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§ 1. Introduction.

A linear algebra1 of order n, in general non-commutative and
non-associative, may be regarded as being determined by the "cubic
matrix " consisting of its n3 constants of multiplication, and con-
versely. This requires that the n basis elements (units) of the algebra
should be specified, and should be given in a definite order. Then the
various "transpositions" of the cubic matrix induce corresponding
" transpositions " of the algebra, for which a notation is given in §2.

In § 3 it is shown that various equivalence relationships between
linear algebras, definable as relations between their cubic matrices,
are preserved under transposition. These include isotopy and
orthogonal equivalence, but not linear equivalence in general. Such
a relation may be denoted = . In § 4 the operations of direct addition
and direct multiplication of algebras (denoted + and x) are also
shown to be invariant under transposition, if attention is paid to the
order of basis elements in a direct sum or product. Hence (§ 5), when
+ , .X and a suitably defined = relation are used, any given algebra,
or any set of algebras over the same field, generates a system called
a direct algebra which is unchanged in form by transposition of the
generating algebras.

§ § 6-9 contain illustrations of these ideas, in which some well
known linear associative algebras are transposed. The resulting
algebras are non-associative, but have the property of commuting
indices

xab — xbat

x being any element of the transposed algebra, a and b being the

1 For the definition of this and other terms used, L. E. Dickson, "Linear
algebras," Cambridge Tract No. 16, Cambridge, 1930, may be consulted; or the same
author's " Algebren und ihre Zahlentheorie," Ziirich, 1927.
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TRANSPOSED ALGEBRAS 105

indices of arbitrary powers. (See1 N.C. or N.A.M.I.C. for the con-
ventions used to indicate powers in a non-associative algebra).
Algebras with this property will be called palintropic. The property
is invariant under linear transformations of an algebra, but not
generally under transposition; and if two or more algebras possess if,
it is easily shown that their direct sum also possesses it, but not
necessarily their direct product.

A type of non-associative algebra for which this property was
previously proved is examined in § 10. Its transposes are also
palintropic, and the corresponding direct algebra has a particularly
simple form.

Unlike the examples of palintropic algebras given in C.T.A. and
N,A.M.I.C, most of those occurring in the present paper are n'on-
•commutative as regards multiplication. Thus in the arithmetic of
the indices—or as I have called it, the logarithmetic of these
algebras—

a + 6 =)= 6 + a, ab = ba, a (6 + c) = ab 4- ac,
(a + b) + c=$=a + (b -f c), ab.c = a.bc, (b + c)a = ba + ca.

This fills an obvious gap in the list of logarithmetics given in
N.A.M.I.C.
\ ' Some connections with the theory of quasi-groups are given in

§11-
§2. Transposition.

Let X be a linear algebra with, basis (% an) over a given
field F. The commutative and associative laws of multiplication are
not assumed. Then X is determined when its multiplication table2

o,- a,j = Zyijk ak

is given, and the constants of multiplication yijk can be any fixed
elements of F. The algebra is characterised by the cubic matrix
y =•. (yijk), and we shall consider two algebras X, Y identical {X = Y)
if they have the same y and are over the same field, though the
symbols used for their bases may be different.

1 1 refer by initials to ray earlier papers: N.C. = "On non-associative combina-
tions," Proc. Roy. Soc. Edinburgh, 59 (1939), 153-162 ; C.T.A. «= "Commutative train
algebras of ranks 2 and 3," Journ. London Math. Soc, 15 (1940), 136-149 ; N.A.M.I.C.
= "Some non-associative algebras in which the multiplication of indices is com-
mutative," ibid., 16 (1941), 48-55.

2 The suffixes run from 1 to n. It is to be understood throughout that Greek letters
with suffixes denote elements of the field F, and that S indicates summation with
respect to repeated suffixes (here with respect to fc).
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106 I. M. H. ETHEBINGTON

If y is transposed we obtain another linear algebra X*, which
will be called a transpose of X. Its multiplication table is

at aj = Syjj ak

where (including X itself among its transposes) y*jk is equal to

Yijk> Yikj> Ykji> yjik> Yjki> o r Ykiy

The corresponding algebras will be denoted

X, X', X\ X~, X\ XA

and called the identical, right, left, straight, left-right and right-left
transposes of X. A star (*) will be used for any one of the six
operations of transposition. These operations form a group, the
symmetric group of order 3!, whose multiplication table may be
written in the form

X = X" = X" 3 X~~ = XVA = XAV ,
X' ~ X"v s X~A s Xv~ = X"" ,
X' = X'A s X-" s X"' = X"~,
X- ~ X'\ s X* s X"K = X"' ,
Xv = X'~ = Xv = X~" = ZAA ,
XA 3 X" = Zv- = X-' s Zvv .

