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CATEGORICAL FOUNDATIONS OF FORMALIZED CONDENSED
MATHEMATICS

DAGUR ASGEIRSSON , RICCARDO BRASCA, NIKOLAS KUHN, FILIPPO ALBERTO EDOARDO
NUCCIO MORTARINO MAJNO DI CAPRIGLIO , AND ADAM TOPAZ

Abstract. Condensed mathematics, developed by Clausen and Scholze over the last few years, proposes
a generalization of topology with better categorical properties. It replaces the concept of a topological space
by that of a condensed set, which can be defined as a sheaf for the coherent topology on a certain category
of compact Hausdorff spaces. In this case, the sheaf condition has a fairly simple explicit description,
which arises from studying the relationship between the coherent, regular, and extensive topologies. In this
paper, we establish this relationship under minimal assumptions on the category, going beyond the case
of compact Hausdorff spaces. Along the way, we also provide a characterization of sheaves and covering
sieves for these categories. All results in this paper have been fully formalized in the Lean proof assistant.

§1. Introduction. The main goal of condensed mathematics (see, e.g., [7, 14, 15]) is
to provide a better framework to study the interplay between algebra and geometry.
To do this, one has to generalize the notion of a topological space to obtain better
categorical properties; the category of condensed sets achieves this remarkably well.
A condensed set is defined as a sheaf for the so-called coherent topology on the
category of compact Hausdorff spaces. The category of condensed sets contains a
very large class of topological spaces as a full subcategory. In addition, it almost
forms a topos1, and the category of condensed abelian groups is a particularly
well-behaved abelian category.

The formalization of the theory of condensed sets started with the Liquid Tensor
Experiment, see [10, 16]. In that work the authors formalized the definition and
various properties of the category of condensed abelian groups and of liquid vector
spaces, including the main result [14, Theorem 9.1], using the Lean proof assistant.
In Section 2 we will offer a brief outline both of Lean and of its main mathematical
library mathlib.

Even if the achievements of the Liquid Tensor Experiment are spectacular, most
of the work is not suitable to be integrated into a large mathematical library like
mathlib. Indeed, a lot of results in the Liquid Tensor Experiment were stated and
proven in an ad-hoc way and are not applicable in other contexts. This approach
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1There are some set-theoretic issues that prevent it from satisfying all the axioms of a topos; these

can be resolved in various ways and, for all practical purposes, the category of condensed sets can be
regarded as a topos.
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2 DAGUR ASGEIRSSON ET AL.

contradicts many of the design decisions prevalent throughout mathlib, which we
briefly discuss in Section 2.2.

The main goal of our work is to formalize the foundations of the theory of
condensed sets in an organic way, being as general as possible in all the various
prerequisites. Indeed, the present work has already been incorporated in the mathlib

library. Besides correctness, which is checked by Lean, this ensures that the results
are stated in a way that is compatible with the rest of the library and that they can
be used by others.

The goal of this paper is to prove, in the most general setting, results relating the
coherent, regular and extensive topologies on a category, as well as characterizations
of their sheaves. While the results we discuss in this paper are known to some experts
as part of the folklore, we provide both a detailed exposition, while simultaneously
minimizing various assumptions. The more general approach we take in this paper
was motivated primarily by the formalization of these results.

Throughout the text, we use the symbol � for external links. Almost every
mathematical statement and definition will be accompanied by such a link directly
to the source code for the corresponding statement in mathlib. The only exceptions
are results that we use in the informal proof but not in the formal one. In particular,
all relevant results are completely formalized in mathlib. In order for the links to
stay usable, they are all to a fixed commit to the master branch (the most recent one
at the time of writing).

Here is a brief outline of the paper. In Section 2 we give a brief overview of
the Lean proof assistant and its mathematical library mathlib, explaining the
general philosophy behind the library and the main design decisions that have
been taken, focusing on the aspects that are most relevant to the present work.
In Section 3, we review the theory of sheaves for Grothendieck topologies as it is
formalized in mathlib: this section is standard, but we think it is a good idea to
fix the notation and the terminology, as the literature is not always consistent. In
Section 4, we introduce the notions of strict, regular, and effective epimorphism.
We prove in Proposition 4.12 that the effective epimorphisms in the category C
of topological spaces are the quotient maps and Proposition 4.13 characterizes
effective epimorphisms in C as the continuous surjections. Strict, regular, and
effective epimorphisms are then used in Section 5 to define the regular (resp.
extensive, coherent) topology on a category satisfying the technical condition of
being preregular (resp. finitary extensive, precoherent). We prove in Proposition 5.8
that a preregular and finitary extensive category is precoherent and in Proposition 5.9
that the coherent topology is generated by the union of the regular and extensive
topologies. In Section 6, we study sheaves on these three topologies: first of all we
prove in Propositions 6.1, 6.6, and 6.8 that the three topologies are subcanonical. We
then give in Propositions 6.4, 6.5, 6.13, and 6.14 various conditions for a presheaf to
be a sheaf (characterizing sheaves in terms of the preservation of finite products and
equalizers). We then give in Proposition 6.15 a condition for a functor2 to induce an
equivalence between the categories of sheaves for certain topologies. In Section 7,

2In this work, we follow the convention that all functors are, by definition, covariant; we refer to
contravariant functors as presheaves.
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CATEGORICAL FOUNDATIONS OF FORMALIZED CONDENSED MATHEMATICS 3

we apply our general categorical framework to the theory of condensed sets, proving
our main theorems that we now summarize.

Consider the following three categories, each containing the next as a full
subcategory, and whose morphisms are continuous maps:

• CompHaus: the category of compact Hausdorff spaces �.
• Profinite: the category of profinite spaces, that we define, following mathlib, as

totally disconnected compact Hausdorff spaces. This category is equivalent to
the pro-category of the category of finite sets (this last statement has not yet
been formalized; see [3, Section 6] for a more detailed discussion of the state
of the category Profinite in mathlib) �.

• Stonean: the category of Stonean spaces, whose objects are extremally
disconnected compact Hausdorff spaces �. The condition of being extremally
disconnected means that the closure of every open set is open. These spaces are
precisely the projective objects in CompHaus (see [8, Theorem 2.5] and �). It
is easy to see that Stonean spaces are totally disconnected, so we have a fully
faithful inclusion Stonean ⊆ Profinite �.

Let C be any of these categories. We prove in Propositions 5.8 and 7.1 that
the categories C fit into the general framework we describe in this paper. As a
consequence, we recover the following two key results (stated here as Theorems 7.4
and 7.7) which have appeared early on in the theory of condensed mathematics [15,
Definition 1.2 and Proposition 2.7].

Theorem. We have the following characterizations of sheaves on C.
• When C is CompHaus or Profinite, a presheaf X : Cop → Set is a sheaf for the

coherent topology on C if and only if it satisfies the following two conditions:
1) X preserves finite products: in other words, for every finite family (Ti ) of

objects of C, the natural map

X
(∐
i

Ti

)
−→

∏
i

X (Ti )

is a bijection.
2) For every surjection � : S → T in C, the diagram

X (T ) X (S) X (S ×T S)
X (�)

is an equalizer (the two parallel morphisms being induced by the projections
in the pullback).

• A presheaf X : Stoneanop → Set is a sheaf for the coherent topology on Stonean
if and only if it preserves finite products: in other words, for every finite family
(Ti ) of object of C, the natural map

X
(∐
i

Ti

)
−→

∏
i

X (Ti )

is a bijection.

Theorem. The inclusion functors Profinite → CompHaus and Stonean →
CompHaus induce equivalences of categories between the categories of sheaves for the
coherent topology on CompHaus, Profinite, and Stonean.
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4 DAGUR ASGEIRSSON ET AL.

Recall that a condensed set is defined as a sheaf for the coherent topology
on CompHaus. Thanks to the second theorem, the category of condensed sets is
equivalent to the category of sheaves for the coherent topology on Profinite or
Stonean.

In fact these theorems hold for very general target categories other than that
of sets, they certainly hold for the category of modules over a ring, for example.
Regarding condensed objects simply as product-preserving presheaves on Stonean
allows us to perform many constructions “objectwise” on Stonean. For example,
limits and filtered colimits of condensed sets are given objectwise on Stonean; in
the setting of condensed abelian groups or modules, the situation is even better—
all colimits are computed objectwise on Stonean. Furthermore, epimorphisms
of condensed objects in a sufficiently nice concrete category are simply those
morphisms X → Y which satisfy the property that the induced map X (S) → Y (S)
is surjective for every object S of Stonean. These two facts are essential in proving
that condensed abelian groups form an abelian category which satisfies all the same
of Grothendieck’s AB axioms as the category of abelian groups. This result has not
yet made it into mathlib, but is well within reach.

