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NORMS IN POLYNOMIAL RINGS

G. MYERSON

We give a formula for the norm on a polynomial ring modulo an ideal in terms of
the zero—set of the ideal. We hint at the relation to resultants.

1. DEFINITIONS AND STATEMENT OF THEOREM

Let A be a ring (by which we mean a commutative ring with unity). Let B be
a ring containing A, and suppose that, as an A-module, B is finitely-generated and
free. Let b be any element of B; then multiplication by b is an A-linear operator T}
on B. The norm from B to A of b, written N5b, is defined to be the determinant of
T;.

Perhaps the most familiar example is that in which A is the rationals and B is a
number field; N2b then coincides with the field norm of algebraic number theory.

In what follows, we write A, for A2y, ..., z.].

THEOREM. Let A be an integral domain, and let I be an ideal in A, such that
B = A, /I is, as an A-module, finitely-generated and free. Let k be an algebraically
closed field containing A, and let Z(I) be the set of all zeros of I over k. Then Z(I)
is finite and, if f isin A,, then

(1) NZF= ][I sy*

PeZ(I)

where f = f + I is the image of f in B, and mp is the multiplicity of P as a zero of
I.

Multiplicity is used here in the standard sense of algebraic geometry — we elaborate
on this in the course of the proof. We note that the condition on I is quite restrictive;
for example, if A is the ring of integers and n is 1 then I must be principal with monic
generator. Steve Schanuel has suggested that B need only be projective, not free, but
we have not explored this idea.
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2. PROOF OF PART OF THE THEOREM

We believe that the finiteness of Z(I) (under the hypotheses of the theorem) is
due to Grdbner {3]. For the reader’s convenience, we present a simple proof.

PRroOOF: (of the finiteness of Z(I)). For a given j, 1 < j < n, we consider the
elements 1, z;, z?, ..., of A,. Their images 1, Z;, ’f?, .. in B cannot be A-linearly
independent, since B is finitely—-generated as an A-module; thus there exists a positive
integer r and elements ao, ..., a, of 4 such that ap +a,Z;+...4a,2; =0 in B. Let
fi(z) = ao +a12; +... + ayz]; then ?j =0,s0 f; €I. Nowlet P=(ay, ..., a,) be
in Z(I). Then f;(P) =0, s0 ag+a10a;+...+a,a] =0, so there are only finitely many
possible values for aj. But j was arbitrary, so there are only finitely many points in

Z(I). 1]

3. CHANGE OF BASE, AND NULLSTELLENSATZ

We wish to reduce the theorem to the case where A = k, that is, where A is an
algebraically closed field.

LEMMA 1. Let A be a ring, let I be an ideal in A,, let B = A,/I. Let A’
be a ring containing A, with A'N A, = A. Let I' be the ideal generated by I in
Al = A'[zy,...,z,], let B'= Al /I'. Then

(1) B'~B®4A,

(2) if B is, as an A-module, finitely—generated and free with basis {f; +
I,..., fr + I} then B' is, as an A'-module, finitely-generated and free
with basis {fi + I',..., fr + I'}, and, in this case,

(3) if g isin A, then NB/(g+ I') = NB(g + I).

PROOF: (with our thanks to Jonathan Hillman). Tensor the exact sequence
0 — I — A, — B — 0 over A with A’ to obtain the top row in the follow-
ing commutative diagram:

0—— I' —— 4
| !
0 0
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The map a is defined by a(f ® a') = a'f and linearity; it is the canonical identi-
fication of A, ®4 A' with A,. The map 8 is defined by B(i ® a') = a'i and linearity;
it is surjective since every element of I' is a sum of terms of the form a'i with a' € 4’
and ¢ € I. The map 7 is defined to make the triangle commute.

A routine diagram chase establishes that 0 — I' — A}, — B®4A' — 0 is
exact, whence B®4 A' ~ Al /I' = B'. The rest of the lemma follows from basic facts
about tensor products amd the definition of the norm. 0

It follows from Lemma 1 that in proving the theorem we may assume A = k is an
algebraically closed field. We shall have need of the Hilbert Nullstellensatz, which we
state as it appears in [5].