Given the multiplication table of X, that of a transpose is easily
read off; for if in X (for fixed i and j)

aiaj^ + yi dj +

aia2= . . . . + y2
 aj + • • • • >

= + yn a, 4- .
then in X': ataj = y-^a^ + y2a2 + + yno,,.

To find a ^ in X\ we examine similarly the products a1aj, a2aj,
. . . . anaj in X. Also X~ is derived from X by merely reversing the
order of writing all products, and the same relation holds between Xv

and X', and between XA and X\ For any particular (non-com-
mutative) algebra X, we should therefore only require to study two
of the transposes, say X' and X\

If yijk is symmetric in one pair of suffixes, the six transposes occur
in identical pairs and one pair is commutative. If X is commutative,

X s X-, X' s X\ T = X";

in this case it would be sufficient to study one transposed algebra, say
the right transpose; this is in general non-commutative, and since
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JT = X" = X'- the left transpose is obtained from it by reversing the
order of all products.

If yiik is cyclic in its suffixes1, then

X = ZA = X\ X- = X' = X\

Returning to the general linear algebra X, it is known that every
element x = Sa, at of it satisfies the two characteristic equations8

x | 2 at yipg - x Spq | = 0 , (L)
x | 2 a; yviq — x 8pq | = 0 . (-B)

Here S = (8Pg) is the unit matrix, and in (L) powers of x are inter-
preted as left principal powers

x, x2, x1+2, x1+(-1+i\ a;i+d+a+2)i) .

in (R) they are interpreted as right principal powers

If along with (L) and (R) we consider a third equation

x | T.aiypqi-xhn | = 0, (8)

it will be seen that the characteristic equations of the algebras

2L f A t xi. j -A. f -A. f ^\.

are respectively

i , i ? ; i .6 1 ; -S.iB; R, L; S, L; R, S.

(It must not be inferred that a similar statement holds regarding
the rank equations, or equations of lowest degree satisfied identically
by the left and right principal powers of X. A counter example
is provided by the algebra with multiplication table a\ = alt

axa2 = a2ai = \ a2, a\ = 0.)

1 (Added 30 June, 1944.) An example is the algebra W of order m2 with multi-
plication table (where suffixes run from 1 to m) :
w • eij ejk = e*i, ey ehk = 0 (/»=•= j).

Albert has recently introduced, for algebras having an involution J, an operation
which in some cases coincides with transposition. See A. A. Albert, "Algebras derived
by non-associative matrix multiplication," Amer. Journ. Math., 66 (1944), 30-40. If
M is the total matric algebra of order m2 with multiplication table

M- eij ejk = eik> eijehk=° C1*.?).
and J is matrix transposition (ey J = e^, then the algebras (in Albert's notation)
Mp (J), MK(J), MK(t(J) are respectively M\ M' and the above algebra W.

- h. E. Dickson, "Linear Algebras," loc. cit., §15, Theorem 3. In case X con.
tains a modulus, the initial factors x in (L) and (B) can be omitted and the constant
terms interpreted as multiples of the modulus ; but we suppose that they are in any
case included, since even if X contains a modulus its transposes may not.
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-• ; • §3. Equivalence relations. • "•'

Consider two linear algebras X, Y of the same order n, over the
same field, with multiplication tables

X: «f a5 = Hyijk ak,

We shall define various equivalence relations (reflexive, symmetric and
transitive) which may hold between X and Y, with corresponding
relations between the cubic matrices y, r], and consider which relations
are preserved when the algebras are transposed in the same way.
(3.1), (3.3) and (3.5) are analogous to the " equivalent," " congruent,"
and "s imilar" transformations HAK, HAH', HAH~X of a square
matrix A.

(a) X and Y are isotopic if there exist non-singular (square) matrices
8 = {0a), <f> = (4>a), <A = (<A«)> such that

Vpqr = 2 8pi $qj $rk Jiik- (3-1)

This is equivalent to Albert's definition1.
Evidently if X is isotopic to Y, X* is isotopic to Y*; but it is not the
same isotopy, since the order of the transforming matrices 6, <f>, tft is
changed.