§2. Mathlib. The results we describe in this paper have all been formalized
using the Lean interactive theorem prover and incorporated into its open-source
formalized mathematical library mathlib [12]. The Lean community maintains
mathlib as a large monolith with a number of overarching design decisions,
which must be taken into account in all mathematical contributions to it. This
section explains the particulars of mathlib that played a key motivating role in the
presentation results we discuss in this paper. While we do not provide an introduction
to the Lean theorem prover itself, we refer the reader to [13] for a comprehensive
discussion.

2.1. Mathematical cohesion. One of the key design decisions made in mathlib is
that it strives to be a cohesive library. This point of view manifests concretely in a
few ways. Most notably, it often means that mathematical concepts usually have one
“official” definition in mathlib, and various related definitions and lemmas are built
around such official definitions (this collection of ancillary results is often referred
to as “the API”) allowing users to work with them effectively. The importance of
this approach cannot be understated when it comes to formalization of advanced
mathematics.

mathlib allows formalizers to efficiently use the constructions from the library,
even when their work lies at the intersection of several subjects, which condensed
mathematics certainly does. To take a small example, the definition of a condensed
set mentions the category of compact Hausdorff spaces, and one frequently has
to use both the topological properties of the objects of this category and the more
abstract properties of the category itself. The cohesive nature of mathlib ensures that
the interplay between these two aspects of compact Hausdorff spaces runs smoothly.
This is in contrast with the alternative approach where there are separate libraries
for different areas of mathematics, which can potentially be problematic should the
same concept appear in two different libraries following different conventions, since
results from one library would not be directly compatible with results in the other.

https://doi.org/10.1017/jsl.2024.69 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.69


CATEGORICAL FOUNDATIONS OF FORMALIZED CONDENSED MATHEMATICS 5

2.2. The “right” generality. A related and equally important design decision in
mathlib is that mathematical contributions should be developed in the “right” level
of generality. Although the utility of this approach is clear—a more general result
applies in more contexts—it is often more convenient for mathematicians to work
in the correct level of generality for their current project. However, when making
contributions to mathlib, formalizers are encouraged to keep in mind the cohesive
and interconnected nature of the library since it is often impossible to know how an
initial contribution may be used in the future, and in what context.

Nevertheless, it is important to mention that it is usually difficult to find the right
level of generality for mathlib at first. It often happens that preexisting code in
mathlib is refactored to bring it closer to mathlib prescribed ideals. In fact, such a
refactoring process often occurs in conjunction or in parallel with API development
as discussed above.

2.3. Contribution process. Ensuring that the design decisions of mathlib are
maintained requires significant experience with the library. In practice, this means
that contributions must pass a process resembling peer review, whereby “pull
requests” are opened for potential contributions, which are then reviewed by a
team of reviewers and maintainers before being incorporated into the library.

2.4. Condensed mathematics. Having discussed some of the key design decisions
of mathlib, and how these relate to contributions of formalized mathematics within
the library, it should come as no surprise that the development of condensed
mathematics in mathlib follows the same lines. The goal of this paper is to describe
the mathematics behind the foundations of condensed mathematics in a way which
is suitable for inclusion in mathlib. In fact, the general categorical approach we
outline in this paper was originally motivated by the goal of finding the “right” level
of generality appropriate for its inclusion in mathlib.

2.5. Size issues. Condensed mathematics is known to raise subtle set-theoretic
issues, see [15, Remark 1.3]. These can be solved in different ways, one is explained
in [15, Appendix to Lecture II] and another in [4, Sections 1.2–1.4], the latter being
closer to the approach used in mathlib. One advantage of formalizing the theory is
to guarantee that all these problems are solved in a precise way. Roughly speaking,
the idea is to use Grothendieck’s universes. These are more or less built into the
axiomatic framework of Lean, which is a version of dependent type theory relying
on the calculus of inductive constructions. For a more detailed explanation of the
foundations of Lean, we refer the reader to [6].

The basic objects of the theory are terms and types. Every term has a type, and a
type can be regarded as a collection of elements, which are the terms of that type.
In this way, types replace sets in their everyday use in mathematics as “collections
of elements”. The notation a : A is used to signify that a is a term of the type A.
To avoid an analogue of Russell’s paradox known as Girard’s paradox, Lean uses a
hierarchy of universes indexed by the natural numbers

Type = Type 0

Type 0 : Type 1

Type 1 : Type 2

...
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6 DAGUR ASGEIRSSON ET AL.

Mathlib’s definition of a category has two universe parameters u and v. The
definition consists of a “set of objects” (C : Type u), and for every pair of objects
X Y : C, of a “set of morphisms” (X → Y : Type v). Throughout this paper, we
will use the word “set” informally in this way, letting Lean take care of making sure
that the “set” in question has a high enough universe level. For a concrete example,
see Definition 3.11 where we mention the top sieve on an object X in a category C.
This is supposed to be the “set of all morphisms in C with target X”. When C is
a large category, this is not a set in the sense of set-theoretic foundations, but as
explained above, our use of the word “set” is not abusive in this case.

mathlib’s axioms are known to be equivalent to Zermelo–Fraenkel set theory plus
the axiom of choice and the existence of n inaccessible cardinals for all n ∈ N, see
[6, Corollary 6.8]. In particular, the existence of the hierarchy of universes (and their
precise behavior with respect to various constructions) is provable in ZFC using a
relatively weak assumption about large cardinals.

§3. Preliminaries.

3.1. Coverages. There are various ways to formulate the notion of a site and
Grothendieck topology on a category C, which allows us to define the notion of a
sheaf on C. In order to fix the terminology, we start this section by recalling some
basic definitions and results in this area. The terminology we describe here matches
the terminology used in the corresponding definitions that can be found in mathlib.

Fix a category C throughout this section.

Definition 3.1. � Let X be an object of C. A presieve S on X is a set of
morphisms with target X. If f ∈ S is a morphism, we will use the notation domf
for the domain of f.

Remark 3.2. It is sometimes convenient to consider an indexed family of
morphisms (fi : Xi → X )i∈I , indexed by some set I. Of course, any such family
yields a presieve S on X that contains only the morphisms fi for i ∈ I . Conversely,
any presieve can be considered as a family indexed by its elements.

The notion of an indexed family of morphisms over X is not exactly equivalent to
that of a presieve over X, as an indexed family may have duplicates while a presieve
cannot. However, it is sometimes convenient to use indexed families as opposed to
presieves, and we will allow ourselves to freely go back and forth as discussed above.

Definition 3.3. � � � Let F : Cop → Set be a presheaf on C and let S be a
presieve on an object X of C. A family of elements for S is a collection (xf)f∈S
where xf ∈ F (domf) for all f ∈ S. We say that such a family of elements (xf)f is
compatible provided that for all commutative squares in C of the form

Y domf

domf′ X,

g

fg′

f′

with f,f′ ∈ S, one has F (g)(xf) = F (g ′)(xf′). We say that x ∈ F (X ) is an
amalgamation for (xf)f∈S if F (f)(x) = xf for all f ∈ S.
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Definition 3.4. � We say that a presheaf F : Cop → Set is a sheaf for the presieve
S if for every compatible family of elements for S there exists a unique amalgamation.

Remark 3.5. If a presieve S on X is constructed out of an indexed family
(fi : Xi → X )i∈I such that for all i, j ∈ I , the pullback Xi ×X Xj exists, one can
rephrase the sheaf condition for the presieve as saying that the diagram

F (X )
∏
i∈I
F (Xi)

∏
i,j∈I
F (Xi ×X Xj)

is an equalizer, where the map on the left is given by the collection
(
F (fi)

)
i∈I and

the two parallel maps are induced by the projections in the pullbacks. �

Definition 3.6. � A coverage on C is the datum of a set of presieves on each
object X of C, called covering presieves, satisfying the following property: For every
morphismf : X → Y in C and every covering presieve S on Y, there exists a covering
presieve T on X such that for each g ∈ T , the composition f ◦ g factors through
some morphism h ∈ S.

Definition 3.7. � A sieve S on an object X of C is a presieve on X which is
downwards closed in the sense that for each f ∈ S and every g that is composable
with f, we have that f ◦ g ∈ S. The sieve 〈R〉 generated by a presieve R is the sieve
consisting of all morphisms that factor through a morphism of R; this is the smallest
sieve containing R. We also call 〈R〉 the sieve associated with R.