LEMMA 2. IfJ is an ideal of k,, = k[2y, ..., Z4], if f € k,, and if Z(J) C Z(f)
then there is a non-negative integer m such that f™ isin J.

4. PROOF OF THE THEOREM BY COMMUTATIVE ALGEBRA
We take as given the hypotheses of the theorem, with 4 = k.

LEMMA 3. I has a reduced primary decomposition, I = (Q;.
i

PROOF: k, is Noetherian. 1]
LEMMA 4. For each j, Z(Q);) is a single point.
PROOF: Z(Q);) is certainly a finite set, since Z(I) = |J Z(Q;). Suppose Z(Q;) =

SUT, where S and T are disjoint and non-empty. Const:'uct f,g in k, such that f
vanishes on S but not on T, and g vanishes on T but not on S (such f and g exist
since § and T are finite sets and k is an infinite field). Then Z(Q;) € Z(fg), so,
by the Nullstellensatz, (fg)™ is in Q; for some non-negative integer m. Since Q; is
primary, some power of f or g is in Q;; but this is absurd, since f does not vanish on
T and g does not vanish on S. 0

LEMMA 5. The Q; are pairwise relatively prime.
PROOF: For each j, let Z(Q;) = {P;}. If r # s then P, # P,, since I =[\Q;
j
is a reduced primary decomposition. Assume P, and P, differ in coordinate £, that
is, P = (a1,..., an), P, = (B1, ..., Bn), with az # B;. Let f(z) = z; — a¢, let
g9(z) = z¢ — B¢. Then f(P.) =0, so by the Nullstellensatz f* isin @, for some non-

negative integer u; similarly, ¢g° is in @, for some non-negative integer v. It follows
that

0# (ac =B = (g~ )*""7 = f*F+4°C
for some F, G in k,. Thus Q. + Q, = k. 1]
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LEMMA 6. B~ @k,/Q; (isomorphism as k-algebras).
i

PRrooF: Chinese Remainder Theorem. 1

Now let Bj = kn/Q;, and let m; be the dimension of B; as a k-vector space —
this is the standard definition of the multiplicity of P as a zero of I.
PROOF OF THE THEOREM: Let f € k,. Then for each j, (f+ Q;)B; C B;,
so NBf = Hij(f + @;). Let T; be the restriction to B; of the linear operator,
C

“multiplication by f”, and let A be an eigenvalue of T; with corresponding eignevector
b# 0. Thus (f + Q;)b = Ab. Let b =v + Q; for some v € ky; then (f — A)v € Q;.
Now b # 0 implies v ¢ Q;. Since Q; is primary, there is a positive integer m such
that (f —A)™ € Q;. Thus (f(P;)—A)" =0,s0 A = f(P;). Hence ij(f+ Q;) =
f(P;)™, whence NBf =[] f(P;)™ .

i

5. PROOF OF THE THEOREM BY LINEAR ALGEBRA

We present a second proof which does not involve primary ideals or the Chinese
Remainder Theorem (at least, not overtly). We let Z(I) = {P,..., P¢}.

LEMMA 7. Given f,g in k, with fge€ I,if Z(f)NZ(I)= ¢, then g€ I.

L
PRroOOF: Let b = [] (f — f(P;)). Then Z(I) C Z(h) so, by the Nullstellensatz,
i=1

h™ isin I for some non-negative integer m. Thus A™g isin I. Now h™ = fr + ¢ for
m

some r € k,, and some non-zero ¢ in k — in fact ¢ = (—1)™" [H f(P;)| . So from

J

h™g in I we deduce frg+ cg in I, whence cg isin I, whence g isin I. 0

LEMMA 8. Let T; be the linear operator on B given by multiplication by f.
Then the eignevalues of Ty are precisely the quantities f(P;),j=1,2,..., L.

ProOOF: Assume Tyb = Ab for some non-zero b in B and some A in k. Choose ¢
in kn such that b = g + I'; note that b # 0 implies g is not in I. Then (f — A)g is in
I. By Lemma 7, Z(f — A) N Z(I) # 0; hence, A = f(P;) for some j.

