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ABSTRACT 

This paper examines the question of the definition of the celestial 
and terrestrial coordinate frames by the technique of long baseline 
interferometry. It demonstrates how the celestial coordinate frame may 
be usefully defined in terms of basis 1-forms associated with the 
advancing phase fronts of the radiation fields from compact radio 
sources using only interferometer observables. The paper then proceeds 
to show how the terrestrial coordinate frame could be usefully defined, 
incorporating fully the effects of plate tectonics and secular motion 
of the observatories, by an application of the theory of continuum 
mechanics to interferometer observations. 

If we consider a long baseline interferometer with baseline B 
observing radiation at angular frequency to emanating from a source 
which lies in the direction of the unit vector s, then the delay 
observable T is a scalar quantity which can be expressed as T = — §'B 
where c is the velocity of light in m-sec--*- (Thomas 1972, Cannon 1978). 
The phase $ of the interferometer is related to the delay T by $ = u x. 
We may also express the interferometer phase as $ = V<j)*B where V<j> is 
the gradient of the phase 9 of the radiation field from the source which 
lies in the direction s. Associated with the gradient vector V<J> there 
is a 1-form u> such that the surfaces of the 1-form oi correspond 
physically to the constant phase fronts of the radiation from the source 
s. This permits us to express the interferometer phase $ and delay T 
in terms of the 1-form 55 as $ = <w,B> and T = —r- <u,B>. 

(0° 

We may now introduce a space-fixed coordinate frame by choosing 
three arbitrary radio sources lying in the directions of the unit 
vectors S, , S~ and S-. and defining these unit vectors as the basis 
vectors of the space fixed frame. In general this space fixed 
coordinate frame will not be orthogonal and we shall have 

S.-S. = G.. 
1 J ID 
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where Gj_j = cos S-̂ Sj are the covariant components of the metric tensor 
of the space fixed frame and where Sj_S-j indicates the angular distance 
between the radio sources lying in the directions S^ and Sj. The basis 
vectors S-̂ , S2, and'§3 have associated with them a covariant set of 
basis 1-forms S , Tt , and %l defined such that 

<Si. , S > = G. . . 
1 J 1: 

The phase $(i) of the interferometer which is measured when observing 
the radio sources in the directions Si is a direct measure of the space 
fixed covariant components B. of the baseline vector B. This is seen 
as follows: 

$(i) = <fi , B> = <& B1S + B2S + B3S > 

= <h. -S^B 1 + <?l. ,S>B2 + <ft. ,S^>B3 = G. .B: = B. . 
1 1 1 2 1 3 13 1 

The familiar contravariant components B follow from B = G B. where 
Gij is defined by GikG. . = 61. : 

k3 3 
This approach is ideally suited to geodetic applications of long 

baseline interferometry for it makes no appeal to traditional celestial 
or terrestrial coordinate frames and depends entirely on interferometer 
observables including the angles S.S. which define the elements of G.. 

-, -^ x. • ^ii i l il 
and its matrix inverse G J. 

In the case where the interferometer is not observing one of the 
sources S-,, S,, or §3 which define the basis vectors of the space fixed 
frame but is instead observing some arbitrary radio source which is 
lying in the direction s, we introduce a 1-form to defined such that 
<oi,s> = 1. The unit vector s can be expressed as_ a linear combination 
of the basis vectors, s = CTS, , where C = cos s S^ and the 1-form £> 
can be expressed as a linear combination of the basis 1-forms & = Â fj 

The phase of the interferometer while observing this source is 
$(§) = <w,B>. This reduces as follows: 

$(s) = <w,B> = <Aka , BjS.> = AkB:<fi ,S.> 
k 1 k 1 

= AkBj G, . = AkB, . 
k] k 

To determine the space fixed covariant components B^ of the baseline 
vector requires observations on three sources S: and the solution of , 

*. k k 
the equations $(s.) = A. B^, i = 1,2,3. The values of the elements A 
follow from the property that <w.,s.> = 1. This reduces as follows 

<a).,s.> = <A. fi, , C. S„> = A. C^Xa ,§„> 
1 1 1 k' 3 I 3 3 k' I 

1 

= Ak Cl Gv„ = 1. 
1 1 k£ 

From this it follows that 
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A = [cos(s.S )G + cos (s S ) G.„ + cos (s.S.)G,,] X . 
3 j 1 kl 3 2 K2 j 3 k3 

Once again the procedure is independent of any traditional 
celestial or terrestrial coordinate frame and depends entirely on 
interferometer observables namely the angles S^S^ which constitute the 
elements of G as well as the angles s.S appearing in the above 
formula. 