Remark 3.8. � A sieve S on X can be regarded as a full subcategory of the
overcategory C/X , and thus it comes equipped with a forgetful functor S → C. The
sieve S induces a cocone over this functor, whose cocone point is X, and whose
coprojections are the morphisms in S. This cocone will be used later.

Proposition 3.9. � Let X be an object in C and let S be a presieve on X. A presheaf
F is a sheaf for S if and only if it is a sheaf for 〈S〉.

Proof. See [9, Lemma C.2.1.3] or mathlib. �
Definition 3.10. � The pullback of a sieve S = (gi : Yi → Y )i∈I on Y along a

morphism f : X → Y is the sieve on X consisting of all morphisms g : Yi → X (for
i ∈ I ) such that f ◦ g ∈ S. It is denoted f∗S.

Definition 3.11. � A Grothendieck topology on C is the datum of a set of sieves
on each object X of C, called covering sieves satisfying the following properties:

GT-1) The top sieve—consisting of all morphisms in C with target X—is a
covering sieve on X.

GT-2) For every covering sieve S on Y and every morphism f : X → Y , the
pullback f∗S is a covering sieve on X.

GT-3) Given a covering sieve S on Y, suppose another sieve R on Y satisfies the
property that for every f : X → Y ∈ S, f∗R is a covering sieve on X.
Then R is also a covering sieve on Y.

Lemma 3.12. � Let T be a Grothendieck topology on C, let X be an object of C,
and S and R be two sieves on X such that S is contained in R (meaning that every
morphism in S is in R). If S is a covering sieve for T , then R is a covering sieve as well.
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8 DAGUR ASGEIRSSON ET AL.

Proof. By axiom GT-3), it suffices to show that for every f : Y → X in S, f∗R
is a covering sieve of Y. By axiom GT-1), it suffices to show thatf∗R contains every
morphism to Y. So let g : Z → Y be a morphism. Since f ◦ g is in S, it is in R,
meaning that g is in f∗R, as desired. �

Definition 3.13. � � The coverage associated with a Grothendieck topology
T is the coverage whose covering presieves are those whose associated sieve is a
covering sieve in T . The Grothendieck topology generated by a coverage S is the
intersection of all Grothendieck topologies whose associated coverage contains S.

Another definition of the Grothendieck topology T generated by a coverage can
be given in terms of a saturation process. To define this, we start by ordering the
collections of sieves on an object X by objectwise inclusion; given a coverage S, its
saturation is the smallest family

(
C (X )

)
X∈C of collections of sieves satisfying:

Sat-1) For every object X, the top sieve on X is in C (X ).
Sat-2) For every object X and every covering presieve S on X in S, we have

〈S〉 ∈ C (X ).
Sat-3) For every object X and every pair S,R of sieves on X such that S ∈ C (X )

and such that for each f ∈ S the pullback f∗R belongs to C (Y ), we have
that R lies in C (X ).

In terms of the dependent type theory underlying Lean, requiring that this be “the
smallest family” with a certain property is particularly handy, as it can be formalized
in terms of inductive types, a notion that lies at the very core of the foundational
set-up of Lean and therefore whose implementation and development is remarkably
well integrated. This inductive construction is the one that is currently implemented
in mathlib as follows �:

inductive saturate (K : Coverage C) : (X : C) → Sieve X → Prop where

| of (X : C) (S : Presieve X) (hS : S ∈ K X) : saturate K X (Sieve.generate S)

| top (X : C) : saturate K X Top

| transitive (X : C) (R S : Sieve X) :

saturate K X R →
(∀ Y : C|} {|f : Y −→ X|}, R f → saturate K Y (S.pullback f)) →
saturate K X S

To prove that the saturation of S is in fact a Grothendieck topology, axioms
GT-1) and GT-3) follow at once from the defining properties Sat-1) and Sat-3) of
the saturation. Verifying property GT-2) requires a bit more work and is achieved
by applying the principle of induction on this inductive type. The formalization of
this property is �:

def toGrothendieck (K : Coverage C) : GrothendieckTopology C where

sieves := saturate K

top_mem’ := .top

pullback_stable’ := by ... --the inductive proof mentioned above

transitive’ X S hS R hR := .transitive _ _ _ hS hR
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It follows quite easily that the definition through saturations coincides with the
one in Definition 3.13, an equivalence whose proof is formalized in the theorem �:

theorem toGrothendieck_eq_sInf (K : Coverage C) : toGrothendieck _ K =

sInf {J | K ofGrothendieck _ J } := by ...

Definition 3.14. � Let T be a Grothendieck topology on C. A presheaf
F : Cop → Set is a sheaf for T if it is a sheaf for every covering sieve.

Proposition 3.15. � If a Grothendieck topology T is generated by a coverage,
then a presheaf is a sheaf if and only if it is a sheaf for every covering presieve in the
coverage.

Proof. A proof can be found in [9, Proposition C.2.1.9]. The proof that appears
in mathlib uses induction based on the inductive definition of the Grothendieck
topology generated by a coverage discussed above. If one uses Definition 3.13
instead, a proof can be obtained by using the equivalence of this definition with
the inductive construction. �

§4. Effective epimorphisms. In the literature, there are three related conditions
on a morphism, designed to capture the property of surjectivity better than the
standard notion of an epimorphism. These are called strict, regular, and effective
epimorphisms, respectively; each property implies the previous one. However, each
property requires more assumptions on the underlying category than the previous
one, and when the assumptions to define effective epimorphism hold, then strict
implies effective. So, in a sense, these conditions are all equivalent. This is why it
was decided to use the name effective in mathlib for the most generally applicable
notion, usually called strict. For a more precise explanation of this justification of
terminology, see the text following Definition 4.6.

In the category of topological spaces and the category of compact Hausdorff
spaces, the effective epimorphisms are precisely the quotient maps. In the latter,
the quotient maps are simply the continuous surjections, so the properties of
being surjective, an epimorphism and an effective epimorphism all coincide (see
Propositions 4.12 and 4.13).

Definition 4.1. � A morphism f : X → B in a category C is a regular
epimorphism if it exhibits B as a coequalizer of some pair of morphisms
g1, g2 : Z → X .

Remark 4.2. � If a regular epimorphismf : X → B has a kernel pair (meaning
that the pullback X ×B X exists), then B is the coequalizer of the two projections
X ×B X → X .

Definition 4.3. � A morphism f : Y → X in a category C is an effective
epimorphism if it satisfies the following condition: for every morphism e that
coequalizes every pair of parallel morphisms which f coequalizes, there exists a
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unique morphism d such that d ◦ f = e:

Z Y X

W.

g1

g2

f

e
∃! d

Remark 4.4. It is easy to check that if f : Y → X is an effective epimorphism,
then it is an epimorphism. Indeed, given a diagram

Y X W,
h1

h2

f

such that h1 ◦ f = h2 ◦ f, observe that h1 ◦ f equalizes every pair of morphisms
g1, g2 : Z → Y equalized by f. In particular, there is a unique map d : X →W such
that d ◦ f = h1 ◦ f and since h1 and h2 both satisfy this property, we deduce h1 = h2.

In mathlib, the notion of effective epimorphism is implemented in two steps.
First, we define a structure EffectiveEpiStruct that contains the data required
to be an effective epimorphism:

structure EffectiveEpiStruct {X Y : C} (f : Y −→ X) where

desc : ∀ {W : C} (e : Y −→ W),

(∀ {Z : C} (g1 g2 : Z −→ Y), g1 � f = g2 � f → g1 � e = g2 � e) → (X −→ W)

fac : ∀ {W : C} (e : Y −→ W)

(h : ∀ {Z : C} (g1 g2 : Z −→ Y), g1 � f = g2 � f → g1 � e = g2 � e),

f � desc e h = e

uniq : ∀ {W : C} (e : Y −→ W)

(h : ∀ {Z : C} (g1 g2 : Z −→ Y), g1 � f = g2 � f → g1 � e = g2 � e)

(m : X −→ W), f � m = e → m = desc e h

The field desc provides, given a morphism e : Y →W which coequalizes every
morphism that f coequalizes, the morphism d : X →W ; the field fac is a proof
that d ◦ f = e; and the field uniq is a proof that d is unique.

