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Abstract

Ticks are important vectors and reservoirs of pathogens causing zoonotic diseases in camels
and other livestock, rodents and other small mammals, birds and humans. Hyalomma drome-
darii is the most abundant tick species in Saudi Arabia and United Arab Emirates (UAE)
affecting primarily camels, and to a lesser extent, other livestock. Species presence data,
land use/landcover, elevation, slope and 19 bioclimatic variables were used to model current
and future distribution of H. dromedarii ticks using maximum entropy species distribution
modelling (MaxEnt.). The model highlighted areas in the northern, eastern and southwestern
parts of the study area as highly suitable for ticks. Several variables including land use/land
cover (LULC) (53.1%), precipitation of coldest quarter (Bio19) (21.8%), elevation (20.6%), iso-
thermality (Bio3) (1.9%), mean diurnal range [mean of monthly (max temp – min temp)]
(Bio2) (1.8%), slope (0.5%), precipitation, seasonality (Bio15) (0.2%) influenced habitat suit-
ability of ticks, predicting high tick density or abundance. Middle of the road scenario (ssp2-
4.5) where CO2 levels remain similar to current levels, did not indicate a major change in the
tick distributions. This tick distribution model could be used for targeting surveillance efforts
and increasing the efficiency and accuracy of public health investigations and vector control
strategies.

Introduction

Ticks are haematophagous parasites that have great economic and ecological significance due
to their capacity to transmit a variety of pathogens including viruses, bacteria and parasites to
animals and humans. Expansion of the range of ticks due to rapid climate change carries pro-
found threats for public health and society (Illoldi-Rangel et al., 2012; Rochlin and Toledo,
2020; Nuttall, 2022). Some of the most common tick-borne infections in the Middle East
and North Africa (MENA) include Crimean–Congo haemorrhagic fever, anaplasmosis, thei-
leriosis and babesiosis (Perveen et al., 2021c).

The 1-humped camel (Camelus dromedarius) is a highly valued species of livestock in
Saudi Arabia and UAE (Gharbi et al., 2013). The current population of camels in UAE and
Saudi Arabia is approximately 1 million (https://worldpopulationreview.com/country-
rankings/camel-population-by-country). Hyalomma dromedarii ticks feed on the blood of
camels and has been reported with high prevalence in the UAE (Perveen et al., 2020,
2021b; Perveen, 2021) and Saudi Arabia (Alanazi et al., 2018, 2020; Zakham et al., 2021).
Crimean-Congo haemorrhagic fever (CCHF) is a deadly viral disease and virus transmitted
by Hyalomma ticks (Perveen and Khan, 2022). In a systematic review of Crimean–Congo
haemorrhagic fever in the Arab world (1978–2021), a total of 65 confirmed human cases
have been reported from the 2 countries. Lately, H. dromedarii ticks were found positive for
CCHF virus (CCHFV) in both UAE (Camp et al., 2020) and Saudi Arabia (Mohamed
et al., 2017). In the MENA Region, H. dromedarii appears to be the vector of Theileria annu-
lata where camels are raised together with cattle (Jacquiet et al., 1994), therefore, raising camels
in mixed patterns could cause cross-infection in livestock (Tomassone et al., 2012).
Furthermore, H. dromedarii can transmit various disease-causing pathogens for example,
Dhori virus (Hoogstraal et al., 1981; Champour et al., 2016), the tropical theileriosis, T. annu-
lata and T. camelensis (Hoogstraal et al., 1981; Hamed et al., 2011) Sindbis virus, Chick Ross
and Kadam viruses (Al-Khalifa et al., 2007), Coxiella burnetii (Abdullah et al., 2018) and spot-
ted fever rickettsia (Hoogstraal et al., 1981; Abdel-Shafy et al., 2012; Demoncheaux et al., 2012;
Kernif et al., 2012; Kleinerman et al., 2013; Elzein et al., 2020).