I t may be noted in passing that an algebra and its transposes
may be isotopes. A sufficient condition for X and X' to be isotopic
is that the n square matrices (yijklt (Y2jk)> • • • • should be symmetrical
about their secondary diagonals. For then if we take 6 to be the unit
matrix, and take <f> = ijj to be the mirror image of the unit matrix,
having l's down the secondary diagonal, (3.1) becomes

Vpgr = 2 Opi 4>qi >/>rk Yijk

= Yprq-

A similar condition regarding (y,u), (yi2i)> • • • • suffices for isotopy of
X and X\—The algebra of complex numbers with basis 1, i satisfies
these conditions and is therefore isotopic with its transposes.

(6) X and Y will be called congruent if there exists a non-singular

1 A. A. Albert, "Non-associative algebras, I. Fundamental concepts and isotopy,"
Ann. Math., 43 (1942), 685-707 ; §11. My X, Y, d, <£, f correspond to Albert's
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(square) matrix 6 = (0^) and a non-zero quantity K (< F) such that

•nvv'=K'LdpiB9ieTkyiik. (3.2)

The factor K can be omitted without loss of generality if the coefficient-
field F is sufficiently extended, for with a change of notation we can
replace K1/3 0^ by 0{j and obtain

VPqr = X8pi69j6rkY<jk- (3.3)

But if for example F is the rational field, (3.2) is more general than
(3.3).

In this case X* is congruent to Y*, with the same transforming
matrix 0 and scalar K.

(c) It is usual to call X and Y equivalent if one can be derived from
the other by a non-singular linear transformation of the basis. If
the transformation is

bp = Z\p[ai, ai = 'LKipbp, (3.4)

the relation between y and rj is

Vpgr = S Ki \ i A*r Yijk- (3-5)

In this case X* is isotopic but not necessarily equivalent to Y*.

However, by imposing suitable restrictions on A, the matrix of
the linear transformation, we can obtain equivalence relations, special
cases of (c\, which are also special cases of (6) with 0 restricted, and
which are /therefore invariant under transposition. This is achieved,
for example, if the transformation (3.4) is restricted to being one of
the following:—

(d) orthogonal: then

A' = A - 1 , Aj,j = Aip, 7]pqr = S XpiXqj \rk yijk',

(e) a permutation of the basis: A is a permutation matrix: y is trans-
formed by applying the same permutation to its i-, j - and A-planes;

(/) a change of scale, 6{ = /<(*;; A is a scalar matrix; we shall say
that X is proportional to Y;

(g) an orthogonal transformation followed by a change of scale: AA'
is a scalar matrix: we shall say that X is conformal to Y: this
includes (d) (c) (/) (h) (i) as special cases;

(h) a permutation with change of scale;

(*') a change of notation: A is the unit matrix, yijk = ijyi, X s Y.
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110 I. M. H. ETHBRINGTON

It will be convenient to use " = " to indicate any one of these
nine relations between linear algebras. With any one of these
meanings except equivalence

X=Y implies X* = Y*. (3.6)

§ 4. Direct sums and products.

By addition ( + ) and multiplication (x) applied to square
matrices, cubic matrices or linear algebras, we shall understand
direct addition and direct multiplication. Equality ( = ) between
linear algebras has any fixed one of the meanings explained in § 3,
except that sometimes particular meanings will be specially excluded.

If X, Y are linear algebras over F with multiplication tables

X: at aj = 2 yijk ak (i, j , k=l, n),

Y- babfi='Z7iaf)yby (a, ft, y = 1 v),

their direct sum and direct product are the linear algebras over F
with the following multiplication tables.

X+Y: aittj, = Hyijkak, babp = Sr;a3y67) atba = baat = 0. (4.1)

(Basis: au . . . . «„, bu . . . . bv.)

Or with change of notation:

aA aB = 2 TABC ac (A, B, C = 1 n + v)
where YABC = yABc ii A, B, C <Ln,

= VA-n, B-n, C-n ^ A, B, G > 91,
= 0 otherwise.

The cubic matrix F is the direct sum y + -q.

X x Y: aia ajl3 = 2 y0A. rjoPy aky. (4.3)
(Basis: a u , . . . . anv in lexical order.)

The cubic matrix of the constants of multiplication is the direct
product y X 7).