We then define a class EffectiveEpi, which is a proposition saying that the type
of EffectiveEpiStruct’s associated with f is nonempty3 :

class EffectiveEpi {X Y : C} (f : Y X) : Prop where

effectiveEpi : Nonempty (EffectiveEpiStruct f)

Definition 4.5. Given a family of morphisms f = (fi : Xi → B)i∈I and a pair
of morphisms gj1 : Z → Xj1 and gj2 : Z → Xj2 , we say that the family coequalizes
gj1 and gj2 if fj1 ◦ gj1 = fj2 ◦ gj2 .

Definition 4.6. � A family of morphisms (fi : Xi → B)i∈I in a category C is
effective epimorphic if it satisfies the following universal property:

3The fact that EffectiveEpi is a class allows Lean to use typeclass inference to infer that a morphism
is effective epimorphic in some cases: for example, in CompHaus, given a morphism f with an [Epi f]

instance, Lean can automatically infer an instance EffectiveEpi f. Moreover, the internal axiomatic
of Lean guarantees that two terms of a proposition are definitionally equal: in particular, two proofs of
non-emptiness of EffectiveEpiStruct f automatically coincide, whereas producing explicit witnesses
might lead to different outcomes, and that would often be troublesome.
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Given any family (ei : Xi →W )i∈I coequalizing every pair of morphisms
gi : Z → Xi , gj : Z → Xj which f coequalizes, there exists a unique morphism d
such that for all i, d ◦ fi = ei :

Z Xi

Xj B

W.

gi

fi
gj

fj

ei

ej

∃!d

The notion of effective epimorphic family is formalized in a similar two-step
process where we first define

structure EffectiveEpiFamilyStruct {B : C} {α : Type*}

(X : α → C) (� : (a : α) → (X a −→ B)) where

desc : ∀ {W} (e : (a : α) → (X a −→ W)),

(∀ {Z : C} (a1 a2 : α) (g1 : Z −→ X a1) (g2 : Z −→ X a2),

g1 � � _ = g2 � � _ → g1 � e _ = g2 � e _) → (B −→ W)

fac : ∀ {W} (e : (a : α) → (X a −→ W))

(h : ∀ {Z : C} (a1 a2 : α) (g1 : Z −→ X a1) (g2 : Z −→ X a2),

g1 � � _ = g2 � � _ → g1 � e _ = g2 � e _)

(a : α), � a � desc e h = e a

uniq : ∀ {W} (e : (a : α) → (X a −→ W))

(h : ∀ {Z : C} (a1 a2 : α) (g1 : Z −→ X a1) (g2 : Z −→ X a2),

g1 � � _ = g2 � � _ → g1 � e _ = g2 � e _)

(m : B −→ W), (∀ (a : α), � a � m = e a) → m = desc e h

and then

class EffectiveEpiFamily {B : C} {α : Type*} (X : α → C)

(� : (a : α) → (X a −→ B)) : Prop where

effectiveEpiFamily : Nonempty (EffectiveEpiFamilyStruct X �)

Definitions 4.3 and 4.6 work in any category; the morphism in question is not
required to have a kernel pair. It is easy to see that if f is a regular epimorphism,
then it is an effective epimorphism. Conversely, if an effective epimorphism f has a
kernel pair, then it is a regular epimorphism (see �). This justifies the use of the
terminology “effective epimorphism”;

We give some characterizations of effective epimorphic families. For an object W
of C, let hW denote the representable presheaf hW (X ) = HomC(X,W ).

Lemma 4.7. � Let (fi : Xi → B) be a family of morphisms in C. Let S be the sieve
generated by the set (fi)i∈I , regarded as a presieve. Then the following are equivalent:

(i) The family (fi)i is effective epimorphic.
(ii) For every object W of C, the presheaf hW is a sheaf for S.

(iii) The cocone in C corresponding to the sieve S (described in Remark 3.8) is
colimiting.

Proof. (i) ⇐⇒ (ii): First of all, observe that (ii) is equivalent to hW being
a sheaf for (fi)i . Moreover, the data of a compatible family (in the sense of
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Definition 3.3) for (fi)i is a family (xi : Xi →W )i that coequalizes every pair
of morphisms that (fi)i coequalizes and an amalgamation for it is the morphism
denoted d in Definition 4.6. The equivalence between (i) and (ii) follows.

(iii) =⇒ (i): Suppose we have another cocone on the same functor, with cocone
point W and coprojections xf : X →W for any f : X → B contained in S. We
will now prove that this is precisely the data of a compatible family for S. Indeed, if
f : X → B and f′ : X ′ → B are in S, and the square

Y X ′

X B,

g′

g

f

f′

commutes, then f ◦ g = f′ ◦ g ′ ∈ S because of the downwards closed property of
sieves. We have coprojections xf : X →W , xf′ : X ′ →W and xf◦g = xf′◦g′ : Y →
W of the cocone with cocone point W, which satisfy

xf′ ◦ g ′ = xf′◦g′ = xf◦g = xf ◦ g

which is what we wanted. The unique amalgamation given by 4.7 gives the unique
cocone morphism required to satisfy the universal property of the colimit.

(iii) =⇒ (i): Given a family (ei : Xi →W ) that coequalizes any pair of
morphisms gi : Z → Xi , gj : Z → Xj that is coequalized by f, we obtain a cone
over S with cone point W as follows: recall that S is generated by the (fi)i , and
thus the morphisms in S are precisely those which factor through fi for some i.
Thus, for each morphism g : Y → B in S, we may write g = fi ◦ h for some i, and
set wg := ei ◦ h—this is well-defined by the assumption on (ei)i We get the desired
map d : B →W by the universal property of colimits. �

Lemma 4.8. � Let (�i : Xi → B)i∈I be an effective epimorphic family in C, such
that the coproduct of (Xi)i exists. The map

� :
∐
i

Xi −→ B

induced by (�i)i is an effective epimorphism.

Proof. Let �i : Xi →
∐
i Xi denote the coprojections of the coproduct. Let

e :
∐
i Xi →W be a morphism that coequalizes every pair of morphisms that �

coequalizes. It is clear that the family (e ◦ �i)i∈I coequalizes every pair gi : Z → Xi ,
gj : Z → Xj that (�i)i∈I coequalizes. It is easy to see that the morphism d : B →W
obtained from the universal property of the effective epimorphic family gives the
universal property of effective epimorphisms for �. �

Lemma 4.9. � Let (�i : Xi → B)i∈I be a family of morphisms in C. Suppose that

1) All coproducts and pullbacks appearing in 2) exist.
2) For every object Z and every morphism

g : Z −→
∐
i

Xi ,
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the induced map

i(g) :=
∐
i

Z ×∐
i Xi
Xi −→ Z

is an epimorphism.
3) The map

� :
∐
i

Xi −→ B

induced by (�i)i is an effective epimorphism.

Then (�i)i is an effective epimorphic family.

Proof. Let (ei : Xi → Z)i∈I be a family that coequalizes every pair of morphisms
gi : Z → Xi , gj : Z → Xj which (�i)i coequalizes. We need to show that there exists
a unique d : B → Z such that for all such gi , gj , we have d ◦ gi = d ◦ gj . To obtain
this, we will apply the property that � is an effective epimorphism to the induced
morphism e :

∐
i Xi → Z. To be able to do this, we need to check that e coequalizes

every pair of morphisms which � coequalizes.
Let f1, f2 : Z →

∐
i Xi be given and suppose that � ◦ f1 = � ◦ f2. We want to

show that e ◦ f1 = e ◦ f2. Applying the fact that i(f1) is an epimorphism, it suffices
to prove that

e ◦ f1 ◦ i(f1) = e ◦ f2 ◦ i(f1).

This identity can be checked on each component of the coproduct
∐
i Z ×∐

i Xi
Xi .

In other words, we need to show that for every a ∈ I ,

e ◦ f1 ◦ i(f1) ◦ �a = e ◦ f2 ◦ i(f1) ◦ �a ,

where

�a : Z ×∐
i Xi
Xa −→

∐
i

Z ×∐
i Xi
Xi

denotes the coprojection. One easily checks that

i(f1) ◦ �a : Z ×∐
i Xi
Xa −→ Z

is simply the first projection map in the pullback, which we denote by p1. We thus
need to show that

e ◦ f1 ◦ p1 = e ◦ f2 ◦ p1.

