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Summary

This paper studies the influence of two opposite forces, unidirectional unconditionally deleterious
mutations and directional selection against them, on an amphimictic population. Mutant alleles are
assumed to be equally deleterious and rare, so that homozygous mutations can be ignored. Thus, a
genotype is completely described by its value with respect to a quantitative trait x, the number of
mutations it carries, while a population is described by its distribution p{x) with mean M\p] and
variance V\p] = <r2\p]. When mutations are only slightly deleterious, so that M $> 1, before selection
p(x) is close to Gaussian with any mode of selection. I assume that selection is soft in the sense
that the fitness of a genotype depends on the difference between its value of x and M, in units of
a. This leads to a simple system of equations connecting the values of M and V in successive
generations. This system has a unique and stable equilibrium, M = (U/8)2(2—p) and V = (U/S)2,
where U is the genomic deleterious mutation rate, S is the selection differential for x in units of <r,
and p is the ratio of variances of p{x) after and before selection. Both S and p are parameters of
the mode of soft selection, and do not depend on M or V. In an equilibrium population, the
selection coefficient against a mutant allele is § = Si[U(2—p)]~1. The mutation load can be tolerable
only if the genome degradation rate v = Ufa is below 2. Other features of mutation-selection
equilibrium are also discussed.

1. Introduction

Measurement of the total genomic deleterious mu-
tation rate U is difficult, because mutations with slight
effects cannot be individually detected at the pheno-
typic level. Still, the slowly accumulating data suggest
that in multicellular eukaryotes U may be of the order
of 1 or higher (Mukai, 1964; Mukai et al. 1972; Crow,
1979; Crow & Simmons, 1983; Charlesworth et al.
1990; Agren & Schemske, 1993). If so, selection
against mutations can be important for the evolution
of reproduction (Kondrashov, 1988, 1993) and aging
(Charlesworth, 1993; Partridge & Barton, 1993),
maintenance of phenotypic (Kondrashov & Turelli,
1992) and molecular (Charlesworth et al. 1993)
variability, and some other phenomena.

In this paper I consider the balance between a
unidirectional mutation process, that creates uncon-
ditionally deleterious alleles, and directional selection
against such alleles, that removes them. The difference
between models that assume irreversible v. reversible
mutation, or between those that assume uncondition-
ally deleterious v. conditionally beneficial mutation,
was discussed by Kondrashov & Turelli (1992). In the

case considered here the properties of the mutation-
selection equilibrium at a single locus are well
understood (Haldane, 1927, 1937; Wright, 1929; see
also Hofbauer, 1985). Such analysis can be extended
to the case of two loci (Karlin & McGregor, 1972;
Allendorf, 1979). However, if we consider the whole
genome simultaneously, which is necessary to describe
what actually happens in nature, a similar approach
holds only when the mutation rate is low and the
selection against mutations is very strong, so that an
individual cannot carry more than one or very few
mutations.

Here I consider the mutation process for the whole
genome, ignoring random drift and assuming that all
mutations are equally deleterious. This implies that
selection acts on the total number x of mutant alleles
in the genome (the ' genome contamination'), and the
distribution of x, p(x), is sufficient to describe a
population. Then it is possible, making some ad-
ditional reasonable assumptions, to derive equations
which describe changes of p(x) during selection,
mutation, and reproduction, and to study them
numerically (Kimura & Maruyama, 1966; Kondra-
shov, 1982).

https://doi.org/10.1017/S0016672300033139 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300033139


A. S. Kondrashov 114

Unfortunately, this approach lacks generality,
which makes analytical results desirable. Charlesworth
(1990) obtained such results by assuming that the
function relating the number of mutations to fitness,
w(x), is Gaussian (when mean value of w(x) is negative,
Gaussian selection is effectively directional because
x ^ 0). Then, a Gaussian p(x) remains such after
selection. Assuming that p(x) is always Gaussian,
Charlesworth described the population by its mean
M\p\ and variance V\p] = a2\p], instead of p{x) itself.
Even here, however, the algebraic equations for the
equilibrium values of M[p] and V\p] must be solved
numerically.

