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§ 1. Historical Note

The result l obtained by Lars Garding, who uses the Cayley
operator upon a symmetric matrix, is of considerable interest. The
operator Q. — | d/dx^ | , which is obtained on replacing the n2 elements
of a determinant | xti | by their corresponding differential operators
and forming the corresponding n-rowed determinant, is fundamental
in the classical invariant theory. After the initial discovery in 1845
by Cayley further progress was made forty years later by Capelli2

who considered the minors and linear combinations (polarized forms)
of minors of the same order belonging to the whole determinant Q.:
but in all this investigation the n2 elements xtj were regarded as
independent variables. The apparently special case, undertaken by
Garding when x{i = x^ arid the matrix [x{j] is symmetric, is essentially
a new departure: and it is significant to have learnt from Professor
A. C. Aitken in March this year 1946, that he too was finding the
symmetrical matrix operator [3/3ary] of importance and has already
written on the matter.

From the point of view of invariant theory it was natural to take
all the xtj as .independent, since the matrix belongs to the coefficients
of a linear transformation possessing group properties which must
survive matrix multiplication, whereas the product of two symmetric
matrices is not necessarily symmetric. There was not therefore the
same a priori reason for supposing that the symmetric operator would
have significance, as there was in the general case. By these latest
discoveries fresh light has been thrown upon the theory, including
that of the determinantal identities on which the proofs depend.
While the Cayley-Capelli results follow essentially upon the generalized
identities of Sylvester, which in their simplest forms were known to
Bezout, and which involve sums of products of pairs of determinants,

1 Garding, these Proceedings (2), 8, p. 73.
2 Capelli (1882, 1886), Math. Annalen 29, 331-338.
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the present results depend upon the Kronecker identities which involve
sums of single determinants, namely minors of the same order
belonging to a symmetric determinant. There is much information
to be found in Muir's History about these identies of Kronecker, which
first appeared almost contemporaneously with those of Capelli in 1882,
and which have frequently been studied since, but ingenious as the
treatment has been it seems to have lacked a unifying principle. The
formula found by Lars Carding has however suggested an extension
of a procedure, which has been useful in the case of the Sylvester
identities, to cover the less obvious case of the Kronecker identities.

§ 2. Gdrding's Theorem

This theorem may be illustrated by taking it in a more general
and polarized form: What follows applies at once to n-rowed deter-
minants, but is expounded for brevity by the quaternary case.
Thus let

A = (xyzt)123i = 2 ± x-Mfat^ \ xtj |

be a four-rowed determinant whose columns are x, y, z, t respectively,
the suffixes denoting the rows. Let a, b, c, d denote further such
columns of elements which are independent of the elements x^.

Let

be called a polar operator, where i = 1, 2, 3, 4, the notation being
a convenient abbreviation. Such an operator at once yields the
identity raxA= (ayzt) which replaces the column x by the column o.
Similarly we may utilise further operators av, bx, etc., and their com-
pounds (ab)xu, (ab)xyi, etc., where, for example,

(ab)XIJ = ab
d d axbxbx

avby
(2)

dxdy
which is the second-compound operator. Then if s is any positive
integer it follows, from Cayley's results, that

(ab)xvts? = 5(5 + 1) As~2(a6zJ)i234>

and in general, if A= | XZ | and {A \ d/dX) = Axis the bi-determinant
of the mth order,

AxA>=s(s 4- 1). ..(s + m - 1) &'-m(AZ), 0<m^n. (3)

If A is replaced by any m different columns of the unit nxn
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matrix / this becomes an identity between an m-rowed minor of
Q = | 9/9a;,j | operating upon A" and a product involving a comple-
mentary minor belonging to A. For example, if a = {1,0, 0,0},
b = {0, 0, 1, 0} then ax = 8/dxlt bx = 9/9z3, and

where the complementary nature both of xy, zt and of 13, 42 is
apparent. (Partition of xyzt into xyz,t etc. would be equally
relevant.)