The left-hand side simplifies to ea ◦ p2, where

p2 : Z ×∐
i Xi
Xa −→ Xa

denotes the second projection in the pullback.
Now it again suffices to prove the equality after precomposition with the

epimorphism i(f2 ◦ p1), i.e., to show that

, ea ◦ p2 ◦ i(f2 ◦ p1) = e ◦ f2 ◦ p1 ◦ i(f2 ◦ p1).
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Again we can check this equality on the components of the coproduct∐
b

(
Z ×∐

i Xi
Xa

)
×∐

i Xi
Xb , and similarly to above, this reduces to showing that

for every b ∈ I ,

ea ◦ ga = eb ◦ gb,

where

ga :
(
Z ×∐

i Xi
Xa

)
×∐

i Xi
Xb −→ Xa

is the first projection followed by the second projection, and

gb :
(
Z ×∐

i Xi
Xa

)
×∐

i Xi
Xb −→ Xb

is the second projection. Doing the same manipulation on the equality � ◦ f1 =
� ◦ f2, we see that ga, gb is a pair of morphisms that the family (�i)i coequalizes. By
assumption, the family (ei)i coequalizes it as well. This means that e ◦ f1 = e ◦ f2,
and we obtain the unique d : B → Z we wanted. �

Propositions 4.12 and 4.13 provide an explicit description of effective epimor-
phisms in the categories of topological spaces, compact Hausdorff spaces, profinite
spaces, and Stonean spaces. Both results ultimately rely on the observation that
epimorphisms in these four categories are surjective, and we start with this result:

Lemma 4.10. � � � � Let C be any of the categories Top, CompHaus, Profinite,
or Stonean. Then epimorphisms in C are surjective (continuous) maps.

Proof. Note first that one direction is clear, because a surjective morphism in
any concrete category is an epimorphism. Now let f : Y → X be a morphism in C.

When C = Top the result is very well known: suppose f is an epimorphism and
consider the diagram

Y X {0, 1}�,f �

e1

where {0, 1}� denotes the set {0, 1} endowed with the indiscrete topology, where
� is the characteristic function of im(f) and where e1 is the constant map with
image 1. Clearly, � ◦ f = e1 ◦ f and when f is an epimorphism this implies that
� = e1, which is the statement im(f) = X .

When C = CompHaus, the above proof breaks down because {0, 1}� is not in C.
But since spaces in C are normal, we can argue as follows: the subspace im(f) ⊆ X
is compact, hence closed. Suppose that f is not surjective, and let x /∈ im(f): by
Urysohn’s lemma, there is a continuous function � : X → [0, 1] such that �(x) = 0
and �(im(f)) = 1. Denote by e1 : X → [0, 1] the constant function with image 1:
then e1 �= � and yet f ◦ � = f ◦ e1 showing that f is not an epimorphism.

When C = Profinite or C = Stonean the above proof breaks down because the
unit interval is not in C. But the argument for Top can be adapted by replacing
the indiscrete space {0, 1}� with the discrete space {0, 1}� , which is in C. First,
observe that, given any topological space Z and a clopen U ⊆ Z, the characteristic
function �U is continuous. Moreover, since every object in C is totally disconnected,
its topology admits a basis of open neighbourhoods that are clopen sets �. Now
suppose f is not surjective, and let x /∈ im(f). Since—as before—im(f) is closed,
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there exists an open neighbourhood V of x contained in the complement im(f)c , and
we can find a clopen neighborhood U ⊆ V such that x ∈ U and U ∩ im(f) = ∅.
Consider the diagram in C

Y X {0, 1}� ,f �U

e0

where e0 is the constant function with value 0. Now �U �= e0, as can be seen by
evaluating them on x, yet �U ◦ f = e0 ◦ f since U ∩ im(f) = ∅. This shows that f
is not an epimorphism. �

Lemma 4.11. Let C be a full subcategory of Top and let f : Y → X be a morphism
in C which is a quotient map. Then f is an effective epimorphism in C.

Proof. Suppose that e : Y → Z equalizes every morphism that f equalizes. This
means that for every pair of points y1, y2 ∈ Y such that f(y1) = f(y2), we have
e(y1) = e(y2), as can be seen by considering the parallel morphisms ey1 , ey2 : Y → Y
sending everything to y1 and to y2, respectively. The universal property of the
quotient topology on X provides the existence of a unique continuous d : X → Z
such that d ◦ f = e, showing that f is an effective epimorphism. �

Proposition 4.12. � The effective epimorphisms in Top are the quotient maps.

Proof. A quotient map is an effective epimorphism in Top by Lemma 4.11.
In the other direction, let f : Y → X be an effective epimorphism in Top. By

Remark 4.4 and Lemma 4.10, f is surjective, and we are simply left to prove that in
this situation X is endowed with the quotient topology, namely the final topology
induced by f. Denote by X̂ the space whose underlying set coincides with X, but
endowed with the final topology induced by f, so that the identity map i : X̂ → X is
continuous. In the diagram

Y X

X̂

f

i
f̂=f

d

the morphism f̂ equalizes every pair of morphisms equalized by f, so there exists a
unique continuous map d : X → X̂ making the diagram commute. It follows that d
is induced by the identity, showing that X is homeomorphic to X̂ , as required. �

Proposition 4.13. � � � The effective epimorphisms in CompHaus,Profinite,
and in Stonean are the (continuous) surjections.

Proof. Let C be any of the categories CompHaus,Profinite or Stonean and
let f : Y → X be an effective epimorphism in C. Combining Remark 4.4 and
Lemma 4.10 yields that f is a continuous surjection.

In the other direction, consider a continuous surjection f : Y → X in C. Since
the objects of C are compact Hausdorff spaces, f is also a closed map and hence a
quotient map, and thus an effective epimorphism by Lemma 4.11. �
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§5. Three Grothendieck topologies.

5.1. The regular topology.

Definition 5.1. � A category C is preregular if the collection of presieves
consisting of single effective epimorphisms forms a coverage. In other words, if
for every effective epimorphism g : Z → Y and every morphism f : X → Y , there
exists an effective epimorphism h : W → X and a morphism i : W → Z such that
the following diagram commutes:

W Z

X Y

i

gh

f

In this case, we call this coverage the regular coverage on C, and the Grothendieck
topology generated by this coverage is called the regular topology on C.

In mathlib, we define a predicate Preregular � on categories:

class Preregular : Prop where

exists_fac : ∀ {X Y Z : C} (f : X −→ Y) (g : Z −→ Y) [EffectiveEpi g],

(∃ (W : C) (h : W −→ X) (_ : EffectiveEpi h) (i : W −→ Z), i � g = h � f)

Then the definition of the regular topology follows �:

def regularCoverage [Preregular C] : Coverage C where

covering B := { S | ∃ (X : C) (f : X −→ B), S = Presieve.ofArrows (fun (_ : Unit) 
→
X)

(fun (_ : Unit) 
→ f) ∧ EffectiveEpi f }

pullback := by ...

def regularTopology [Preregular C] : GrothendieckTopology C :=

Coverage.toGrothendieck _ <| regularCoverage C

5.2. The extensive topology.

Definition 5.2. � A category C is finitary extensive if it satisfies the following
properties:

1) C has finite coproducts.
2) C has pullbacks along coprojections of finite coproducts.
3) Every commutative diagram

Z1 Z Z2

X X
∐
Y Y

consists of two pullback squares if and only if the top row is a coproduct
diagram.

Remark 5.3. Our definition of finitary extensive category is precisely [5, Defini-
tion 2.1 and Proposition 2.2].
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mathlib already had the predicate FinitaryExtensive on categories:

class FinitaryExtensive (C : Type u) [Category.{v} C] : Prop where

[hasFiniteCoproducts : HasFiniteCoproducts C]

[hasPullbacksOfInclusions : HasPullbacksOfInclusions C]

van_kampen’ : ∀ {X Y : C} (c : BinaryCofan X Y), IsColimit c → IsVanKampenColimit c

The field van kampen’ is condition 3) in Definition 5.2.

Proposition 5.4. Let C be a finitary extensive category. The collection of finite
families (Xi → X )i∈I exhibiting X as a coproduct of the family (Xi)i∈I forms a
coverage.

Proof. The axioms of a finitary extensive category ensure that the required
property holds, namely that given a morphism f : X → Y and a finite family
of morphisms (gi : Yi → Y )i∈I , the family (X ×Y Yi → X )i∈I exhibits X as a
coproduct of the family (X ×Y Yi)i∈I . This has been formalized in mathlib �,
but it appears ibid. as a definition: this is because the proof that the collection is a
coverage is part of the definition in question. �

Definition 5.5. � Let C be a finitary extensive category. The coverage defined in
Proposition 5.4 is called the extensive coverage on C, and the Grothendieck topology
generated by this coverage is called the extensive topology on C.