In all these studies selection was assumed hard, i.e.
w(x) remained the same under any p(x). Here I show
that if selection is soft, in the sense that the fitness of
a genotype is dependent on the population state,
investigation of the mutation-selection balance can be
much simpler. I will retain the assumption that p(x)
before selection is Gaussian, because numerical data
show that in an amphimictic population with free
recombination and high M\p] this is a good ap-
proximation under any mode of selection. Thus, soft
selection will not be necessarily Gaussian. Here an
invariant mode of reproduction is considered, while
its evolution is investigated in the accompanying
paper (Kondrashov, 1995). First, I review some
characteristics of selection acting on a quantitative
trait.

2. Characteristics of selection

(i) The problem

Consider a quantitative trait x, which can take any
value from — oo to oo, with the population distribution
p{x). Selection w(x) causes substitution of p(x) by
p(x):

(1)p{x) = w(x)p(x)/ W, W=\ w(x)p(x) dx,

where W is the mean population fitness. Here and in
the following integrals are taken from — oo to oo. To
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Fig. 1. Fitness functions according to eqn (11): wm = — 1
and ww = 0 (solid line), and wm = 1 and ww = 2 (dashed
line).

Fig. 2. Characteristics of selection (eqn (11)) as functions
of wm with ww = 0 (solid lines), 1 (long dashes), 2
(medium dashes), and 4 (short dashes). Standardized
selection differential (a), genetic load (b), variance of
relative fitness (c), ratio of variances of x after and before
selection (d).

describe various aspects of selection, several charac-
teristics (functionals), which depend on w(x) and p(x),
will be used. Most of them describe intrapopulation
processes and thus depend only on relative fitness and
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Fig. 3. The same as Fig. 2, but the characteristics of selection are plotted as functions of the negative standardized
selection differential. Genetic load (a), variance of relative fitnesses (ft), ratio of variances of x after and before selection
(c), skewness after selection (d), kurtosis after selection (e).

are invariant to multiplication of w(x) by any positive
constant.

It is often convenient to use the standardized trait
value X = (x — M\p])/(r[p] as an independent variable,
instead of x. The population distribution of X is
P(X) = a[p]p(M\p] + a[p]X) with M[P] = 0 and
V[P] = a[P] = 1. Fitness as a function of X is defined
by W(X) = w(M\p] + a\p]X).

The kth non-central moment of the function
w(x)p(x) is:

4 = [xkw(x)p{,x)dx. (2)

Analogously, Jk stands for the &th moment of

W(X)P(X). Connections between Jk and Ik can be
easily established using the formulae:

" / •
(M\p] + aXf W{X) P(X) dX. (3)

Obviously, 70 = Jo= W. For some quantities intro-
duced below expressions in terms of both Ik and Jk are
useful.

(ii) Characteristics of selection

I consider twelve characteristics of selection, which
can be divided into three groups. The first group
(characteristics 1 and 2) describes the action of
selection itself, the second group (characteristics 3-6)
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describes the changes which selection causes in the
distribution of the trait, and the third group (charac-
teristics 7-12, which will be considered in the
accompanying paper) describes the effects of small
changes of the population on the results of selection.
I denote characteristics of p(x) by respective symbols
with the sign ' ~ ', e.g. M instead of M[p(x)].

(1) Genetic load (Crow, 1970), the reduction of the
mean population fitness relative to the maximal
possible fitness:

L = (Wmax - W)l Wm&x = 1 - jw(x)p(x) Ax/ Wmax. (4)

(2) Populational variance of relative fitness:

D\p\ = ) - W)/Wfp{x)dx

= f-2jw(x)ip(x)dx-l. (5)

D[p] determines the relative increase of the mean
fitness due to selection (Fisher, 1930) and may be
called opportunity for selection (Crow, 1958) or
evolvability of fitness (Houle, 1992).