Due to anthropogenic factors and climate change, tick-borne infectious diseases are
increasingly becoming a significant public health threat (Gray et al., 2009). Ticks have unique
physiological habits and spend their life cycle feeding on the host and in the habitat of the
host. A range of environmental factors, such as substrate type, relative humidity and vegetation
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associated with the host habitat can affect tick abundance and dis-
tribution patterns (Ma et al., 2023). Hyalomma dromedarii may
act as a 3-, 2- or 1-host species (Hoogstraal, 1956; Walker et al.,
2003) and engorged female burrows a few centimetres under
the ground to lay eggs in suitable microhabitats to avoid desicca-
tion of eggs and new larvae (Alahmed and Kheir, 2003).
Environmental factors and host range may help in the assessment
of risk factors determining the distribution of tick-borne patho-
gens. Increased temperatures may positively affect the survival
and reproduction of ticks (Ma et al., 2023). For example, rising
temperatures in temperate and cold environments contributes to
faster nymph maturation and shorter life cycles that increase
tick abundance and also extend the period of ticks’ host-seeking
activity (Gray et al., 2009), thus encourage range expansion
through establishment in new geographical ranges. Furthermore,
global climate change not only influences tick distribution and
abundance, but also affects tick-borne pathogen transmission by
impacting land use, vegetation cover and distribution, and the
abundance of reservoir hosts (Gray et al., 2009). Consequently,
it is crucial to assess the current and future distribution of ticks
for better management of tick-borne pathogens.

MaxEnt is a widely used technique in species distribution
modelling because of its compatibility with presence-only (PO)
data (Merow et al., 2013; Bradie and Leung, 2017; Phillips et al.,
2022). Its algorithm is known for its robustness (Phillips et al.,
2006) and outperforms many other PO modelling methods
(Phillips et al., 2008; Wisz et al., 2008; Elith et al., 2011; Merow
et al., 2013). MaxEnt was developed specifically for low sample-
size data (PO locations) for multiple species (Phillips et al.,
2006). This model used extensively to determine the distribution
of numerous arthropods such as hard ticks and soft ticks that
transmit important pathogens (Table 1).

In the MENA region, camel husbandry has increased in recent
years with rapid economic development (Abahussain et al., 2002).

In addition, climatic conditions of Saudi Arabia and UAE provide
favourable conditions for tick species that are adapted to dry
environments. Human activities and international trade increase
the risk of tick expansion into new geographic zones. The present
study was conducted to use MaxEnt modelling and the ArcGIS
spatial technology platform to describe the current and predicted
future distribution of the camel tick, H. dromedarii using occur-
rences of ticks in Saudi Arabia and UAE for the monitoring
and surveillance of tick-borne pathogens associated with this spe-
cies in the region.

Materials and methods

Collection and preparation of H. dromedarii occurrence data

Geo-referenced location points on ticks from Saudi Arabia and
UAE from various resources including field collections and infor-
mation from prior publications (Supplementary Table S1) were
compiled. For Saudi Arabia, a literature review was conducted
by search engines, Google Scholar, PubMed and Web of Science
databases using the keywords ‘Saudi Arabia’, ‘tick’, ‘ticks’ and
‘tick-borne pathogens’ for articles published in the last 10 years.
Only full-length research articles were used in this study.
Review articles, letters to editors, short reports/communications,
abstracts and conference proceedings were excluded. Literature
containing geographical distribution information of camel tick
species was filtered and extracted for their geographical location
coordinates, Al-Khurma, Al-Kharj, Al-Hasa, Al-Qassim, Riyadh,
Hail area, Amman Road, Madinah Road, Duba Road, Industrial
area and Taif (Alanazi et al., 2018, 2020, 2021; Alreshidi et al.,
2020; Zakham et al., 2021; Al Thabiani et al., 2022). After remov-
ing duplicates, only research articles were selected that provided
coordinates for tick locations. Locations were chosen on the
basis of presence of both hosts and tick vectors in the area.
Occurrence data was rarefied using the spatially rarefy occurrence
data tool in SDM toolbox in ArcGIS ver. 10.8.1 at a resolution of
15 km to avoid model over fitting and bias. It resulted in 32 occur-
rences which were later used in the spatial modelling.

Collection and preparation of key variables influencing tick
distribution

For the current model, land use/land cover (LULC), elevation,
slope and 19 bioclimatic variables (Table 2) were selected initially.
The bioclimatic variables and the DEM were obtained from
WorldClim database (version 2.1) at ∼1 km2 resolution (Fick
and Hijmans, 2017) covering the period 1970–2000. Slope was
calculated from elevation using the slope tool in ArcGIS. LULC
was obtained from the European Space Agency climate change
initiative for the year 2020 at 300 m resolution (Defourny et al.,
2023). The extent and resolution of all selected variables were har-
monized to the same study area size and resolution of ∼1 km2

matching the bioclimatic variables using spatial analyst toolbox
in ArcGIS.