Now let A be symmetric whereas a, b, c, d are still quite arbitrary.
The appropriate operator is obtained by affixing a coefficient \ to every
element except those which stand upon the principal diagonal, thus:

8 8 8

(4)

8xlx

8
28x21

9

28x12

8.
9^22

8

28xln

a
29a;nl 2dxn2

and the corresponding identity is

dxnn

^n. (5)

If A is replaced by m columns of the unit matrix this becomes Garding's
identity. I t is convenient to retain the same notation such as ax,
(ab)xy, Ax for the polar operator, but to speak of it as the adjusted
operator; namely the coefficient \ is attached to each d/dx^ whenever
i and j differ, but is omitted when i = j .

The following method proves the theorem, and also adapts the
polarizing process to symmetric determinants. Let A be bordered
with the constants ai and written

l i 2X 3 , 4 ,

A =
33 43

3, 4.

_ I

« 3
1 o q1 3 ^3 "3

4 14

where
andij = xij = xji=ji (6)

https://doi.org/10.1017/S0013091500024822 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500024822


SYMMETRIC DETERMINANTS, THE CAYLEY AND CAPELLI OPERATORS 79

by definition, for all values of i, j from 1 to % inclusive.
More briefly

A = (1234)12S4) 0>=.(al234)ol234. (7)
Let x = \xly x2, x3, a;4] denote the top row of A, and x' the first column.
Then differentiating O with regard to xt we have

do/dxj, = ao/ai, = («234)O234

but, on the other hand,
d®/dx2 = 5<D/3]2 =-(al34)B2B4-(o234)BlM

since x2 occurs twice, as 12 and 2lt whereas xx only occurs once in $ .
On interchanging the whole lower with the whole upper set of indices,
since ij =jt always, we have

(al34)a234 = (a234)0134.
Thus %dq>/dx2 = — (al34)o234.

Next differentiate A in the same way, and we find that
aA/fte, = (234)234, I8b/dxt =-(134)2 3 4 ;

whence

(a | d/dx&sUJL + |a2A + |o , l - + io4 A V (8)
\ ox1 ox2 ax3 oxiJ

that is, a^A = (a234)1234 = A8, (9)
which is Garding's theorem with s = 1. Since the operator ax is linear
in the d/8xit therefore

osA' = «A*-1AB, * (10),
which is the theorem with m = 1. arid a general s.

To polarize a step further we need the first minors of the polarized
bordered determinant

<D(a, b) = (ol234)MM4

where the set b has replaced one set (row or column) of a. We find
that

6VA =(1634)1234 = (1234)1634 (11)
and • Zbv Aa=(a634)1234 + (a234)l634 (12)

where b replaces the index 2 (belonging to y) within the operand in
every possible way. Hence, operating on (10) with by, we have

V * A« = 5(s-l)A«-2A6Ao + fiA8-16I/Ao. (13)

Now, by a Sylvester identity,
A6Aa-AaA, = (1634)1M4(o234)11M-(la34)12M(6234)1M4 = (a&34)1234,

and by a Kronecker identity

(o234)l6M-(6234)laM = («634)1234 (14)
Hence, by (12), 2(byAa—ayAb) =3(a634)1234, so that, if a, 6 are permuted
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determinantally, (13) becomes

(ajby—ajbx)^
s = a(s— lJA'^A^ +

tha t is, {ab)xv A« = 3(« + |)A'-1Aafc> (15)

which is the required identity for the second-compound operator.
Similarly by operating with cz on this and then permuting ab, c

determinantally we have

(abc)xvA° = s(s + I) [(5-l)A«-2A;Aa-r+ A - W ]

where A' = czA--b = i{c, a6}'[(o6c4)1234 + (a634)]2c4]

(using a convenient confluent modification {c, ab}' of three terms
instead of Young's substitutional expression {abc}' of six terms
permuted determinantally). By a Kronecker identity

{c, a6}'(a634)12cl = (a&c4)1234 = A ^ :

whence {abc)xyzj\
s = s(s + \) [s — 1 + i(3 + 1)]AS - ^ ^

= s(s + I) (s+ l)A*~1(a6c4).