(3) Selection differential (Fisher, 1930), the dif-
ference between the mean values of the trait after and
before selection:

A = M- M = IJI0 - M. (6)

Sometimes the standardized selection differential (or
effectiveness of selection, Crow & Kimura, 1970,
p. 227) 8 should be used:

8 = A/a[p] = (A//o - M\p\)/a\p] = JJJa. (7)

Of course, 8 < 0 if w(x) is a decreasing function of x.
In the quantitative genetic literature 8 is often called
'selection intensity', although this term is more
appropriate for L.

(4) Ratio of variances of the trait after and before
selection

p = v/v=vjio-vjw/n = JJJO-(JJJOT. (8)
Clearly, V\p] and D[p] are different quantities. If p(x)
is Gaussian, under exponential selection p = 1; under
synergistic epistasis (i.e. if (In w(x))" < 0 for all x)
p < 1; under diminishing returns epistasis (i.e. if
(In w(x))" > 0 for all x) p > 1 (Shnol & Kondrashov,
1993).

(5)-(6) Even if p{x) is Gaussian, p{x) remains
Gaussian only if iv(x) is Gaussian (see Charlesworth,
1990, eqn Al). Otherwise, p(x) is non-Gaussian. Its
third and fourth central moments are:

M3 = /,//0 - 3/x IJP0 + 27?/II (9)

The standardized third and fourth cumulants, M3/(r
3

and M4/a
4 — 3, describe skewness and kurtosis and

characterize the deviation of p(x) from Gaussian
(Kendall & Stuart, 1977, pp. 58 and 88).

(iii) Numerical results

Consider a particular class of fitness functions w(x)
defined by:

w(x) = x

. 0,x> wm

(11)

Thus, when x grows from wm — ww/2 to wm + Ww/2,
w(x) declines linearly from A to 0 (Fig. 1). Four
families of w(x), with ww = 0, 1, 2, and 4, and
— 3 ^ wm ^ 3, were used and characteristics of such
selection acting on a population with Gaussian p(x)
with M = 0 and V = 1 were calculated (Figs. 2 and 3).
Obviously, these results can also be interpreted as
the characteristics of W(X). The MacFORTRAN
program is available on request.

3. Mutation-selection equilibrium

(i) Soft selection

If the absolute fitness of a genotype depends not only
on its trait value x, but also on p(x), selection is called
soft (Wallace, 1975; Maynard Smith, 1978). I will
consider such selection, assuming that

W(X) = W((x - M\p])/<r\p)) = w(M\p] + cr[p]X) (12)

remains invariant under any p(x). Thus, while w(x)
changes with p(x), the fitness of a genotype with a
given standardized contamination A'remains the same,
and the data from Figs. 2 and 3 are relevant to any
state of the population with a given W(X). However,
the values of M and V, under which W{X) equilibrates
with the mutation rate U, remain to be found.

(ii) Complete model

Consider an amphimictic population with discrete
generations and selection in only one phase of the life
cycle. If selection acts on haploids, individuals are
haploid, and U is the deleterious mutation rate per
haploid genome. If selection acts on diploids, indi-
viduals are diploid and U is the mutation rate per
diploid genome. With free recombination both cases
lead to the same equations.

Both possible life cycles, selection-mutation-
reproduction and selection-reproduction-mutation,
will be studied, although the first succession is more
realistic (see below). Reproduction is a combined
process; syngamy followed by meiosis if selection acts
on haploids, or meiosis followed by syngamy if
selection acts on diploids. The genome contamination,
JC, will be treated as a continuous variable. Before
selection, p(x) will be assumed Gaussian. Thus, a
population is completely described by M\p] and V\p].
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Three processes of the life cycle cause the following
changes in them.