Multicollinearity was assessed between the environmental
variables using variance inflation factor analyses (VIF) in R (ver-
sion 4.3.0). Highly correlated variables were eliminated consider-
ing a VIF <5 as a critical threshold (Akinwande et al., 2015).
Variables that did not demonstrate any significant contribution
to the model were subsequently removed (Redon and Luque,
2010) and 7 variables were finally selected for modelling: LULC,
elevation, slope, mean diurnal range (Bio2), isothermality
(Bio3), precipitation seasonality (Bio15) and precipitation of cold-
est quarter (Bio19). The contribution of each variable is assessed
by utilizing jackknife tests to visualize variable significance and
calculating the percentage contributions of the variables.

Table 1. MaxEnt model used to predict the distribution of some hard and soft
tick species

Tick species References

Hyalomma asiaticum, Dermacentor
nuttalli, Ixodes persulcatus,
Dermacentor silvarum

Hu et al. (2022); Ma et al. (2023)

Ixodes scapularis Johnson et al. (2016); Burrows
et al. (2022); Zhang et al. (2022)

Hyalomma marginatum Celina et al. (2023); Hekimoglu
et al. (2023)

Amblyomma testudinarium,
Haemaphysalis flava Neumann,
Haemaphysalis kitaokai Hoogstraal,
Haemaphysalis longicornis Neumann,
Haemaphysalis megaspinosa Saito,
Ixodes ovatus Neumann

Doi et al. (2021)

Argas persicus, Dermacentor
marginatus, Haemaphysalis
concinna, Haemaphysalis longicornis,
Ixodes granulatus, Rhipicephalus
microplus, Rhipicephalus sanguineus
sensu, Rhipicephalus turanicus

Yang et al. (2020)

Ornithodoros hermsi Sage et al. (2017)

Amblyomma americanum Raghavan et al. (2016)

Ixodes ricinus, Rhipicephalus
annulatus, Dermacentor marginatus,
Haemaphysalis punctata

Williams et al. (2015)

Otobius megnini Estrada-Peña et al. (2010)
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To assess the impact of different climate change scenarios on
the spatial distribution of H. dromedarii, we excluded LULC. The
future scenario used was ssp2-4.5, model CanESM5 which is
among the most sensitive models in climate equilibrium (Swart
et al., 2019) and covered the periods 2021–2040 and 2041–2060.
The ssp2-4.5 Scenario is considered to be ‘middle of the road’ in
which CO2 emissions remain approximately close to current levels
before diminishing by the 2050s without achieving net-zero level
emissions, and mean temperatures increase to 2.7°C by the end
of the century. Socioeconomic factors continue to remain similar
to historic trends and progress towards sustainability is slow, with
development and income growing unevenly.

Bioclimatic variables were obtained from WorldClim database
(version 2.1) at 30-arc-second (∼1 km) resolution (Fick and
Hijmans, 2017) except elevation and slope as it remained
unchanged throughout the duration of the study. The extent
and resolution of all selected variables were harmonized to the
same study area size and resolution of ∼1 km2 matching the
bioclimatic variables using spatial analyst toolbox in ArcGIS.
All variables were processed to have the same spatial extent and
resolution of ∼1 km2 using spatial analyst toolbox in ArcGIS.

Maxent modelling procedures and calibration

For the modelling analyses, MaxEnt 3.4.3 (Phillips et al., 2022) was
utilized. To address species-specific conditions and research objec-
tives and to avoid relying solely on MaxEnt as a ‘blackbox’ tool
(Hernandez et al., 2006; Phillips et al., 2008; Merow et al., 2013),
we used the spatial jackknifing tool within the SDM toolbox in
ArcGIS (Brown et al., 2017). This approach allowed for consider-
ation of biological factors and provided a more comprehensive ana-
lysis. The tool tests the model using varying parameters and
independently evaluates feature class parameters and the regular-
ization multiplier (RM) to produce a model with the best perform-
ance. The RM enhances the model’s predictive accuracy and

achieve maximum entropy or a more uniform distribution which
reduces model overfitting (Hernandez et al., 2006; Phillips et al.,
2008). In addition, a bias file was generated using a gaussian kernel
density approach for the sampling localities within the SDM tool-
box. This bias file considers any sampling bias by providing
MaxEnt with a background file that exhibits a similar level of
bias observed in the presence localities. The bias file also enables
the model to regulate the density and locations of background
points, thereby avoiding the inclusion of less informative points
that fall outside the known species range (Brown et al., 2017).