If X = X° and Y = 7°, then

X + Y = X° + Y°, X x Y = Z° x 7°. (4.4)

For example, if = indicates isotopy we may suppose that the
multiplication tables of X°, Y° are

X°: apUg=I. 6pi <f>gi iprk yijk ar,

Y° : K bp = 2 Ka Up? V<ry Vafly *Vl

where the matrices 5, <£, ^, X, /u., v are non-singular. Then that of
X° + y° consists of these equations together with at ba = 6a a, = 0; or
with change of notation (replacing !)„ by an+n)

(4.2)
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X° + Y°: aAaB = ZY°ABCac (A, B, C = 1, . . . . , n + v)
where Y°ABC = 2 6Ai<f>Bj fe Vw if A, B, C <Zn,

= 2^_n,a/xs_,,,3vc_,ljYTjopy if A, B,G>n,
= 0 otherwise.

Comparing with X + Y, it is seen that these equations can be written

where 0, O, *F, F are the direct sums d + A, <f> + fx, <p + v, y + rj, and
0, O, *F are non-singular. This proves the first of equations (4.4) for
this interpretation of = . There is no difficulty in completing the
proof for the other interpretations and for the direct product.

To form the right transpose of (4.3), we interchange k, y with
j , fi in the constants of multiplication and obtain

(X x Y)': aia ajf> = 2 yikj -q^ aiy,

i.e., the direct product of X' and Y'. Similarly with the other
transposes, and similarly with the direct sum. Thus

{X + Y)* = X* + Y*, (X x 7)* = I * x Y*. (4.5)

If an algebra A is a direct sum or product in the sense that its
multiplication table can be put into the form (4.1) or (4.3) by a linear
transformation, it does not follow that A* is a direct sum or product
unless the linear transformation involved is of the type (gr) in § 3.
With equivalence excluded, however,

Z = X + Y implies Z* = X* + 7*, (4.6)
Z = X x Y implies Z* = X* x Y*. (4.7)

§ 5. Direct algebras of algebras.

Since X + Y and Y + X are in general neither identical nor
proportional, their bases being differently ordered, and the same
applies to X X Y and Y x X, it will now be convenient to exclude the
cases when = means identity or proportionality. Then the symbols
+ , X, = obey the commutative, associative and distributive laws.
Write mX, Xm for the direct sum and direct product of m identical
algebras; interpret O.X as a null algebra (algebra of order zero), and
X° as the field F (algebra of order 1, with multiplication table I2 = 1);
and consider " polynomials " in X (algebras equal to direct linear
combinations of powers of X with positive integer coefficients),
forming a totality P (X), a subset of a polynomial ring. The powers
of X may be all linearly independent; but this is not necessarily the
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case, and X may satisfy an algebraic equation with integer co-
efficients, the minimum equation of X as an element of the poly-
nomial ring. By enlargement of the coefficient domain of P to a
field, P becomes a polynomial algebra, of infinite, or finite order,
which will be called the direct algebra of X for the relation =.,

Similarly any set of linear algebras X, Y, . . . . over the same
field generates a system P (X, Y, . . . . ) , a subset of a commutative
ring, consisting of all algebras equal to polynomials in X, Y, . . . . ;
and all algebras belonging to P can be expressed linearly with positive
integer coefficients in terms of some infinite or finite set of direct
powers and products. This basic set will have a multiplication table
with positive integer constants of multiplication. . By enlargement of
the coefficient domain of P to a field, P becomes a commutative
associative linear algebra of infinite or finite order. It will be called
the direct algebra of the algebras X, Y for the relation = ; it is
defined except for linear transformations of itself, since its basis is not
uniquely determined. • ' •

We have already excluded the meanings identity and proportion-
ality for = ; if equivalence also is excluded, then (4.6), (4.7) show that
the multiplication table of P is invariant for transposition of the
generating algebras; that is:

P(X, Y, ....)= P(X*, 7*. '....). . (5.1)

Of course the direct algebra P (X, Y, . . . . ) for equivalence may
be identical with the direct algebra P(X, Y, . . . . ) for conformity;
and if the same is true oi P(X*, Y* ) then (5.1) holds for
equivalence. On.the other hand the direct algebra for equivalence
may have a smaller basis than that for conformity, and then (5.1)
may not hold. Both possibilities are exemplified in § 8.