Conversely, for each j, choose u; in k, such that u;(P,.) = §;,. Such polynomials
are easily constructed explicitly, and we omit the details. Let v; = (f — f(P;))u;.
Then Z(I) C Z(v;), so, by the Nullstellensatz, v7* = (f — f(P;))™u]* is in I for some
positive integer m. On the other hand, uT" is not in I, since uT*(P;) # 0. So there is
an integer 7, 0 < < m, such that (f — f(Pj))ru;" isnotin I but (f — f(P,-))'Hu;"
is. Let wj = (f — f(P;))"uT"; then T; is an eigenvector for Ty with corresponding
eigenvalue f(P;). For, Tyw; = fw;+I = (f — f(P;))w;+ f(Pj)w;+1I = f(P;)w;+I =
f(P;)w; -
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It follows from Lemma 8 that for every f in k, there exist positive integers
my, ..., my such that NBf = [][f(P;)™. To conclude the proof of the theorem
it remains only to show that the m; can be chosen independently of f.

PROOF OF THE THEOREM: Choose h in k, such that r # s implies h(P,) # h(P,).
Let B = B1®...® By, where B; is the eigenspace of T}, corresponding to the eigenvalue
h(Pj}, j =1, ..., L. Let m; = dim; B;. By Lemma 8, each m; is positive. It is clear
that NBh =[] h(P;)™ .

Nowfor j =1, ..., £ let u; be as in the proof of Lemma 8. By the argument of that
lemma, (h — h(P;))"u] isin I for some integer m. Equivalently, (T} — h(P;))" %} =

-=m
[T

]
Now let f be an arbitrary element of k,. Since T, and Ty commute, B; is an

0, so is a non-zero element of B;.

eigenspace for Ty. Let A be the corresponding eigenvalue. Then there is an integer r
such that (Ty ~ A)"&]* = 0, that is (f — A)"u]* isin I. Evaluating at P;, and recalling
that uj(P;) # 0, we see (f(P;) —A)" = 0,50 A= f(P;). The theorem now follows. [I

We note that this proof presents an alternative method of viewing the multiplicity
of a zero P;j of the ideal I, namely, as the dimension of the generalised eigenspace B;
corresponding to the eigenvalue h(P;) of an operator T}, where h is such that r # s
implies h(P,) # h(P,).

6. RESULTANTS
Let A be a commutative ring with unity. Let f and g be polynomials with
coefficients in A. The resultant of f and g, written R(f, g), is defined to be the
determinant of the Sylvester matrix; this is the matrix

- -

an ay_1 coe ag

an cen ao 0
0

Ay oo [ )

bn bm— e by

b, ces bo 0
0 . .

L bm bo.‘

n . -
where f(z) = ) ajz? and g(X) = }ﬂi b;z’, an # 0, by # 0 (in the matrix the
i=0 j=0

coeflicients of f fill m rows, and the coefficients of g fill n rows).
If A is an integral domain then there are well-known expressions for R(f, g) in
terms of the zeros of f and/or g, for example

R(f, 9) = a7 [] s(a),
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where a runs through the zeros of f in a splitting field containing A, with multiplicities.
Comparing this with the theorem yields

COROLLARY 1. Let A be an integral domain. Let f in A, be monic. Let
B = A,/(f). Then for all g in A, we have

(2) R(f, g) = N{g.

Both sides of (2) are defined in terms of the coefficients of f and g alone, from
which it follows that (2) holds under the weaker hypothesis that A be a commutative
ring with unity. This attractive result has been discovered independently several times.
Professor Schinzel informs me that a formula equivalent to (2) appears in a work of
Cebotarev [2] to which I have not had access; since then it has appeared in [8, 4, 9, 1,
10], and, we regret, [7].

We would like to generalise Cebotarev’s result to multivariate polynomial rings.
There are difficulties with resultants of systems of multivariate polynomials that do
not arise in the one-variable case, but our theorem suggests that here, too, norms and
resultants are very closely related — see also the expression for the resultant given by
Netto [8]. We hope in a later paper to expand on the relation between the norm as
presented here and the resultant of a system of multivariate polynomials.
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