), F € L,(0, «),
1<p< o, \> —1/q, where p~! + ¢! = 1. These conditions were given
in terms of a particular inversion operator. In this paper we shall see that
Shohat’s theorem can be generalized, for p =2, to cover this more general case.
This is done in § 2 below, using generalized Laguerre polynomials. We also
obtain there an expression for F(f) which we shall use in § 3 to obtain some
results about Hankel transforms. For convenience we write A = 3» throughout
the following.

2. Representation theorem. We start with a preliminary lemma.

Lemma 1. If f(s) is analytic for Res>0and v > — 1, then
765) = 5 (oY)
( + 1)v+1 Qn s + % ’

%=i«+§fW)

r=0 n-—r

where

the branch of (s + %)**! that is positive when s + % is positive being chosen.
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Proof. Let

—
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and f(s) = F(z). Then F(z) is analytic in |z| <1, and hence so is F(z)/(1 — 2)*+1.
Thus

F@)/(1=2)" = X 04" 2] <1,

whereif r < 1

1
21I'1 |2l=

= Residue,_o (F(2)/z"'(1 — 2)"™)
= Residue,—; (f(s) (s + 3)""/(s — 3™

= ylim { 5 (6) G+ ™) }

=—hm{z"‘, < >f‘”( )b ot pref

s osop \r=0

G = (F(Z)/Z”Jrl (1 —2)")ds
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Hence
f(s) = F(z) = (1 — Z)H-l nZ:Q qn 2 (s T 1)v+1 Z q"<$ - %) .

TueoREM 1. A necessary and sufficient condition that a function f(s), analytic
for Re s > 0, be the Laplace transform of a function of the form ' F(t), with
F € L0, © ) and v > — 1, s that

= . r. 2
ra I‘(v+n+ 1) " < e
where

w3 (1) Lo,

=0 \NW — 7
In this case

F(t) = Lim. ¢ ¢ Z mqnw)(t),

T

and

nZ: T(» + n,’,: :‘__B lgnl2 = J:)m ]F<t)i2dt~
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Proof of necessity. Suppose

f(s) =f e Y F(b)ds, F € Ly(0, ), » > — 1.
0
Let

I S S L VI
$u(t) = (I‘(v—l—n+ 1)> e LY (1),

Then, as is well known, {¢,} is a complete orthonormal sequence in Ly(0, «).
We have, using (2, §10.12(7)) and (1, chap. 3, §2),

(F, é) = (F(V T n}?ﬁ)%f e L () F(t) at
(o) £ CEDAS e oo rom

- <'1"(wr—nr!»+—ﬁ>% ,Z:o <Z ! :) EIAMOR (E(,,+n—,i+ﬁ>% G

Hence

Pt) = 1im. 3 (F, ¢) a0

T30 n=0
i A Y n! »
Lim &7 Y Sy ¢ O

and from the Parseval relation

S e e = X el = [0t < s,

Proof of sufficiency. Since

2 n!

D E VL

by the Riesz-Fischer theorem there is a function F € L3(0, «) such that
n! ¥
(F, ¢0) = @u (m—;_*_—ﬁ) .
Let G(f) = ¢!, Re s > 0. Then G € L,(0, =), and from (3, §4.11(28)),
G 6= | w0 a

0

<____”'_,__)% f TGy o ) dt
T +n+1) n

_ <I‘(V +n+ 1)) (5 — 1)

n' ('§ _|__ %)7L+v+1 .
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Hence from Lemma 1 and Parseval’s relation, if Re s > 0,

1

ORors 1),+1 EO qn< - 7)

T {9" <r<v T 1>> H(F(V i 1)>* (s(i_%ﬁx“}

=Y (F 6 G éw) = (F,G) = f ® A B di.

n=0

ANGE

3. Application to Hankel transforms. For our purposes here we shall
define the Hankel transform for F € L.(0, ), » > — 1, by

_a (" dy
66) = & | o) ) &
where
ky(x) = JO J,(2 V) dy.
Since the Mellin transform of J,(2+/y) is

P(s+3)/TG —s+1),  — 4 <Res<3/4,

it follows since » > — 1 that the hypotheses of (6, Theorem 129) are satisfied
so that if F € L,(0, =), G exists and is in L,(0, =), and Parseval’s equation
holds. Further

P) = o |7 k) 60) 2

Here we shall use the results of Theorem 1 to invert the Hankel transform.
We first prove the following lemma (compare (1, chap 2 §16)).

LEMMA 2. If F € Ly(0, ©), » > — 1,

6@ = 3 " k) PO 2y

where

b = | 1.C vy,

f@s) = f et Y F(t)dt
and

g(s) = f: e Gt
then

7s) = (/).
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Proof. The Hankel transform of #’¢=** is given, on using (3, §4.14(30)), by

_d_ ® jr—1 —st f“
dx.ot e dt , J,(2 Vy)dy

_ @ (7 s f’
= Ot e dt , J.(2 v/yt)dy

dy f £ e T,(2 /yt)dt
0 0
_ f £ ¢ T,(2 +/at)dt
0

Xl e

=T_,

the interchange of the order of integrations being justified by Fubini’s theorem.
Hence by the Parseval relation for the Hankel transform,

f(s) = f e F(t)dt = E%f e G(t)dt
0

0
1 1
=)
THEOREM 2. If F € Ly(0, »),» > — 1,

66) = 4 | k) P 2,

where
b6 = [ 1@V,
and
gs) = f e Gt
then
F(t) = 17152 et Z “TG +—n_—_|—_ﬁ LY@
where

— 1yt Z <n + V> L0

Proof. By Theorem 1,

_ v —1t A S— )
F#t) = 1im.¢ Z o RO
where
“ (n+v )
we3 (00w
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But in the proof of Lemma 1 we showed that

= Residue,—; (f(s) (s + 1" /(s — ™),
and hence using Lemma 2
g» = Residue,; <S»1+1 g( > G+ 5"/~ 1)"“)
= Residue,—; -2—_71 (g(s) @4 )"™/@2 — )"

= tim 25 ()2 + 97)
(27-1” lim E (7) () Rk r B L gy

n. 852 r=0

— (-t Yy <”J_”>4 g7).

=0

COROLLARY. Under the hypotheses of Theorem 2, if

£(s) —f e i F(t)dt,
then

6O = 1im 7 3 de Sy 200

where

—ret e (”*) 0@

Proof. This follows from Theorem 2 since the relation between F and G is
reciprocal.
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