Changes in M[p] and V\p] after selection are
described by eqns (7) and (8). I will consider two
modes of mutation. With the shift mode, each genome
acquires exactly U new mutations, so that M\p\ is
incremented by U, while V\p] remains invariant (the
reasons why it may be convenient to ignore the
increment of V\p] due to fresh mutations are described
below). With the Poisson mode mutations occur
independently, and the number of new mutations per
genome has a Poisson distribution with mean U, so
that both M\p] and V\p] are incremented by U.
Because mutations contribute to x additively, re-
production does not change M[p], while with free
recombination the variance of p(x) after reproduction,
V'\p], is connected with M[p] and V\p] by:

V'[p] = 0-5(M\p]+V\p]) (13)

(Bulmer, 1985, eqn 9.16; note that here, if rare mutant
alleles are distributed independently, V\p] = M\p]).
Thus, in every generation reproduction leads to a two-
fold reduction of pairwise associations between
mutations and of the deviation of the variance from
its value without associations M\p] (Bulmer, 1985, eqn
9.17).

Thus, the three processes of the life cycle cause the
following changes to M and V:

selection mutation
M ~> M + o-S -> M + aS + U

selection mutation

-+ M + ad-*- M + o-S + U

reproduction

-+M + 0-8+U (14a)

~>0-5(M+o-8+U)

+ 0-5(pV)

reproduction

-+M + 0-8+U (146)

+ 0-5(pV+U)

selection reproduction mutation

f^M+aS^M+o-8+U -+M+O-S+U (14c)

+ -(pV) ->0-5(M+<T8)

+ 0-5(pV)

selection reproduction mutation

~>M+<T8+U (\4d)

+ 0-5(pV) + U.

Cases (14a) and (14c) correspond to shift mutation,
and cases (14Z>) and (14a1) to Poisson mutation. The
final values of M and V after the chain of trans-
formations (I4a-d) start the next generation. They
are the same in (14b) and (14d). Thus, with Poisson
mutation the overall changes of M and V do not
depend on the order of the processes.

(iii) Mutation-selection equilibrium

Equilibrium values of M and V, M and V, can be
found from eqn (14) by equating the final and the
initial values of M and V. The equilibrium is always
unique and for eqn (14 a) it is

(15)
M = {U/8f{2-p)

V={U/8)\

where 8 (7) and p (8) are determined by W{X) and are
invariant with respect to M and V. Actually, the
positive equilibrium exists only if p < 2. A 'path-
ological' case p > 2 means that diminishing returns
epistasis (see Shnol & Kondrashov, 1993) is so strong
that selection increases the variance more that two-
fold. Under selection regimes (11), in contrast,
epistasis is synergistic and p < 1. The assumption that
p(x) is Gaussian and, thus, is defined over the whole JC
axis (while, in fact, x^O) can be used only if M\p] ̂ > 0
when M\p\ > &\p] and the frequencies of genotypes
with small x are negligible.

Some forms of W{X) yield analytical expressions
for 8 and p. For example, with exponential soft
selection W{X) = e~sX, 8 = -s and p = \. Usually,
however, the relevant integrals Jo, Jt, and J2 must be
calculated numerically. However, this need be done
only once for a given W{X) after which the solution
(15) can be obtained.

At mutation-selection equilibrium, the increase of
M\p\ due to the mutation, U, is, of course, equal to its
decrease due to selection, — A = — 8a[p] (see Wright,
1977, v. 3, p. 475). Therefore, at equilibrium — 8 = v,
where v is the genome degradation rate (Kondrashov,
1984, 1988), the genome deleterious mutation rate in
units of <r\p]:

v = U/a\p\. (16)

Thus, the data from Fig. 3 may be interpreted as the
dependencies, under various W(X), of the character-
istics of selection in equilibrium population on the
genome degradation rate.

Because A, the number of mutations removed with
the given W(X) and 8, is determined by a\p], the
equilibrium is always reached when &\p\ = — U/S,
which counterbalances a given U. The value M which
corresponds to such &\p] depends on p. Note, that p
alone determines the ratio V/M = (2—p)~l, while a
conventional coefficient of variation a/M depends on
both p and 8. Thus, V = M only in the absence
of epistasis (exponential selection). With synergistic
epistasis V < M, while with diminishing returns
epistasis V > M. Obviously, the first case means
repulsion, and the second coupling associations
between distributions of different mutations.