If X is of order n and Y is of order v, then X + Y is of order
n + v and X x Y is of order nv. I t follows that the direct algebra
P (X, Y, . . . . ) is always a baric algebra, each generating algebra
having weight equal to its order. (See C. T. A.) This suggests that
its multiplication table may usually be simplified hj a change of
scale, taking all basis elements to be of unit weight (e.g., X/n, Y/v,
etc.—these of course are not interpreted as algebras).

§6. Complex numbers transposed.

Let Z be the algebra of complex numbers with basis 1, i. The
coefficient field F is the field of real numbers. The following are the
multiplication tables of Z and its transposes.
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1
1
i

z,

i
- 1

z-

1
i

1
1

— 7

z\ z*

i

i
l
i

1

1
i

z\

—
Z"

i
1

(6.2)

(6.1)

The general element or (hyper)complex number in any of these
algebras can be taken as

x=al-\-fii = p(l cos 8 + i s in 8)

where a, p, p, 8 are real. Writing cc for the "conjugate" element
al — fli, it is easily seen that the value of a product xy in Z' is the
same as that of xy in Z; and its value in Z" is the same as that of xy
in Z. Hence if we write

mod x = p, arg x = 8,

then in Z : arg xy = arg x -\- arg y;
in Z': arg xy = arg y — arg x;
in Z": arg a;?/ = arg x — arg y;

inZ,Z',Z': mod at/ = (mod x)(mod y).

(Equations involving " arg " are to be understood as congruences
modulo 2TT.)

Consider now any power Xs, of degree 8S. Multiplication in Z'
and ZK being non-commutative and non-associative, s must be
specified as an integer in an arithmetic with non-commutative and
non-associative addition (cf. N.C.), and §s, the number of factors x in
this power, is equal to the number obtained by evaluating s as if it
were an integer in ordinary arithmetic. From (6.2) it follows tha t in
each algebra arg x8 will be some multiple of 8 depending on s, say
«s 8, and we have

mod xs = pss, arg x" = e8 8. (6.3)
es = Sg. (De Moivre's theorem.)
arg x2 = 0,

In Z,
In Z\ e.g.,

arg x1+2 = arg (x.x2) — 8,) )
arg x2+1 = arg (x2.x) — — 8, j
arg a;d+2)+i = arg (xl+z.x) = 0.
arg a:1+<2+« = arg (x.x2+1) = 2 8.

In Z', arg x1 = 0, and the values bracketed above are interchanged.
The three characteristic equations mentioned in § 2 are here

L:)

JS:

0 = x

0 =x

a-x, -
a-x

a —X,

— a — X I
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So for example in Zx we may verify that

S,R: 0 = a ; 1 + 2 - ( a 2 + £2) x = a;2+x - 2ax2 + (a2+£2)a;.

To prove the palintropic property, let a, b be the indices of two
powers, so that xab means (x")b and xba means (xb)a. Then

arg #«* = eb arg xa = eb ea 9 = arg xba,
mod a;"6 — (mod a;0)6* = ps<A = mod xba,

and hence xab = xba. (6.4)

It will be seen that

i n Z": ea+b = ea — €b, eab=ea€b;}

in Z : e a + 6 = e6 — ea, eab=eaeb.)

Hence in Z\ es may be evaluated by treating all the + signs in the

expression for s as — signs. Thus for 2 = 1 + 1

€ 2 = 1 - 1 = 0, S2 = 1 + 1 = 2, x2 = pz 1;

and to take a more complicated example, if

« = { l + ( 2 + l ) } ( 2 . 2 + l ) + ( l + 2),
then

e , = {1 - (0 - 1)} (0 - 1) - (1 - 0) = - 3,
88 = 4.5 + 3 = 23,
x8 = p23 (i cos 39 - i sin 39).

To evaluate the same power x* in Z', apply the same process to s read
backwards:

es = (0 - 1) - (1 - 0) { (1 - 0) - 1 } = - 1, 8S = 23,

xs = p23(l COB 6 — isinO). (6.6)

If Z is taken to be the algebra with multiplication table as given
in (6.1), over any field F, the methods we have used will not be
generally applicable since p and 6 may not exist; but the results
obtained by these methods will be valid if suitably interpreted. E.g.,
the last result concerning Z', (6.6), may he written

this result, proved when F is the real field, must be verifiable by
direct calculation from (6.1); and this verification will continue to
hold good for a general coefficient field. Similarly the palintropic
property (6.4) holds generally.