The rotating body fixed frame of the earth has traditionally been 
spanned by an orthogonal set of body fixed basis vectors e? which are 
defined by the mean axis of figure of the earth, the mean equator of 
figure of the earth, and the mean prime meridian of longitude or the 
"mean observatory". A space fixed coordinate frame has traditionally 
been spanned by an orthogonal set of space fixed basis vectors E^ 
defined dynamically (inertially) by the mean pole of the ecliptic, the 
mean plane of the ecliptic and the mean equator of a given epoch. The 
time dependent rotation of the set e^ relative to the set E^ can be 
expressed as ei = P-̂ j (t) Njk(t) Sk.(t) W (t) E m when the orthogonal 
matrices P^ • ,Rj_ • ,S^ • ,W— represent the effects of earth precession, 
nutation, rotation (spin) and polar motion (wobble) respectively. 
(Woolard & Clemence 1966, Mueller 1969). 

In so far as the earth is rigid and of a known figure the elements 
of all matrices can be predicted in advance on the basis of known 
astronomical forcing functions. The finite strength of the earth and 
the interaction between the earth's solid and fluid portions has 
complicated this transformation somewhat (Rochester 1973) but its 
continued use in the present day implicitly carries the assumption that 
an observer who remains locally fixed relative to the material of the 
solid earth will, on average, also remain globally fixed relative to 
the material of the solid earth. 

The discovery that an observer who is fixed locally relative to 
the material of the solid earth will not, on average, remain fixed 
globally relative to the material of the solid earth but will, accord­
ing to the theory of plate tectonics, exhibit secular motion relative 
to the global distribution of earth material at rates varying from 1 to 
10 cm yr has rendered this assumption invalid. This fact together 
with the development of modern space techniques of geodesy such as long 
baseline interferometry, which are expected to yield intercontinental 
baseline measurements with precisions of a few centimeters, have made 
it necessary to re-examine the question of the definition of the body 
fixed frame and to develop rigorous operational definitions and compu­
tational procedures which are capable of incorporating secular 
deformability and continuing fracture of the earth. 

In our treatment we shall be guided by the well known procedures 
of continuum mechanics (cf. Prager 1973) in which the deformation field 
imposed on a continuous medium is described by a differentiable vector 
function of position u(r). The components of the relative displacement 
A of two mass elements at positions r-,, r„ separated, before deformation, 
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by the infinitesimal separation vector dx is given by 

A. = e . . dx. + il. . dx . 
i ID D ID 3 

where 
. r 8u. d u . , , r du. 8u. , 

e „ 4 U V and a. . = I - A - -JL 
in 2 1 3x. dx. J i ] 2 I 3x. 3x. J 

3 1 3 i 
are the strain tensor and rotation tensor respectively. The strain 
tensor has the property that the variation in the squared distance 
|dx| between the mass elements accompanying deformation is given by 
6 I dx| = 2e- .dx̂ dx.:. The rotation tensor has the property that the 
components fL of rigid body rotation Q imparted to the separation vector 
dx by the deformation field are given by Q. = - — e. ft., where e. 
is the alternating tensor. 

We proceed by considering a long baseline interferometer baseline 
B(t) = b-|_(t)e° + b2(t)§2 + b3(t)e°j. The procedure for determining the 
traditional body fixed components bj_(t) involves: (i) a determination 
of the contravariant space fixed components B(t) = B-*-(t)Sj_ + B (t)S2 + 
B3(t)S3 given with respect to the space fixed basis vectors Sj_ (i=l,2,3) , 
(ii) a transformation using the celestial coordinates (right ascension 
and declination) of the radio sources §•(i=l,2,3) to express the base­
line components in terms of the space fixed basis vectors Ei(i=l,2,3), 
or B(t) = 3]_(t)Ex + 32(t)E2 + 33(t)E3, (iii) a transformation bi(t) = 
wT. (t)sTk(t)N^(t)P^m(t) Sm(t) where the superscipt "T" denotes a 
matrix transpose. 