The final 7 environmental variables along with 32 presence
points were used to run 10 replicates by the cross-validation
method. An RM of 5 with linear features and cross-validation
method for all analyses. Iterations were raised to 5000 to prevent
under- or overprediction of spatial relationships, considering the
recommended convergence threshold of 10−5. The bioclimatic
model was then projected onto 2040 and 2060 years under
ssp2-4.5 scenario with no extrapolation. Recognizing the limita-
tion in the predictive capabilities of the modelling algorithm dur-
ing projection (Merow et al., 2013), MaxEnt was prevented from
extrapolating. In other words, MaxEnt did not make predictions
beyond its training data during projecting. In addition, the pro-
vided bias file makes MaxEnt avoid sampling habitat outside
the species’ known occurrence (Brown et al., 2017).

Model evaluation/performance assessment

To assess the model’s performance, the receiver operating character-
istic (ROC) curve was utilized, and the area under the curve (AUC)
was calculated as a threshold-independent measure. AUC values
range from 0 to 1, with higher values indicating better model per-
formance (Merckx et al., 2011). For a threshold-dependent measure,
the true skill statistics (TSS) method was employed, using the
threshold of maximum training sensitivity and specificity (West
et al., 2016). TSS accounts for both omission and commission errors
and is less influenced by prevalence (Allouche et al., 2006). TSS was
interpreted based on ranges: <0.4 poor, 0.4–0.8 useful and >0.8
good-to-excellent performance (Zhang et al., 2015). TSS calcula-
tions were conducted using Microsoft Excel.

To determine the relative importance of each variable in the
model, contribution percentage and jackknife analysis were con-
ducted using MaxEnt. Response curves were also measured for
each predictor variable to illustrate the changes in habitat suitabil-
ity corresponding to varying levels of the environmental variables.

Model exploration between current and future variables

To examine the differences between current and future variables,
multivariate environmental similarity surfaces (MESS) and the
most dissimilar variable (MoD) of the MESS map were computed
using MaxEnt (Elith et al., 2010). MESS shows similarity of a
given point in the future to its reference current set of environ-
mental layers. MoD shows the variable with the smallest similarity
at each point (Elith et al., 2010). Limiting factor analyses (LF)
were also conducted in MaxEnt to examine the most influencing
variable on model prediction at each point for current and future
predictions (Elith et al., 2010). All maps were processed and
visualized in ArcGIS.

Results

Model evaluation and sensitivity analysis

The current distribution map of H. dromedarii is given in Fig. 1
(Supplementary Table S1). The distribution model showed
consistent spatial distribution, with AUC-test at 0.772 and

Table 2. Environmental layers for species distribution models

Code Bioclimatic variables

Bio1 Annual mean temperature

Bio2 Mean diurnal range [mean of monthly (max temp – min temp)]

Bio3 Isothermality (difference in day-to-night temperature
oscillations in relation to annual temperature oscillations).

Bio4 Temperature seasonality [standard deviation × 100]

Bio5 Max temperature of warmest month

Bio6 Min temperature of coldest month

Bio7 Temperature annual range

Bio8 Mean temperature of wettest quarter

Bio9 Mean temperature of driest quarter

Bio10 Mean temperature of warmest quarter

Bio11 Mean temperature of coldest quarter

Bio12 Annual precipitation

Bio13 Precipitation of wettest month

Bio14 Precipitation of driest month

Bio15 Precipitation seasonality [coefficient of variation]

Bio16 Precipitation of wettest quarter

Bio17 Precipitation of driest quarter

Bio18 Precipitation of warmest quarter

Bio19 Precipitation of coldest quarter
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AUC-train at 0.798, meaning the model had 77.2% performance
(Table 1). The TSS result also indicated that the model is useful as
the averaged value was TSS = 0.563 (Table 3) (Zhang et al., 2015).
LULC, Bio19 and elevation were the top contributors to the
model, with 53.1, 21.8 and 20.6% (Table 3), respectively. The jack-
knife test revealed that when LULC was used in isolation, the
environmental variable showed the highest gain (Fig. 2) and
this variable when omitted decreased the gain. The second most
significant variable was the Bio19 when not used in the model,
dropped the average gain followed closely by elevation (Fig. 2).