As an illustration of the fact observed in § 3 (c), suppose that F
includes the complex field, and apply the transformation

&i=i"(l+'**), b2=\{\ -ii). (6.7)
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(t denotes the element V — 1 of the field F, i that of the algebra Z.)
The multiplication table of Z becomes

b\ = blt bl = b2, b1b2 = b2b1 = 0. (6.8)

Calling this algebra Y,
Y=Y- = Y'=Yy=YA=Yv. (6.9)

On the other hand, if we apply the same transformation to Z', we
obtain the algebra with multiplication table

62 = &2 = 0 j 6 1 6 2 = &2, &2&i = &i- (6.10)

This is a special case of the algebras to be considered in § 10, where it
is denoted A\\ being equivalent to Z' it is palintropic, and we shall
require to use this fact in § 9.

§ 7. Quaternions transposed.
Let Q be the algebra of quaternions, with basis 1, i,j, k, over the

real field. It will be shown that Q' is palintropic, and a similar proof
applies to Q\ Q~, Q" and QA, being the straight transposes of Q, Q'
and Q\ have the same property.

1
i
3
k

The
1

1
i
j
k

multiplication
i

i
— 1
-k

3
Q

3

3

ft
-

— 1

— i

tables are

k

k
—j

i

- 1 ,

L
i
3

s-

1

1
—i

-3
-k

i

i
1

ft
-

Q'

j

3
-k

1
i

ft
-

ft
-

3
— i

1.

We wish to prove that, in Q', q%b = qba, where
q= al+pi + yj+8k.

This is certainly true when q = al + f3i, for the multiplication table
shows that all such q's belong to a subalgebra of Q' identical with the
palintropic algebra Z' of § 6; thus the subalgebra of Q' with basis
(1, i) is palintropic.

Apply to Q the linear transformation Q -> Q° which represents
geometrically some rotation of axes in the yi-space, such that one of
the new axes has the direction of the vector j3i + yj + 8k. The
equations of transformation are of the form

1 = 1,
I = 0?2 + y2 + S2)-Mi3i + yj + 8k)

= Au i + A12 j + A13 k,
J = A21 i + A22 j + A23 k,
K = \3I i + A32 j + A33 k,
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where (Xy) is an orthogonal matrix, and the (four-rowed) matrix of this
transformation is therefore also orthogonal. The transformed algebra
Q° with basis (1, / , J, K) has a multiplication table of the same form
as Q; that is Q = Q°, and hence Q' = (Q°)'. Moreover, since the trans-
formation is an orthogonal one, the same orthogonal transformation
carries Q' into (<2°)'. The general element of Q' with which we started
belongs to the palintropic subalgebra (1, / ) ; thus in Q'

gab _ gbat

and we have shown that Q' is palintropic.

§8. Complex numbers: the direct algebra.

Starting with the multiplication table of Z in (6.1) and forming
the direct square, we obtain the multiplication table

Z*:

This may be transformed into a direct sum, namely
a b e d

2.Z:

O n

«12

O21

«22

«11

«11

«J2

«21

«22

«12

«12

— O i l

o22

— 021

O21

O21

O-22

- O n

~«12

a22

a 2 2

— O21

— a ] 2

«11

a
6
c

a
6
0
0

b
— a

0
0

0
0
c
d

0
0
d

—c,
by applying the transformation

0 = 1(811 + 822), 6 = 1 (o12 — a2i), c.=r$(an — a22), d = £ (a12 + «2i)-

This is a combination of an orthogonal transformation a1 =
[an + a22) /\/2, etc., and a change of scale a = a1/y'2, etc. Thus,
using — in the sense of conformity (§ 3 g),

Z2=2Z.

It follows that the transposed algebras Z', Zs have the same property.
It also follows that if m is any positive integer

(Z*)m = 2m~1Z*.

Now Z° is the real field F, and Z =^2F; thus the direct algebra P(Z)
is of order 2 and has multiplication table
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and of course P (Z*) has the same form. Any algebra belonging to
P (Z*) is equal to a direct sum aF + j3Z* and is therefore palintropic.

If = indicates equivalence, the same facts (Z*)2 = 2Z*, Z*=%=2F
hold; so in this case also, as remarked in §5, P{Z) = P(Z*). On the
other hand, if we take the coefficient field F of Z to be the complex
field, = still denoting equivalence, (6.8) shows that Z = 2F, Zn = 2nF.
In this case P(Z) is of order 1, that is to say it is isomorphic with its
coefficient field; whereas P(Z'), P(Z") are still of order 2. In either
case, any algebra belonging to P(Z*) is equal to a direct sum
aF + f}Z* and is therefore palintropic.