Although the Poisson mode of mutation is ap-
propriate if x is treated as a discrete variable, with
continuous x the shift mutation model should prob-
ably be used for the following reason. Consider the
action of non-epistatic selection on a population
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Fig. 4. The mean and the variance of the number of mutations per genome in the equilibrium population before
selection with the life cycle selection-mutation-reproduction as a function of negative standardized selection differential
— S under U = 40 and ww = 0 (strict truncation). The numerical results (•) and analytical estimates obtained from eqn
(15) using the values of S and p calculated for a trait with Gaussian distribution (lines) are presented, (a) Shift mutation,
(b) Poisson mutation.

in linkage equilibrium. Such selection implies
w(x) = (1 — s)x with discrete x and w(x) = e~sx with
continuous x, while linkage equilibrium among rare
alleles implies Poisson p(x) with discrete x and
Gaussian p(x) with M[p] = V\p] with continuous x.
Multiplicative selection decreases both M and V of
Poisson p(x) by the same quantity (Maynard Smith,
1978, chapter 3). In contrast, exponential selection
decreases only M of Gaussian p{x) leaving V un-
changed . Thus, with continuous x exponential selection
followed by shift mutation produces the same overall
changes of M and V as multiplicative selection and
Poisson mutation in the discrete case. Thus, the
continuous approximation of an inherently discrete x,
which requires large M, implies that the variance
introduced by the mutation itself can be ignored.

Therefore, we will mostly consider the case (14a),
although the difference between all four cases is not
large. The value of V is the same everywhere. In cases
(14£) and (14a1) M is smaller by U, while in case (14c)
it is larger by U, than in case (14a). Thus, in contrast
to (14 a), in the other three cases V/M depends on U,
but the relative differences between the values of M in
different cases decreases with the U and/or S.

(iv) Stability of the equilibrium

The Jacobian of the recurrent eqns (14) in a
neighborhood of the equilibrium is

(17)

Investigation of its eigenvalues shows that the equi-
librium is stable unless U < 82/(8 + 4p). As far as with
realistic selection d < 2 (or, maybe, 3) due to mutation
load arguments (see below), stability is guaranteed if
U > 0-5 (or 1). The instability of equilibrium with
small U and very strong selection indicates that the

assumption that p(x) is Gaussian becomes too
inaccurate when M\p] is small. If U-*- oo, the largest
eigenvalue is less than 1 only by a quantity of the
order of \/U, so that stability is 'weak' and the
population approaches the equilibrium slowly. Al-
though the global stability of the equilibrium is not
proven, there is little doubt that the population would
approach it starting from any initial state.

(v) Numerical results

The above analysis is based on the assumption that
p(x) is Gaussian before selection. I have checked the
accuracy of this approximation numerically. (The
THINK C program used is available on request.) In
the case of Poisson mutation and hard selection the
recursion formulae are presented in Kimura &
Maruyama (1966, eqn 3.1). For shift mutation with
non-integer U, I assumed that the number of mutations
acquired by an organism can be equal to either the
largest integer smaller than U or the smallest integer
larger than U with probabilities such that the expected
increase is U. With soft selection, where W{X) is
invariant, w(x) = W((x—M\p])/a[p]) is recalculated
every generation using the current M\p] and a\p\.

The data presented in Fig. 4 demonstrate an
excellent agreement between the numerically calcu-
lated and analytically predicted values of M and V.
The same agreement holds under other modes of
selection and mutation rates, as long as M is not too
small (data not reported). Actually, M = 10 and even
less is sufficient for good agreement. As expected, the
equilibrium under soft selection seems unique and
globally stable and the rate of convergence to it is
rather slow when M is high (data not reported).