->-
Repeated measurements of the baseline B(t) at times ... tm_-,, t , 

tm4.]_ ... yield observatory relative displacement vectors D(tm) = B(tm) 
- B*(tm_-,) with body fixed components d̂ ttj,,) = bi(tm)-bi(t _. ) 
introduce the quantities 

d. (t )b.(t ) 
1 m -\ m 

We 

ij m' b0(t )b.(t ) 
J £ m £ m 

C .(t ) = 
ij m 

to serve as analogs to the tensor ,.• of continuum mechanics. We may 

decompse C.. into symmetric and antisymmetric parts as C.. = E.. + 0.. 
1: , 1: ID ID 

where E. . = •=• ic. +C . ] and 0 . = — [C. .-C..J. It can be readily 
13 2 ij 31 13 2 13 31 

shown that the body fixed components of the relative displacement 
vector can be written as d± = Ej_jbj + Qijbj which is the analog of the 
expression A- = e .dx. + fl..dx. from the theory of continuum mechanics. 

1 ID D ID D 

Further similarities to the theory of continuum mechanics follow. 
It may be shown that the variation 6|s2|in the squared distance s2 

between the observatories which occurs as a result of the relative 
->• 1 9 1 

displacement D is given by 6 \ s | = 2E;j_-;b;j_b-: which is the analog of the 
expression 6|dx|2 = 2e-̂ dxj_dx.; from the theory of continuum mechanics. 
It may also be shown that the body fixed components of the rigid body 
rotation 6 = 9 e + B e + 9 e imparted to the interferometer baseline 
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by the relative displacement of the observatories D are given by 

8. = - — e. ., 0., which is the analog of the expression Q. = - — e. ., fi., 
I 2 ink ]k ^ ^ I 2 13k jk 
from the theory of continuum mechanics. 

These procedures may be applied to the problem of the definition 
of the terrestrial frame in the presence of arbitrary earth deformation 
fields producing arbitrary relative motions of the observatories. We 
presuppose a global network of N nonredundant interferometer baselines 
Ba (a = 1, 2, 3 ... N) and their measured strain tensor analogs E!?- and 
rotation tensor analogs 0ji a = 1, 2, 3 ... N. We may define a unique 
global strain tensor analog T^. as being that which minimizes in a 
weighted least squares sense the total departure between the observed 
baseline length variations 6sa given by 

6 s a 2 = 2Ea. b a b a 

1 : 1 3 2 
and the p r ed i c t ed ba se l i ne length v a r i a t i o n s 6s given by 

6s =21.. b. b. 
1: 1 1 

2 
We then choose to minimize P where 

-! N 2 2 1 

P = I w [6s - 6s ] 
a=l 

or 
N 

P = 4 I w [ E..b.b.) - 2E.,T b.b.b0b + T b b ) ] 
in 1 n 11 ta 1 ] I m Jim x, m 

a=l 

a 2 
where w are appropriate weights. A choice of T„ which minimizes P 

Jim i s given by 

which leads t o 

^ 2 n w~ = ° 
pq 

4 I wa [-2Ea + 2F 1 b V b V = 0. 
atx L 1: ijj i j p q 

Since this condition should be fulfilled independently of the 
particular choice of baseline network we conclude that we shall in 
general require 

r.. = ~N~ r a a . . = w r> a a 
in v a ) w E. . . 