In mathlib, we define the extensive topology as follows �:

def extensiveCoverage [FinitaryPreExtensive C] : Coverage C where

covering B := { S | ∃ (α : Type) (_ : Finite α) (X : α → C) (� : (a : α) → (X a −→
B)), S = Presieve.ofArrows X � ∧ IsIso (Sigma.desc �) }

pullback := by ...

def extensiveTopology [FinitaryPreExtensive C] : GrothendieckTopology C :=

Coverage.toGrothendieck _ <| extensiveCoverage C

Note that the definition of the extensive coverage and extensive topology only
requires an assumption [FinitaryPreExtensive C]. This condition is slightly
weaker than FinitaryExtensive, but the difference is unimportant. For the
characterization of sheaves for the extensive topology, the stronger condition is
indeed required.

5.3. The coherent topology.

Definition 5.6. � A category C is precoherent if the collection of finite effective
epimorphic families forms a coverage. In other words, if for any finite effective
epimorphic family (�i : Xi → B)i∈I and any morphism f : B ′ → B , there exists a
finite effective epimorphic family (�′j : X ′

j → B ′)j∈I ′ , such that for each j ∈ I ′, the
composition f ◦ �′j factors through �i for some i ∈ I . In this case, we call this
coverage the coherent coverage on C, and the Grothendieck topology generated by
this coverage is called the coherent topology on C.
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In mathlib, we define a predicate Precoherent � on categories:
class Precoherent : Prop where

pullback {B1 B2 : C} (f : B2 −→ B1) :

∀ (α : Type) [Finite α] (X1 : α → C) (�1 : (a : α) → (X1 a −→ B1)),

EffectiveEpiFamily X1 �1 →
∃ (	 : Type) (_ : Finite 	) (X2 : 	 → C) (�2 : (b : 	) → (X2 b −→ B2)),

EffectiveEpiFamily X2 �2 ∧
∃ (i : 	 → α) (� : (b : 	) → (X2 b −→ X1 (i b))),

∀ (b : 	), � b � �1 _ = �2 _ � f

Then the definition of the coherent topology follows �:
def coherentCoverage [Precoherent C] : Coverage C where

covering B := { S | ∃ (α : Type) (_ : Finite α) (X : α → C) (� : (a : α) → (X a −→
B)),

S = Presieve.ofArrows X � ∧ EffectiveEpiFamily X � }

pullback := by ...

def coherentTopology [Precoherent C] : GrothendieckTopology C :=

Coverage.toGrothendieck _ <| coherentCoverage C

Remark 5.7. The notion of a precoherent category naturally arose through the
formalization process and was forced upon us by the “mathlib philosophy,” where
definitions are often phrased in the most general way (see Section 2.2). Indeed, the
condition that C is a precoherent category is precisely the minimal axiom needed to
ensure that what we call the coherent coverage above is indeed a coverage. A similar
approach was taken to define the notion of a preregular category. For example, we
do not require the existence of pullbacks required in the definition of regular and
coherent categories as in [9, Section A1.3] and [9, Section A1.4], respectively.

Due to our weaker assumptions, several of our results about the regular
and coherent topology strengthen existing standard results. For example, [9,
Example C.2.1.12(d)] states that the coherent topology on a coherent category is
subcanonical, which we extend in Proposition 6.8 below to precoherent categories.
The analogous statement for the regular topology on a regular category can be found
in [11, Corollary B.3.6] and is extended to preregular categories in Proposition 6.1
below. In Proposition 6.10 (respectively Lemma 6.2), we explicitly characterize the
covering sieves in the coherent (respectively regular) topology on a precoherent
(respectively preregular) category. Under stronger assumptions on the category, this
result can be found in [11, Definition B.5.1 and Proposition B.5.2] (respectively in
[9, Example C.2.1.12(c)]).

5.4. The coherent topology on a regular extensive category.

Proposition 5.8. � Let C be a category which is preregular and finitary extensive.
Then C is precoherent.

Proof. Since C is finitary extensive, Lemmas 4.8 and 4.9 imply that finite effective
epimorphic families in C are precisely those which induce an effective epimorphism
on the coproduct.

Let (fi : Xi → X )i∈I be a finite effective epimorphic family and let g : Y → X be
a morphism. Since the morphism

∐
i Xi → X is an effective epimorphism, the fact

that C is preregular ensures the existence of a diagram
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Z
∐
i

Xi

Y X

e

f
h

g

in which h : Z → Y is an effective epimorphism.
Now, the fact that C is extensive ensures that the family (Z ×∐

i Xi
Xi → Z)i∈I

exhibits Z as a coproduct in the sense that the canonical map∐
i

Z ×∐
i Xi
Xi −→ Z

is an isomorphism. Therefore, the composition∐
i

Z ×∐
i Xi
Xi −→ Y

is an effective epimorphism, and therefore the family (Z ×∐
i Xi
Xi → Y )i∈I works

as the desired effective epimorphic family. �
It is obvious that the union of two coverages is a coverage. This allows us to state:

Proposition 5.9. � Let C be a category which is preregular and finitary extensive.
The union of the regular and extensive coverages generates the coherent topology.

Proof. Denote by T the topology generated by the union of the regular and
extensive coverages. Note that the regular and extensive coverages are both contained
in the coherent coverage, hence T is contained in the coherent topology, so it suffices
to show that the coherent topology is contained in T .

Let X be an object of C and let S be a covering sieve on X for the coherent
topology: in other words, S is generated by a finite effective epimorphic family
(fi : Xi → X )i∈I . We want to show that S is a T -covering sieve. Denote by

f :
∐
i∈I
Xi −→ X,

the map induced by the fi and for each j ∈ I , let

�j : Xj −→
∐
i∈I
Xi

be the coprojection. For each j,

f ◦ �j = fj ∈ S, so �j ∈ f∗S.

Therefore, the sieve T generated by the family (�i)i is contained in f∗S. Since the
presieve generated by the family (�i)i is a covering presieve of the coproduct in
the extensive coverage, T is a T -covering sieve and hence by Lemma 3.12, f∗S
is a T -covering sieve of

∐
i Xi . By Lemma 4.8, f is an effective epimorphism, and

hence the sieve Sf generated by the singleton presieve {f} is a T -covering sieve.
Now by axiom GT-3) for Grothendieck topologies, it suffices to show that g∗S is a
T -covering sieve for every g in Sf . Given such a g = f ◦ h, we have g∗S = h∗(f∗S)
which is a T -covering sieve because f∗S is. �
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§6. Sheaves.

6.1. Regular sheaves. Let C be a preregular category (see Definition 5.1).

Proposition 6.1. � The regular topology on C is subcanonical4.

Proof. We need to show that each presheaf of the form hW = Hom(–,W ) with
W an object of C is a sheaf. By Proposition 3.15, it is enough to check that hW is
a sheaf for each family consisting of a single effective epimorphism. Noting that
a singleton family is effective epimorphic if and only if it consists of an effective
epimorphism, this is now clear from Lemma 4.7. �

Lemma 6.2. A sieve in C is a covering sieve for the regular topology if and only if it
contains an effective epimorphism.

Proof. The proof is a simpler version of the proof of Proposition 6.10 below.
The reader can easily take that proof and replace effective epimorphic families by
effective epimorphisms, thereby filling in this proof (the key is to prove that effective
epimorphisms in preregular categories are stable under composition). �

Lemma 6.3. � Suppose C has kernel pairs of effective epimorphisms. Then a
presheaf F on C is a sheaf for the regular topology if and only if for every effective
epimorphism � : X → B , the diagram

F (B) F (X ) F (X ×B X )
F (�)

(EqCond)

is an equalizer (the two parallel morphisms being given by the projections in the
pullback).

Proof. This follows from the fact that a presheaf is a sheaf for the regular
topology if and only if it is a sheaf for every family consisting of a single effective
epimorphism, and the characterization (discussed in Remark 3.5) of the sheaf
condition in the case where the relevant pullbacks exist. �

Proposition 6.4. � Suppose every object in C is projective5. Then every presheaf
on C is a sheaf for the regular topology.

Proof. Since every object is projective, every sieve generated by an epimorphism
is the top sieve, for which every presheaf is a sheaf. �

6.2. Extensive sheaves. Let C be a finitary extensive category (see Definition 5.2).

Proposition 6.5. �A presheaf onC is a sheaf with respect to the extensive topology
if and only if it preserves finite products.