This agreement occurs because the true equilibrium
p(x) before selection is very close to Gaussian,
although after strong truncation-like selection p{x) is
very different from Gaussian (Fig. 5). Thus, it is not
surprising that the values of all characteristics of
selection at equilibrium are very similar to those
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Fig. 5. Skewness (broken lines) and kurtosis (solid lines) before selection (1), mutation (2), and reproduction (3) under
the same parameters as in Fig. 4 with shift (a) and Poisson (b) mutation.

predicted analytically for a given W(X) and Gaussian
p(x) (data not reported). The main factor which
returns p(x) to Gaussian is reproduction (Bulmer,
1985, eqn 9.18). Shift mutation does not alter the
shape of p(x) (that is why the lines 2 and 3 almost
coincide in Fig. 5 a), while Poisson mutation intro-
duces negative skewness and decreases kurtosis (Fig.
5 b). Actually, if reproduction acts alone, p(x) tends to
Poisson, and not Gaussian distribution. However, the
skewness and kurtosis of the Poisson distribution are
M~112 and M~\ respectively (Kendall & Stuart, 1977,
Ch. 3 and 5), and the difference is small when M 5> 1.

(vi) Selection and equilibria at individual loci

Let us relate the properties of the mutation-selection
equilibrium at the level of the total genome con-
tamination to the events at individual loci. Consider a
locus with normal allele B and rare mutant allele b.
Mutations occur only from B to b with the frequency
fi. The relative fitnesses of individuals with genotypes
B and b (or BB and Bb, if individuals are diploid) are
1 and \—s, respectively. Thus, the frequency of a
mutant allele, q, increases by /i because of mutation
and decreases by 1 — s due to selection. Therefore, at
equilibrium:

q = /*/*• (18)
This formula, which is a limiting case of a more
general result (Wright, 1929; Haldane, 1937), is valid
when pi is small, s $> /i, and, if selection acts on
diploids, when homozygotes bb can be ignored.

Analogously, for many loci with rare and equally
deleterious mutations, where —A = sM\p], at equi-
librium - A = U and (Crow, 1970):

M\p] = U/s. (19)

Here we must write s, instead of s, because selection
coefficient against a mutant allele may now depend on
the population state. Substituting the expression for
M (15) into (19), we obtain;

Note, that if we assume that the distribution of x in
individuals carrying the allele b differs from p(x) just
by a shift of 1 to the right, the relative fitness of this
allele is (Kimura & Crow, 1979):

\-s= \w(x)p(x-\)dx/I0, (21)

and with Gaussian p(x), because p(x — 1) =p(x) +
p'(x) +... (this Taylor expansion can be used if
c\p] Pi), selection coefficient against b is

(22)

s = u(2-Py
(20)

At equilibrium this gives s = U/ V\p], instead of the
correct s = U/M\p]. Thus, eqn (22) overestimates s
with synergistic epistasis, where V < M, and under-
estimates s with diminishing returns epistasis.

Obviously, the assumption that the distribution of
genome contamination in individuals carrying a
mutant allele at some locus differs from p(x) just by a
shift of 1 is true only if this allele is distributed
independently from all others. If this is true for all
loci, M = V. With V < M mutations are distributed
more uniformly than randomly, and individuals with
the allele b at some locus differ from the whole
population less than by shift by 1 to the right. In
contrast, if V > M the presence of b indicates a larger
difference. However, under realistic p the discrepancy
between eqns (20) and (22) is not large.

4. Discussion

(i) Applicability of the approach

My analytical results are based on the assumption
that in equilibrium populations the genome con-
tamination before selection can be treated as a
quantitative trait with a Gaussian distribution p(x).
This is a good approximation as long as M\p] P 1
(Fig. 5), and the analytical predictions about M and V
are quite accurate (Fig. 4). When M\p\ is too small for
the Gaussian approximation to be valid, another
asymptotic approach can be used if M\p] <g 1, so that
most individuals are mutation-free but some carry a
single mutation. This situation is similar to the case of
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a single locus. As usual, the intermediate situation,
where neither asymptotic result is valid, is most
difficult to study analytically.

Above I have considered a life cycle which included
'reproduction', i.e. the succession syngamy-meiosis (if
selection occurs in the haplophase) or meiosis-
syngamy (if selection occurs in the diplophase). If,
however, selection occurs in both phases the approach
based on Gaussian approximation cannot be generally
used, because it will be invalid at the beginning of the
diplophase, due to selection in the preceding haplo-
phase. The Gaussian approximation requires that all
episodes of selection are separated by meiosis.