S a=l 
a=l 

We may also define a unique global rotation tensor analog Aj_ • as 
being that which minimizes in a weighted least squares sense the vector 
norm of the net departures between the observed baseline rotation 0a 

whose components are given by 
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i 2 ijk 3k 

and the predicted baseline rotation A whose components are given by 

A. = - ± e. ., A., . 
i 2 ijk jk 

We then choose to minimize 
o N 

Q2 = I w a | e « - * | 2 
a=l 

or 

Q2 = £ f w a [ 0 f - 2A„ G" + A2 ] 
* 2 ^. l Jim Jim Sim Jim 

a = l 
2 

where w are appropriate weights. A choice of A which minimizes Q 
is given by 

3Q2 n 
—T = 0 
3A 
pq 

which leads t o 
N 
y w a [ -20 a + 2A ] = 0 

a=l M M 

which has the solution 
N 

A. . = ) w 0 . .. 
i: N L. ID 

V a a=l 
I w 
a=l 

Ct QL 

The tensor analogs Ej_-: and 0-M for each interferometer baseline 
can be expressed as the sum of the global quantities Y^ and A-j_-j plus a 
"local" residual e^j and w^j respectively. 

Ea. = r . + ea ID ID ID 

. . = A. . + to. . 
ID ID i: 

where, by definition, the weighted global means of the local residuals 
vanish 

1 N 
— ; V a a 

N ) w e. . = 0 
V a , ID 
/, w a=l 

a=l 
1 N 

v a a 
N ) w a). . = 0. 
2, w a=l 

a=l 
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Ci CX 

The "local" residuals £j_^/ w^. a = 1, 2, 3 ... N, given relative 
to the traditional body fixed basis vectors e° §2 e°, represent strains 
and rotations of individual baselines relative to the network as a 
whole and will presumably contain intormation about regional tectonics 
including inter- and intraplate geologic processes. 

The global quantities T-• and A-• represent global strain and 
global rigid rotation of the network as a whole relative to the 
traditional body fixed basis vectors e? e? e?.. The global network of 
interferometers and the global quantities V^•, A^- can be used to 
redefine the body fixed coordinate frame. In general we may express 
the new body fixed basis vectors e- in terms of the traditional body 

/xO 

fixed basis vectors e. by a transformation of the form 

e. = [6 + a. . + a..]e. 
1 1 : 1 : 1 : J 

where a.. and a . are small quantities and where: 
1: i: 

(i) a.. = a., is the symmetric part of the transformation, 

(ii) a.. = - a., is the antisymmetric part of the transformation. 

The symmetric and antisymmetric parts of the transformation are 

independent of each other and must be determined separately. In 
general the antisymmetric part of the transformation, given by a.., 
represents a rigid rotation of the basis vectors e^ relative to the 
basis vectors e° while the symmetric part of the transformation, given 
by a.., represents a deformation of the basis vectors e. relative to 

J A o -̂  
the basis vectors e.. 

1 

We shall define the body fixed frame to be spanned by new body 
fixed basis vectors e.j_ such that if the material of the earth were 
subjected to a uniform strain TJ • and a uniform rotation A-;-; relative 

A n 1J J 

to the basis vectors e^ then the body fixed coordinates of the mass 
elements of the earth would remain constant when referred to the basis 
vectors e^. Accomplishing this in the presence of the global rotation 
A— fixes the antisymmetric part of the transformation and accomplishing 
this in the presence of the global strain T^• fixes the symmetric part 
of the transformation. 

It is clear that the antisymmetric part of the transformation 
requires 

a. . = A. . 

while it can be shown (cf. Brillouin, 1964, pp. 287 ff.) that the 
symmetric part of the transformation can be deduced from the requirement 
that to preserve the coordinates of the mass elements in the presence 
of the deformation T^ we require a nonorthogonal set of basis vectors 
e- which have the property that 

e.*e . = g. . 
1 3 ^ 1 : 
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where 

g.. = 6.. + 2T. . 
ID ID i: 

is the metric tensor of the body fixed coordinate frame. This leads to 
the result that 

o.. = r.. . 

This gives 

and 

e. = [6.. + r.. + A..]e° 
i i: i: i: : 

e. = [6. . + r. . + A. .] p N. „ s„ w E 
i 13 i] 13 3k k£ Jim mn n 

as the transformation from the dynamical space fixed frame to the body 
fixed frame of the interferometer network. 
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