Proof. This is proved in [11, Proposition B.4.5] (there, the extensive topology
is defined only for categories with pullbacks, but the proof remains valid in our
setting since only pullbacks along coprojections of finite coproducts are used). Our
formalization follows the same ideas used ibid. �

4A Grothendieck topology is called subcanonical if every representable presheaf is a sheaf. By
representable, we mean a presheaf of the form Hom(–,W ) for some object W of C.

5An object P is projective if every morphism out of P lifts along every epimorphism with the same
target.
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Proposition 6.6. � The extensive topology on C is subcanonical.

Proof. Since Hom(–,W ) preserves limits, this follows from Proposition 6.5 �
Proposition 6.7. � Let X be an object of C and S a sieve on X. Then S is a covering

sieve for the extensive topology on C if and only if it contains a family of morphisms
(fi : Xi → X )i∈I which exhibit X as a coproduct of the Xi .

Proof. The proof is a simpler version of the proof of Proposition 6.10 below.
The reader can easily take that proof and replace effective epimorphic families by
families of morphisms exhibiting the target as a coproduct, thereby filling in this
proof. �

6.3. Coherent sheaves.

Proposition 6.8. � Let C be a precoherent category (see Definition 5.6). The
coherent topology on C is subcanonical.

Proof. We need to show that each presheaf of the formhW = Hom(–,W ) with W
an object of C is a sheaf. By Proposition 3.15, it is enough to check that hW is a sheaf
for each finite effective epimorphic family, and this follows from Lemma 4.7. �

Remark 6.9. If C is finitary extensive and preregular (and hence precoherent),
then Proposition 6.8 implies Proposition 6.6 and Proposition 6.1 because the
coherent topology is finer than the extensive and regular one. On the other hand,
being precoherent might not in general imply being finitary extensive or preregular
(for example, when C does not have finite coproducts), and this is why we proved
Proposition 6.6 and Proposition 6.1 separately.

Proposition 6.10. � Let C be a precoherent category. A sieve in C is a covering
sieve for the coherent topology if and only if it contains a finite effective epimorphic
family.

Before proving Proposition 6.10, we provide some preliminary results.

Lemma 6.11. � If a sieve S contains a finite effective epimorphic family, then S is
a covering sieve for the coherent topology.

Proof. Let (�i : Xi → X )i∈I be a finite effective epimorphic family contained
in S. By definition, the sieve S0 generated by the family (�i)i∈I is a covering sieve
for the coherent topology, and since S contains the family (�i)i∈I , it contains S0.
Lemma 3.12 yields the conclusion. �

Lemma 6.12. � Assume that C is precoherent and that (�i : Xi → B)i∈I is a
finite effective epimorphic family, and suppose that for each i ∈ I , we are given a
finite effective epimorphic family (�i,j : Yi,j → Xi)j∈Ji . Then the induced collection
(
i,j = �i ◦ �i,j : Yi,j → B)i∈I,j∈Ji is an effective epimorphic family.

Proof. By Lemma 4.7, a family is effective epimorphic if and only if for each
object W the presheaf hW is a sheaf for the sieve generated by this family. Thus, since
the coherent topology is subcanonical by Proposition 6.8, it is enough to show that
the sieve S generated by the family (
i,j)i∈I,j∈Ji is a covering sieve for the coherent
topology.
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By and GT-3) of Definition 3.11, it is enough to check that f∗S is a covering
sieve for every map f in the sieve generated by (�i)i∈I (which is a covering sieve by
Lemma 6.11). In fact, by GT-2), it is enough to check that each �∗i S is a covering
sieve. Since �∗i S contains the finite effective epimorphic family (�i,j)j∈Ij , it is a
covering sieve for the coherent topology by Lemma 6.11. �

Proof of Proposition 6.10. LetT denote the collection of sieves in C that contain
a finite effective epimorphic family. By Lemma 6.11, we know that T is contained in
the coherent topology. Our goal is to show that they are equal, so it remains to show
that T contains the coherent topology. By definition, the coherent topology is the
smallest Grothendieck topology whose associated coverage contains the coherent
coverage. Therefore, it suffices to show that:

a) the collection T forms a Grothendieck topology and
b) the coverage associated with T contains the coherent coverage.

Once a) is established, point b) is immediate from the definitions of T and of
the associated coverage (Definition 3.13). It remains to show a) by checking the
conditions of Definition 3.11. Condition GT-1) is immediate, since for every object
X of C, the identity on X forms a finite effective epimorphic family. Condition GT-2)
is a consequence of the precoherence assumption: Let f : X → Y be a morphism
and let S be a sieve on Y that is contained in T , i.e., that contains a finite effective
epimorphic family (�i : Yi → Y )i∈I . Then the condition of being precoherent (see
Definition 5.6) provides an effective epimorphic family (�′j : : Xj → X )j∈I ′ that is
contained in the pullback sieve f∗S. Finally, we address GT-3). Let S,R be sieves
on Y with S ∈ T such that for every f : X → Y ∈ S, the pullback sieve f∗R is in
T . Then we have a finite effective epimorphic family (fi : Xi → Y )i∈I contained
in S, and for each i ∈ I , a finite effective epimorphic family (gi,j : Xi,j → Xi)j∈Ji
contained in f∗

i R. By Lemma 6.12, the finite family (fi ◦ gi,j : Xi,j → Y )i∈I,j∈Ji
is effective epimorphic. By Definition 3.10 of the pullback sieve, the composition
fi ◦ gi,j factors through some morphism in R, hence lies in R for each pair (i, j).
Thus the whole family (fi ◦ gi,j)i∈I,j∈Ji is contained in R, showing thatR ∈ T . This
finishes the proof of Condition GT-3). �

Proposition 6.13. � Let C be a preregular, finitary extensive category with
pullbacks of kernel pairs. A presheaf on C is a sheaf for the coherent topology if
and only if it satisfies the equalizer condition (EqCond) of Lemma 6.3, and preserves
finite products.

Proof. It is easy to see that a presheaf is a sheaf for the topology generated by
a union of coverages if and only if it is a sheaf for every covering presieve of both
coverages �. The result now follows by combining Proposition 5.9 with Lemma 6.3
and Proposition 6.5. �

Proposition 6.14. � Let C be a preregular, finitary extensive category in which
every object is projective. A presheaf on C is a sheaf for the coherent topology if and
only if it preserves finite products.

Proof. As in the proof of Proposition 6.13, the result follows by combining
Proposition 6.4 with Proposition 6.5. �
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Proposition 6.15. � Let C be a category and let F : C → D be a fully faithful
functor into a precoherent category D such that:

1) F preserves and reflects finite effective epimorphic families.
2) For every object Y ofD, there exists an object X of C and an effective epimorphism
F (X ) → Y .

Then the following holds:

a) C is precoherent.
b) Let G be a sheaf for the coherent topology on D. The presheafG ◦ F op is a sheaf

for the coherent topology on C.
c) Precomposition with F induces an equivalence between the categories of sheaves

for the coherent topology on C and on D.

Before proving Proposition 6.15, we need to fix some terminology and state some
preliminary results. These preliminaries were already in mathlib, and we simply
state them here without proof. The results can be extracted from [1, Exposé III], but
the approach ibid. differs slightly from the one in mathlib.

Definition 6.16. Let C and D be two categories, both endowed with a
Grothendieck topology, and let F : C → D be a functor. Fix an object X in C and
an object Y in D.

a) Given a sieve S on X, the functor-pushforward of S along F is the sieve F∗S on
F (X ) consisting of those morphisms f : Y → F (X ) that factor through F (g)
for some morphism g : Z → X in S. �

b) Given a sieve S on F (X ), the functor-pullback of S along F is the sieve F ∗S on
X consisting of those arrows f such that F (f) belongs to S. �

c) The F-image sieve is the sieve SFY on Y consisting of those morphisms to Y
that factor through an object of the form F (X ) for some X in C. �

We omit the verification that Definition 6.16 is actually defining sieves (one needs
to check that they are downwards closed). This verification was formalized in
mathlib, and each point of Definition 6.16 contains the corresponding external
link.

Definition 6.17. In the same setting of Definition 6.16, denote by T the topology
on C and by T ′ that on D.

a) We say that F is continuous if for every T ′-sheaf P on D, the presheaf P ◦ F op

on C is a T -sheaf �. In particular, if F is continuous it induces a functor

F ∗ : ShT ′(D) −→ ShT (C).

b) We say that F is cocontinuous if for every object U of C and every T ′-covering
sieve S on F (U ), the functor-pullback F ∗S is a T -covering sieve of U. �

c) We say that F is cover-dense if for every object Y of D, the F-image sieve SFY is
a T ′-covering sieve. �

Remark 6.18. Observe that in point c) of Definition 6.17, the topology T on C
plays no role. Hence, to speak of cover-dense functors one only needs a Grothendieck
topology on the target.
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Proposition 6.19. � � In the setting of Definition 6.17, suppose that F is
continuous and cocontinuous. Then we have an adjunction F ∗ � F∗. If F is also fully
faithful and cover-dense, then this adjunction is an adjoint equivalence of categories.