Predicted areas of Hyalomma dromedarii with potential
suitability

Highly suitable areas (>0.6) existed mostly in the northern and
eastern parts of the study area, with a considerable area near

the Red Sea coast in the south (Fig. 3a, b). Very highly suitable
areas (>0.8) corresponded mostly with urban cities across the
study area (Fig. 3a, b). The UAE ranged from high (western
region) to very high (mid- and northern region) in suitability.
Highly suitable areas covered a good portion of Saudi Arabia
and extended from north to east. Moderately suitable areas were
mainly centred in the western and mid-regions of Saudi Arabia.

The potential future distribution is not predicted to change
dramatically under the ssp2-4.5 scenario for the years 2040 and
2060 (Fig. 3c, d). A noticeable change is seen in Riyadh and
Najran cities where suitability decreased sharply.

Model exploration

With the increasing value of slope, elevation and Bio2 (mean
diurnal range) variables, the probability of occurrence declined
sharply (Fig. 4a, b, g). High suitability (>0.6) occurred in areas
where elevation ⩽500 m and b2 ⩽14.5°C. In contrast, potential
suitability increased with increasing Bio19 (precipitation of cold-
est quarter) with highly suitable areas existing in areas receiving
⩾38 mm (Fig. 4d). Suitability also slightly increased with increas-
ing Bio15 (precipitation seasonality) and Bio3 (isothermality)
(Fig. 4e, f). For LULC (land use/land cover) variable, suitability
was moderate for croplands (10, 30), tree cover (60, 80), shrub-
land (120), sparse vegetation (150) and high for urban areas
(190) (Fig. 4c).

The MESS analysis values ranged from −46 to 71 and from
−46 to 73 for the years 2040 and 2060, respectively (Fig. 5a, b).
Most areas were similar with varying degrees to current environ-
mental conditions. Some areas had negative values demonstrating
a degree of newness in environmental space. The highest novelty
was in Riyadh city followed by Najran city where the novelty was
mostly driven by Bio3 and Bio15 in both years, respectively
(Fig. 5c, d).

Bio19 is the main limiting factor over the predicted existing
range, followed by Bio2 in the limiting factor analyses (Fig. 6a, b).

Figure 1. Hyalomma dromedarii occurrence points in Saudi Arabia and UAE used for the distribution modelling.

Table 3. Evaluation test, sensitivity test and each variable contribution
percentage in the model of Hyalomma dromedarii

Evaluation test Result

AUCtest 0.772

AUCtrain 0.798

TSS 0.563

Variable Contribution to the model (%)

LULC 53.1

Bio19 21.8

Elevation 20.6

Bio3 1.9

Bio2 1.8

Slope 0.5

Bio15 0.2
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Southern region in Saudi Arabia had elevation, slope and Bio15
slope as the limiting factors. Similarly, northern areas in the UAE
had slope and Bio15 as the limiting factors. LULC was also limiting
the distribution on the northern west coast of the UAE (Fig. 6a). For
the potential future distribution (Fig. 6c, d), Bio3 limiting effect
increased over Bio2 in northern Saudi areas as well in eastern
UAE areas. Elevation limiting effect also increased in middle
Saudi areas.

Discussion

The MaxEnt model has been widely used for predicting distribu-
tions of hundreds of animal species (Elith et al., 2006). Our model
helped us to better understand the environmental niche of H. dro-
medarii tick species in Saudi Arabia and UAE. The predicted
maps developed from this model on current occurrences of
H. dromedarii with a high probability based on suitable

Figure 2. Jackknife test (evaluation of each variable significance). LULC (land use/land cover), Bio2 (mean diurnal range), Bio3 (isothermality), Bio15 (precipitation
seasonality), Bio19 (precipitation of coldest quarter).