At the next stage (abcd)xyU factorizes into (abed) Q. yielding
QA' = s(s + £) (s + 1) (s + 4)A" - 1 after cancelling the determinant
(abed). The method is general and proves the theorem.

§3. The Kronecker Identities

The above theorem therefore depends on a particular type of
Kronecker's identity which is exemplified by

{c, a6}'(a6345)12c45 = (abc45)123i5 (1)

where the right-hand expression is a five (n) rowed symmetric deter-
minant with three (TO) quite arbitrary.columns abc substituted for its
first three (TO) columns, while the left-hand expression is the sum of
three (TO) bordered determinants obtained by permuting one column c
with two (TO —1) others. Here

a1 b^ 3j • 4j 5!

a 2 b2 32 42 52

0 0 3C 4C 5C(a6345)1 2 c 4 5 =

34 44 54

3s 45 55

(2)

where the elements ac, bc both vanish, and ic = ct for each of the
numerical indices i. The sum of three such determinants obtained by
permuting ab, c cyclically is therefore the determinant
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a2

a3

« 4

°2
03

04

05

5,

The determinant (2) is a five (n) rowed minor of an eight (m + n) rowed
symmetrically bordered determinant

consisting of a leading square array of nine (TO2) zeros at the meeting
places of the rows a, b, c with the columns a, b, c. The minor in question
is obtained by deleting rows a, b, 3 and columns 1,2, c. A sum of such
minors, from a symmetric determinant, obtained by derangement of
several upper indices with one single lower index after the manner of
(I) above is the Kronecker identity of 1882.

Now there is a parallelism x running through the Sylvester and the
Kronecker identities which is remarkable and complete, and it leads
to generalized forms of the latter identities corresponding to those of
the former. It may be illustrated very simply as follows. Take a
pair of three (n) rowed determinants and form a Sylvester identity 2

(123) (456) = (345) (126). (4)

Now lower either row of indices in each expression so written down,
and the result is a Kronecker identity

(123)4-g6=(345)126. " * (5)

In formula (4) each factor (ijk) is understood to mean a determinant
whose columns are i, j , k but whose rows have indices p, q, r, the
same for each determinant. The determinants are general, whereas in
(5) they are minors of the symmetric matrix [i,]. A proof of this
parallelism implies that just as there are three types of Sylvester
identity, so there are for the Kronecker identities, which are as follows:

I . (12345)6}89o = (14567)23880, M + v < n ,

IT. (12345)67890 = (45678)l2390, /x + v = n,

I I I . (12345 )i7g«o = 0, fx+v>n.

(6>

1 Muir: History 5 138 : First noticed by H. S. White, Bulletin American Math.
Soc. 2 (1895) 136-138: Cf. V]. J. Nanson Messenger of Mathematics 31 (1902) 140-143.

a Turnbull: Determinants Matrices and Invariants p. 45.
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Here fi denotes the number of upper and v the number of lower indices
in the left-hand expression, which undergo determinantal permutation
as indicated by the accompanying dots, while n is the order of the
determinant. Each identity is an aggregate of single five (n) rowed
minors chosen from a symmetric ten (2n) rowed matrix. The series
on the left have six, ten and twenty terms respectively: and there
is nothing to exclude the cases where some of the upper and the
lower indices are identical, so that extensionals of the identities are
included. Garding's theorem depends upon such an extensional, as
at § 2 (14), a type of Kronecker identity first considered by Muir.

To prove these identities consider the corresponding Sylvester
identities, which are obtained by raising the lower rank of indices to
the upper level and treating the two ranks as a product of two n-rowed
determinants. For example

(123)Mr(456)OT, = (346)Mr(126)Mr. (7)
Here the six columns are arbitrary while the row indices p, q, r are
the same in each determinant. Now let the symmetric matrix [#„]
be regarded as belonging to a quadratic in n variables uit which is
cast into symbolic form

U[xi3]u' = tt/ = Uq
2 = Ur

2

in the familiar way by means of equivalent symbols p, q, r. I t follows
at once that the typical coefficient is symbolized by

ij = ji = *ij = ipjp = iqjq = irjr-
Furthermore,, any identity such as (7), which possesses a pair of indices
p (or q or r) in each term, can be interpreted as belonging to this
quadratic. The process of putting this into nonsymbolic form yields
the parallel expression

3!(123)456=3!(345)1M (8)
and on dividing by 3! (re! in general) we at once have the corre-
sponding Kronecker identity.