Definition 6.20. � Let C and D be categories, let T ′ be a Grothendieck
topology on D and let F : C → D be a fully faithful cover-dense functor. Define
a Grothendieck topology T on C as follows: we declare that a sieve S on an object
X in C is a T -covering sieve if and only if the functor-pushforward sieve F∗S is a
T ′-covering sieve of F (X ) (see � for a proof of the fact that this indeed defines a
Grothendieck topology). This is called the topology induced by F.

Lemma 6.21. � Let C and D be categories, let T ′ a Grothendieck topology on D
and let F : C → D be a fully faithful cover-dense functor. Equip C with the induced
topology. Then F is continuous and cocontinuous.

Proof of Proposition 6.15. To show that C is precoherent, let (�i : Xi → B)i
be a finite effective epimorphic family in C and let f : B ′ → B be any morphism.
The family F (�i) is finite effective epimorphic (in D) by condition 1): then, the
hypothesis that D is precoherent, applied to the morphism F (f) : F (B ′) → F (B),
provides a finite effective epimorphic family 
j : Yj → F (B ′) whose components
factor through some of the F (�i). By condition 2) there exist objects (X ′

j)j in
C together with effective epimorphisms ϕj : F (X ′

j) → Yj , that combine into an
effective epimorphic family F (X ′

j) → F (B ′) thanks to Lemma 6.12; moreover, the
morphisms in this family are of the form F (�′j) for suitable �′j : X ′

j → B ′ because
F is fully faithful. Applying again condition 1), this family (�′j)j is finite effective
epimorphic; that, for each j, the morphism �′j factors through some of the �i follows
from the equivalent statement for the components of
j , combined once more with
the full faithfulness of F. This establishes point a).

We claim that the topology on C induced by F is the coherent topology. It suffices
to show that given an object X of C, a sieve S on X is a covering for the induced
topology if and only if it contains a finite effective epimorphic family. Suppose first
that S contains a finite effective epimorphic family (�i : Yi → X )i . By condition 1),
the family (F (�i))i is finite effective epimorphic and is clearly contained in F∗S.
Hence F∗S is a covering sieve of F (X ) with respect to the coherent topology on
D by Proposition 6.10, which means that S is a covering sieve with for the induced
topology (see Definition 6.20). For the other direction, suppose that S is a covering
sieve for the induced topology: as for the first implication, this is equivalent to the
condition that F∗S contains a finite effective epimorphic family (�i : Zi → F (X ))i .
Condition 2) ensures that for every i, there is an effective epimorphism of the form
fi : F (Yi) → Zi ; moreover, since C is precoherent, we can apply Lemma 6.12 to
obtain that the family (�i ◦ fi : F (Yi) → F (X ))i is effective epimorphic. Since F
is full and reflects finite effective epimorphic families by condition 1), this family
can be pulled back to a finite effective epimorphic family (Yi → X )i contained in
F ∗(F∗S). We conclude thanks to Proposition 6.19.

Endowing D with the coherent topology, point b is now immediate from Lemma
6.21 (see Definition 6.17).

To finish the proof, we pass to point a), again endowing D with the coherent
topology. By Proposition 6.19, it suffices to prove that F is cover-dense, continuous,
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and cocontinuous. By Lemma 6.21 and the above discussion, it suffices to prove that
F is cover-dense. By Proposition 6.10, it suffices to show that for every object Y of
D, the F-image sieve SFY contains an effective epimorphism. Condition 2) ensures
the existence of an object X in C and of an effective epimorphism F (X ) → Y , that,
by definition of the F-image sieve, belongs to SFY . �

Remark 6.22. A finite-coproduct preserving functor between finitary extensive
categories preserves (resp. reflects) finite effective epimorphic families if and only
if it preserves (resp. reflects) effective epimorphisms. This is because finite effective
epimorphic families in extensive categories are precisely those that induce effective
epimorphisms on the coproduct (see Lemmas 4.8 and 4.9). This observation yields
variants (see for instance �) of Proposition 6.15 in the case where the target is
preregular and finitary extensive and the functor preserves certain pullbacks and
coproducts, or when the target category is already finitary extensive.

§7. Condensed mathematics. We can now introduce condensed sets and prove
the main theorems from our general categorical results. We begin with the following
result:

Proposition 7.1. The categories CompHaus, Profinite, and Stonean are preregular
and finitary extensive.

Proof. � � � � � � Let C denote any of the categories CompHaus, Profinite,
or Stonean. Note that the effective epimorphisms in C are precisely the continuous
surjections (Proposition 4.13). These also coincide with the epimorphisms, by
Lemma 4.10. Given the explicit description of pullbacks in Profinite and CompHaus,
we immediately obtain that effective epimorphisms can be pulled back, and therefore
Profinite and CompHaus are preregular. To see that Stonean is preregular, we use the
fact that every object in Stonean is projective, and hence every epimorphism can be
pulled back to the identity.

We also need to show that C is finitary extensive. In mathlib it was already proved
that the category of all topological spaces is finitary extensive, and that given a
functor F : C → D to a finitary extensive category which preserves and reflects finite
coproducts, preserves pullbacks along coprojections in finite coproducts and reflects
pullbacks, if C has finite coproducts and pullbacks along coprojections, then C is
finitary extensive. To see that C together with its inclusion functor to the category of
topological spaces has these properties, the only point which needs clarification is the
case for pullbacks in Stonean. We know that Stonean does not have all pullbacks, but
in the very special case of coprojections in finite coproducts, it does. Indeed, these
are clopen embeddings, in which case the pullback is identified with the preimage
of the image of the embedding. �

Definition 7.2. � A condensed set is a sheaf for the coherent topology on
CompHaus. (We refer the reader to Definition 5.6 for the definition of coherent
topology.)

Remark 7.3. Thanks to Theorem 7.7 below, a condensed set can be defined as a
sheaf for the coherent topology on Profinite or Stonean.
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Theorem 7.4. � �

a) When C is CompHaus or Profinite, a presheaf X : Cop → Set is a sheaf for the
coherent topology on C if and only if it satisfies the following two conditions:
(1) X preserves finite products: in other words, for every finite family (Ti) of

object of C, the natural map

X
(∐
i

Ti

)
−→

∏
i

X (Ti)

is a bijection.
(2) For every surjection � : S → T in C, the diagram

X (T ) X (S) X (S ×T S)
X (�)

is an equalizer (the two parallel morphisms being given by the projections in
the pullback).

b) A presheaf X : Stoneanop → Set is a sheaf for the coherent topology on Stonean
if and only if it preserves finite products: in other words, for every finite family
(Ti) of object of C, the natural map

X
(∐
i

Ti

)
−→

∏
i

X (Ti)

is a bijection.

Proof. In the case when C is CompHaus or Profinite, it has all pullbacks and
we obtain the characterization from Proposition 6.13. In the case of Stonean, since
every object is projective, we obtain the characterization from Proposition 6.14. �

Remark 7.5. A detailed proof of Theorem 7.4 is given in [2, Theorems 1.2.17
and 1.2.18].

Remark 7.6. A condition similar to the one in point a) of Theorem 7.4 above
holds true when C is Stonean as well, except that condition a)–1) must be modified
slightly (for example, using 1-hypercovers) due to the fact that Stonean does not
have pullbacks. The content of a) is that this analogous condition turns out to be
vacuously true in Stonean.

Theorem 7.7. �� The inclusion functorsProfinite → CompHaus and Stonean →
CompHaus induce equivalences of categories between the categories of sheaves for the
coherent topology on CompHaus, Profinite, and Stonean.

Proof. We are going to apply Proposition 6.15. We spell out the case of Stonean
here, the other one being similar. It is clear that the inclusion functor preserves and
reflects effective epimorphisms (by the characterization of effective epimorphisms
as continuous surjections). Verifying the other condition in the theorem amounts
to proving that CompHaus has enough projectives. Given a compact Hausdorff
space S, denote by S� the set S equipped with the discrete topology. Then the
Stone–Čech compactification 	S� is a projective object with a continuous surjection
	S� → S. �
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