Figure 3. Geographic distribution of Hyalomma dromedarii for (a) current, (b) current based on bioclimatic variables, (c) year 2040 under ssp2-4.5 scenario and (d)
year 2060 under ssp2-4.5 scenario both based on bioclimatic variables.
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Figure 4. Environmental variables response curves display probable occurrence of Hyalomma dromedarii. (a) Slope (m), (b) elevation (m), (c) LULC (land use/land
cover), (d) Bio19 (precipitation of coldest quarter, mm), (e) Bio15 (precipitation seasonality, per cent), (f) Bio3 (isothermality, percent), (g) Bio2 (mean diurnal
range, °C).
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environmental conditions. The modelled distribution of H. dro-
medarii indicated that highly suitable areas existed mostly in
the northern, eastern and southern portions of the study range.
In the UAE, the eastern to northern regions were classified as
highly suitable for ticks. These regions include portions of eastern
Abu Dhabi emirate, including Al Ain, bordering Oman, various
cities within north-eastern portions of Abu Dhabi, such as
Mafrak, Dubai and the northern Emirates, where the coastal
zones influence moisture and temperature profiles. This increases
the suitability of ticks in these regions. In addition, farms abound
with high density of camels and other livestock that help to sus-
tain tick populations (Perveen et al., 2021c). In Saudi Arabia, areas
that were highly suitable were within the north-central region, the
eastern edge south of the UAE and the southwestern shoreline
bordering the Red Sea, whereas western and mid-regions were
of moderate suitability for ticks. The north central regions with
high suitability were east of the Al Nafud desert region. This
area is adjacent to areas that are around 500 m in elevation, and
receives more precipitation, making them suitable for ticks.
Similarly, the southwestern regions are immediately adjacent to
the Asir Mountain range that has elevations of over 2000 m,
with significant moisture draining out of them into the Red Sea,
increasing moisture content and influencing temperature along
the southwestern coastline. Saudi Arabia and UAE camel and live-
stock farming represent an essential habitat for H. dromedarii and

other ticks, which are likely enhanced in these regions due to bet-
ter environmental conditions compared to the remaining parts of
the study area.

Bioclimatic factors combined with LULC have a cumulative
influence on determining the suitability of tick habitats. The sur-
vival of ticks during its off-host phase is heavily reliant on vari-
ables like temperature and humidity (Apanaskevich et al., 2013;
Pascoe et al., 2019). The elevation of an area affects its microcli-
mate, the presence of hosts and the vegetation. Additionally, slope
serves as an indicator of subsurface water flow velocity, runoff rate
and soil moisture content (Pascoe et al., 2019). The presence and
characteristics of vegetation also impact the suitability of tick
habitats. Vegetation plays a crucial role in the life cycle of tick
hosts, such as camels, where the availability of cropland, herb-
aceous cover and water are decisive factors for host presence in
a given area (Apanaskevich et al., 2013; Pascoe et al., 2019).
Based on the current climate, several variables influenced the
H. dromedarii tick distribution including land use/land cover
LULC (53.1%), Bio19 (21.8%), elevation (20.6%), Bio3 (1.9%),
Bio2 (1.8%), slope (0.5%) and Bio15 (0.2%). The precipitation
of coldest quarter is significant to the tick survival in the winter
season. For land use/land cover variable, suitability was modest
for sparse vegetation (150) and high for urban areas (190),
maybe due to anthropogenic factors such as land-use change,
agriculture practices, forest fragmentation or urbanization.

Figure 5. Model maps: (a, b) MESS (multivariate environmental similarity surfaces) analysis presenting the degree of resemblance between future and current set of
environmental layers; (c, d) most dissimilar variable (MoD) analysis. (a, c) year 2040 and (b, d) year 2060, all under the bioclimatic distribution model.
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The jackknife results showed that the LULC when used in isolation
was with the highest gain. The high suitability/high tick density
sites are the areas categorized by a high proportion of land cover
(Burrows et al., 2022). Moreover, the land-use and land cover pat-
terns may provide microclimatic conditions through vegetation
covers that serve as ticks habitats (Doi et al., 2021; Khwarahm,
2023). Our findings are almost similar to the one conducted in
Iraq on distribution of the Hyalomma spp. where distribution influ-
enced by LULC (50.8%), followed by elevation (30.4%)
(Khwarahm, 2023). A similar study was conducted on distribution
of Ornithodoros hermsi where annual temperature range (Bio7)
contribution was highest (18.9%) in the model, followed by eleva-
tion (18.1%), and precipitation of the warmest quarter (Bio18) in
Sage et al. (2017). However, in another study minimum tempera-
ture of coldest month (Bio6) and precipitation of driest quarter
(Bio17) strongly influenced the model (Porretta et al., 2013). In
Mongolia, annual precipitation (Bio12) and elevation influenced
the Hyalomma asiaticum distribution (Ma et al., 2023). The differ-
ences in the impact of environmental variables in other studies are
most likely due to species-specific niche requirements, an area that
requires extensive study in the Middle East region.