. For example, (345)126 = S ± 2^.5,. = 2 ± 3,1,4,2,5,6,.

which gives the desired result (8) after interchanging the equivalent
symbols in every possible way and adding the results.1

This proves the generalized Kronecker identities; and it suggests
their further generalizations corresponding to the Sylvester identities
which involve three or more 2 determinantal factors in each term.

Determinants p. 194. - p. 48.
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If the number of factors is m then the suffixes p,... will occur
repeated m times each and may he regarded as belonging to an n a r y
ra-ic form, so that the identity will furnish a property of a vanishing
polynomial in the coefficients of this form.

Still another generalization is possible, in the case when m is even
and the dual form of the Sylvester identities is taken.1 This leads in
its simplest examples to sums of products of minors belonging to a
symmetric determinant, but the minors are not necessarily all of the
same order.

For example
3 (i2)M (56)78 = 2 (125W7 6s

is an identity of the Kronecker type which arises from the Sylvester
identity 2

(l'2)OT (34)P4 (56)rg (78)rs = (125)^ (34)P9 6, (78)rg

on treating p, q, r, s as equivalent symbols. The numerical coefficients
are due to convolving pqr twice on the right-hand side. This matter
could be pursued considerably further.

As far as I know, the cases which have been discussed hitherto
are all to be found3 in Muir's History. Kronecker (1882) initiated the
study with the identity (6) II in which v= 1: Muir (1897) gave its
•extensional with v = l and n — p. upper and lower indices identical,
while Metzler discussed the case when v = n and 0 < /J. ̂  n. Muir
also gave many remarkable results connecting this work with Pfaffians
and skew symmetric determinants. Muir, in 5 p. 13S, speaks of the
method of parallelism between Sylvester and Kronecker identities as
one "whose own logical soundness is not too patent." The present treat-
ment gives, in my view, thenecessary basis; and since writing the above
I find that Nanson (loc. cit.) definitely invoked the symbolic methods
of invariants to establish the parallelism which resolves the difficulty.

§4. The Capelli Operator for the symmetric matrix

. The formula of § 2 (2) is an example of the Binet-Cauchy theorem
which continues to hold for differential operators only if the polarizing

.columns, a, b are independent of the variables a;tj. But Capelli
found the necessary modification in his celebrated theorem which

1 loc. cit. pp. 93-97 and 342-346 (2nd edition (1946)).
2 Cf. loc. cit. p. 97 and p. 194.

a History 4 p. 113, 121, 137 ; 5 p 132, 134, 135, 143.
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coverB the case when a is replaced by the original column x, and b by
y and so on. The formula becomes

= (xy )- = (1)dxdy/

where the integers 0, 1, 2 , . . . , (m — 1) are added to the respective
elements upon the principal diagonal, m being the order of the deter-
minant (it is second order, in this illustration). I t is understood that
such a determinant is to be expanded by columns and from left to
right, otherwise an ambiguity arises. If we denote this determinant
on the right of the identity bj ' A (0, 1,2, . . . , m — 1) and that on the

3 \ ^ , Mi / 8= 2 (x. . .t)j I — : • • — ) where I denotes aleft by H = . ~ . . - - . . . , v~. . . . , , , r •• ,
\ dx otj t - \ox otji

rank of m different indices taken from the.first n positive integers,
then Capelli's theorem states that if all the x^ are independent then •

H = A(0, 1, 2, . . . ,m - 1). (2)

This can be adapted to the case where the xtj are symmetric, and the
operators xx, xy, etc. have the significance already explained as in
§ 2 (8); and it is interesting to observe that the same characteristic
rise by half steps is apparent as it is in Garding's theorem.