If = signifies congruence or isotopy and F is the complex field,
then again P(Z) is of order 1 since Z = 2F, but now of course
P(Z) = P(Z*). Any algebra belonging to P(Z*) is equal to a direct
sum aF; it does not follow that it is palintropic.

§ 9. A belian group algebras transposed.
The group algebra of a finite group means the linear algebra,

over some field F, whose basis consists of the elements of the group
in some definite order, and which has the same multiplication table
as the group.

(a) We consider first the cyclic group of order n, and denote the
group algebra Cn. I t will be shown that C* is palintropic. To prove
this, it will evidently be sufficient if we assume that F includes the
complex field and prove the theorem for C'n.

The multiplication table of Cn may be written

Cn: aiai = ai+i

where the suffixes run from 1 to n, or 0 to n — 1, and ar is identified
with as if r = s (mod n). Hence in C'n, a(ai+.j = a ;̂ tha t is

C'n: aiOj^a^i.

Take to to be a primitive nth root of unity, and apply to C'n the
linear transformation

b, = —' (ao + cjia1+ .... +to»as+ ....+ o / » - » i a ^ ) .

Then, in C'n, atbj= o>sibj. Hence

bi bj = — E u>li a, bj = — 2 u«i+» 6,

= bj if i + j — 0 (mod n),

= 0 otherwise.
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C'n is therefore equivalent to the algebra of order n with multiplica-
tion table

&o = bo> b-i bn_1 = &„_! br bn_r = 6n_r, I

=O or n). >

Thus C'n is equivalent to the direct sum of one or two algebras
isomorphic with F and \{n — 1) or \{n — 2) algebras identical with
the algebra A\ (cf. 6.10). These are all palintropic algebras, the
direct sum of a number of such algebras is palintropic, and the
theorem is proved.

It may be remarked that the linear transformation used is not
orthogonal or conformal, so that from C'n = aF + /3A2 = aF + flZ',
we cannot deduce Cn = aF + pA2

v = aF + fiZ.
(b) An abelian group is a direct product of cyclic groups. The
group algebra G is therefore the direct product of a number of
algebras of the form Cn, say G = II Cn.. Each C'n, is equivalent to an
algebra of the form at F + fiiA\. Hence, using = in the sense of
equivalence,

G'=Yl C'n.= n ( a ^ + ptA±) = H{atF+piZ').
It follows that G' belongs to P(Z'), can be expressed as aF + f$Z', and
is palintropic.

§10. A class of palintropic algebras.

Let An denote the commutative non-associative linear algebra of
order n with multiplication table

= o2> a§ = a3 afl_1 = an, a% = alt

aiaj = 0
Such algebras were considered in N.A.M.I.C. § 3 and shown to be
palintropic. The right and left transposes are:

" : \ UiQ-j = 0 (j=ki + l, m o d n).

{ a2a1 au a3a2 a2 axan = an

I t may be shown by the same method of proof as was used for An

that these algebras also are palintropic; and it will be noticed that
A"2, A2 are complex linear transforms of Z\ Z' (cf. end of §6).

Form the direct product of two such algebras Am, An. Take the
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basis as (aai) where a and i take positive integer values, oai being
identified with api if a = /} (mod m) and i=j (mod n). The multi-
plication table is:

«S, = «.+ M+1, (10-1)
aai dp, = 0 if aai =j= ow. (10.2)

Let p = the h.c.f. of m and n, and ^ = their l.c.m., so that
pq = mn. Then the mn equations (10.1) can be rearranged in p cycles
of q equations, each cycle being of the form

X j = X<z, Xa = #3, . . . . Xq = X±.

Thus with a suitable change of the order of its basis elements,
Am x An becomes the direct sum of p algebras Aq. If we interpret =
in the sense of § 3 (e), we have

AmxAn=pAq; (10.3)

and this is the multiplication table of the direct algebra
P(Alt A2, A3 ). It follows that A* x A* = p A*.

As suggested in § 5, the direct algebra may be simplified by a
change of scale. Putting A'n = n Bn, we have

mBm x nBn = Am x An = pAq = pqBq!

so that

BmxBn = Br (10.4)

§11. Postscript on quasi-groups. (Added 13th November 1944).