Response curves of the environmental variables showed that H.
dromedarii potential suitability increased with increasing precipi-
tation of coldest quarter (Bio19), in areas receiving ⩾38 mm while
declining sharply with the increasing value of slope and elevation.

The potential future distribution is not predicted to change dra-
matically under the ssp2-4.5 scenario for 2040 and 2060 years;
however, a visible change has been seen in Riyadh and Najran cit-
ies where suitability decreased sharply mostly driven by isotherm-
ality and precipitation seasonality in both years, respectively.
Therefore, climate change can impact the tick distribution in
forthcoming years. This species disperses naturally with the
help of infested animals, but it can also inhabit new ranges
through travel and transportation of animals across the borders.
Due to its high prevalence on camels in both countries (Alanazi
et al., 2020; Perveen et al., 2020; Perveen, 2021), its distribution
is a continued threat in the region. In addition, it serves as a res-
ervoir of many tick-borne pathogens. Therefore, the current study
will assist researchers and health care managers to devise the strat-
egies to limit the distribution of ticks to better avoid tick-borne
zoonotic diseases in the future. Various zoonotic pathogens
have been reported previously in the region including
MERS-CoV (Zaki, 2012; de Groot et al., 2013; Perveen et al.,
2021a) and CCHFV (Camp et al., 2020; Perveen and Khan,
2022) posing a serious threat to camel farming and human and
animal health. Hyalomma spp. are primary vectors of CCHFV
(Perveen and Khan, 2022). Recently, H. dromedarii tested positive
for CCHFV in both countries (Mohamed et al., 2017; Camp et al.,
2020). Previously, a virus related to the tick-borne encephalitis
complex has also been detected in Saudi Arabia (Zaki, 1997).

Figure 6. Limiting factor (LF) analyses highlighting the most influencing variable on model prediction for (a) current, (b) current, based on bioclimatic variables, (c)
year 2040 under ssp2-4.5 scenario and (d) year 2060 under ssp2-4.5 scenario both based on bioclimatic variables.
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The true distribution of ticks and other invertebrates are diffi-
cult to determine as widespread sampling of ticks, hosts and their
environments are not available in the MENA region (Perveen
et al., 2021c). In the absence of true distribution, model validation
provides the best way of assessing if the predicted distribution falls
within reasonable bounds of statistical uncertainty (Convertino
et al., 2014; Liu et al., 2016; Chen et al., 2019). We used AUC
and TSS values that indicated that the model was able to predict
the distribution based on the quality of the data available. The
Kappa statistic is typically used for validating the accuracy of
the distribution models, including MaxEnt models (Allouche
et al., 2006). However, the Kappa statistic has a linear relationship
with prevalence (the proportion of sites in which the species is
present), making it a potential statistical artefact (Allouche
et al., 2006; Liu et al., 2016). In comparison, the TSS is independ-
ent of prevalence making it better in accurately predicting distri-
bution (Allouche et al., 2006; Liu et al., 2016). Values of TSS that
we obtained were in the useful category. This may suggest that
further data from more sampling sites could improve the model.

In summary, the model showed that LULC, precipitation of
coldest quarter, and elevation were most influential for predicting
the areas as highly suitable for ticks. Other environmental vari-
ables which contributed in the model were isothermality, mean
diurnal range [mean of monthly (max temp – min temp)],
slope, precipitation seasonality. The model presented here pro-
vides valuable information on camel tick species distribution in
Saudi Arabia and UAE. The predicted distribution of H. drome-
darii may allow researchers and health officials to conduct risk
assessments targeting specific pathogens and potentially reduce
the chance of outbreaks through surveillance and mitigation
efforts.
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