THEOREM / / [:%] is a symmetric matrix then

H = A(o,-hl,...,n^p-\o<m^n. (3)

For example

/ d 8 d\
xyz — •- - - ) =

\ " dxdydzj it
• ( 4 )

Proof. This depends on separating the terms of the expanded forms
into intrinsic and extrinsic terms, just as in the proof of Capelli's
theorem.1 The extrinsic terms are those due to treating all xti which
occur in the operators as constants, in which case the additions, of
J, 1, etc., upon the principal diagonal, are unnecessary and the
identity is true by the Binet-Cauchy theorem. I t remains to be
proved that all the intrinsic terms cancel themselves out. Now such

Determinants p. 116.
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terms occur only when a variable xtj stands on the right of a differen-
tial operator within the same term, so that, for example, no intrinsic
terms occur in the expression H on the left of the identity.

Let 6 denote the j t h of the m columns x, y,. ..,z, t taken in this
order, and let 9t denote its ith component. Similarly let (f> denote the
ifcth such column. Then owing to symmetry we shall have

9k = *kj = xjk = 4>j. (5 )

Now consider the intrinsic terms within the minors of the first two
columns of A (0, -|,. ..). From the operator xyy$, that is

\\ oyt cy2 oy3 • oz,
we get one such term for each yt except yk which supplies two as here
written. We write the sum of these intrinsic terms thus:

+ to, + x 3 + .

But, by definition, since the element <j>k of ^ alone is on the
principal diagonal of [a;,;].

Hence

- int {xuy^) == fa + \x2^--.

On the other hand if 8 is any column but the second, which is y,
then

i n t {ey^) i 2 ^

for in this case 02 alone supplies an operator which belongs to yt

namely 62 = yt. Similarly

(6)
and int (6rfx) = \dt j ~

where <f> and </< are the kth and Zth columns of [x{j]. This term on the
right, \dy, may be called the block term, and the other the isolated
term. Of these the block term is identical with that of the general
unsymmetrical case, save for its coefficient | and indeed it arises in the
same way.1 It therefore leads to the same result as before, that is a

1 Cf. loc. cit. pp. 116-118.
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sequence of integer additions to the principal diagonal, only each is
now to be multiplied by \. This accounts for the structure
A (0, \,\, . . . . ) , if we can prove that the isolated terms cancel them-
selves out.

Now this is true for each two-rowed minor chosen from the first
two columns since, by (6).. the isolated intrinsic terms of

e y»

same-~-. 5-5- ) which cancel out because <£,- = xik = 0t. The
O(pj OVkJ

induction by columns as is used to prove the general case now applies
for the isolated terms. For assuming the result true up to TO — 1
columns and expanding by the mih and final column, we obtain for the
first two of m terms

\
which can be written with the differential operators in the same order
but with 8/dy and 8/dx last in their respective terms. The isolated

9— \lx and [6— )tu are then \Qm -— and i-6m •K-
cyj \ ox) " dx2 ?y

which are equal since x2 = y1 by symmetry. Since the left-hand wingst

are the same xy. . .z in the two terms we deduce at once that th&
isolated terms due to the x and y, occurring in the above expressions
and to the right of the vertical lines, cancel since ( —)"' and ( — )m~'
are opposites. Similarly for each pair of the TO different symbols-
x, y, ..., t. This accounts for each isolated term arising from the
m terms, namely m(m — 1) isolated terms which cancel in pairs, there
being (TO—1) such terms arising from the x of tx and the remaining
y,....,tin the first term of (7), and (TO—l) in the second, and so on.
This proves the theorem.

§ 5. The skew symmetric case
I t may be shewn that a corresponding adaptation of Capelli's

operator can be made to cover the case when x,j = — xit for all indices
i, j , but that it rests upon a permanent

P(0, - 1 , - 2 , . . . , l-m)
analogous to the above A, where, for example, axby + ayb.x is a typical
permanent of order two.
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