A quasi-group1 is a multiplicative system of elements a, b,c
in which an equation of the form ab = c is always uniquely soluble
for each of a, b and c, given the other two. (Thus an associative
quasi-group is a group.) If finite, of order n, its multiplication

• table is a latin square, and is characterised by a cubic matrix of
special type, analogous to a (square) permutation matrix, such that
every row, column and file contains one 1 and n — 1 zeros.

The idea of transposing a quasi-group was mentioned but not
developed by Bruck2. He referred to it as a " slight broadening of
the concept of isotopy . . . . by admitting to the equivalence class of
a quasi-group five other quasi-groups formed essentially by permuta-
tion of the letters a, b, c in the relation-aft = c." This comes to the

l B . A. Hausmann and Oystein Ore, "Theory of quasi-groups," Amer. Journ. of
Math,., 59 (1937), 983-1004. • - •

S R . H. Bruck, "Some results in the theory of quasi-groups," Trans. Amer. Math.
Soc, 55(1944), 19-52.
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same thing as transposing the cubic matrix. I t may be noted that if
ab = c is written c + b = a, we obtain the left transpose by inter-
preting -f- as multiplication.

Murdoch1 defines an abelian quasi-group as one in which the law
ab.cd = ac.bd holds; and his Corollary to Theorem 10 is equivalent to
the statement that an abelian quasi-group has the palintropic
property amn = anm. Now it is easily shown that the transposes of an
abelian group are abelian (and therefore palintropic) quasi-groups;
e.g., the law ab.cd = ac.bd in the left transpose is the same as
(ab-1) (cd-1)'1 = (ac'1) (bd'1)'1 in the abelian group. It follows that
in a transposed abelian group algebra ((?*) the property ab.cd = ac.bd
holds among the basis elements, and therefore generally.

Now the proofs of Murdoch's Theorem 10 and Corollary apply
with only a minor verbal change (" cyclic groupoid " for " cyclic quasi-
group " in the definition of a power) to linear algebras. Thus if a
linear algebra has the property ab.cd = ac.bd, i t is palintropic. This
gives therefore an alternative proof of my result (§9 b) that the
transposes of an abelian group algebra are palintropic algebras.

It may be observed further that for the proof of Murdoch's
Corollary (though not for the Theorem 10 from which it is derived) it
is sufficient to assume ap a".aT a' = ap ar.aq a' in place of the stronger
abelian law. If this weaker assumption holds for a particular
element a and arbitrary powers p, q, r, s, it then follows that
anin = anm; if it holds for all a, we have the palintropic property.
This applies to linear algebras as well as quasi-groups. Now in all
the palintropic algebras which I have obtained (here and in C.T.A.
and N.A.M.I.C), I have verified that powers of an arbitrary element
obey this weaker assumption, in other words that

(p + q) + {r + 8) = (p + r) + (q + s)

holds in the logarithmetic. The question arises, which I must leave
here unanswered, whether palintropic algebras exist for which this is
not the case.

•{Added in proof.]

Transposed algebras have been considered by R. H. Bruck in a
recently published paper, " Some results in the theory of linear non-

1 D. C. Murdoch, "Quasi-groups which satisfy certain generalized associative
laws," Am>r. Journ. of Math., 61 (1939), 509-522.
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associative algebras," Trans. Amer. Math. Soc, 56 (1944), 141-199,
where they are called associated algebras. Bruck uses trilinear forms
in place of cubic matrices, and refers to R. M. Thrall, " On projective
equivalence of trilinear forms," Ann. Math., 42 (1941), 469-485, for a
bibliography. He observes the invariance of isotopy under
transposition (my § 3a). He also shows that the property of being a
division algebra is unaffected by transposition, and uses this in a
study of non-associative division algebras.

Bruck has referred me in correspondence to a paper, encountered
by him since his own was written, in which transposed algebras were
introduced thirty years ago. See J. B. Shaw, " On parastrophic
algebras," Trans. Amer. Math. Soc, 16 (1915), 361-370. Among
other things, Shaw considers under what circumstances multiplication
in the transposed algebras can be defined in terms of multiplication in
the original algebra, as in my § 6. He shows that the algebra must
be a Dedekind (i.e., semi-simple) algebra. The property in question
is not always invariant for a change of basis, but holds if the
Dedekind algebra is in its canonical form. There is an obvious
misprint in Shaw's definitions, p. 362, where the terms antiprepara-
strophic and antipostparastrophic (corresponding to my X", XA) are
reversed : doubt about this is dispelled in § 7, p. 365.
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