Only the 'ideal' amphimixis was studied, with free
recombination and no facultative apomixis. Perhaps,
the Gaussian approximation remains applicable if
these assumptions are relaxed to some extent. Then M
depends on how eqn (13) is modified by the presence
of linkage or facultative apomixis, while V always
remain the same.

(ii) Possible values of 8 and p

These two parameters, the standardized selection
differential (7) and the ratio of variances of p(x) after
and before selection (8), are determined by the soft
selection function W(X). Any values 8^0 and p ~3z 0
are possible under non-increasing W{X), but not all of
them are realistic. Only when — 8 < 2 (3), the mutation
load can be not too close to one (Fig. 3). With such 8
values, p ^ 0-2. Both L and p are minimal, with a
given 8, under truncation selection, but under other
forms of selection considered here their values are
only slightly higher, if 8 remains the same (Shnol &
Kondrashov, 1994, fig. 1). Thus, we can conclude that
0 ^ — 8 < 2 and 0-2 < p ^ 1 (p > 1 requires dimin-
ishing returns epistasis, which is probably unrealistic).

(iii) Mutation—selection equilibrium

At equilibrium the genome degradation rate v = — 8
and thus at equilibrium v < 2 (3) (Kondrashov, 1988).
This implies that V> U2/4 (15). The corresponding
M is the same under exponential selection, or slightly
larger under synergistic epistasis. However, it cannot
be larger than 2 V even if p = 0, although, in fact,
p < 0-2 is impossible (see above). According to eqn
(20), M > U2/4 implies s < 4/U. Thus, the larger [/is,
the weaker selection at separate loci must be.
Knowledge of u, together with W(X), allows us to find
all other characteristics of selection in the equilibrium
population (Fig. 3).

Some of the current conclusions should probably be
changed if, as is certainly the case in nature, different
mutations are deleterious to different degrees. Par-
ticularly, the conclusions about § may hold for the
average coefficient of selection against new mutations,
while the average coefficient of selection against
persisting alleles must be much lower, because such
alleles are enriched with very slightly deleterious ones.
However, this requires a separate study.

(iv) Comparison with hard selection

Once a stable equilibrium is reached, p(x) remains
invariant and there is no difference between hard and
soft selection. Thus, our analysis of equilibrium can
also be applied to hard selection, provided that the
dependence of fitness on X at equilibrium is W{X).
However, in this case the deviation of the population
from equilibrium leads to changes of W(X), so that
8 and p depend on M and V and it is generally
impossible to determine M and V from eqn (15)
and even to prove the existence or uniqueness of
equilibrium.

Of course, the problem can always be studied
numerically and, if the equilibrium is reached, W(X)
can be calculated and used to determine its properties
(Figs. 2 and 3). For example, with exponential hard
selection w(x) = exp (— sx), M = V = U/s (see May-
nard Smith, 1978, Ch. 3). Because in this case 8 = — as
and p = 1, eqn (15) gives the correct M and V, while
eqn (20) yields s = {&s)2/U = s, as expected.

It is intuitively clear (and was repeatedly shown
numerically) that with synergistic epistasis equilibrium
is 'even more' stable under hard selection than under
soft selection, because the growth of M\p] causes a
more rapid increase of the strength of selection. In
contrast, with diminishing returns epistasis (e.g. if
w(x) = 1 /x) equilibrium under hard selection may be
absent. In this case M\p] increases indefinitely (Kimura
& Maruyama, 1966; Charlesworth, 1990), because
with the growth of M\p] selection becomes less efficient.

If w(x) has alternating regions of synergistic and
diminishing returns epistasis, several stable equilibria
(probably separated by unstable ones), each of which
corresponds to a zone of rapid decline of w(x), are
possible. This might happen if the environment
contains several resources (or several negative factors),
and they have different critical values of contamination
to utilize (or to avoid) them. No data, however,
confirm the existence of such selection in nature.

(v) Experimental data and implications

Predictions from the above analysis depend on the
values of U, 8, and p. If U <? 1, the current approach
can be used with moderate exponential selection
against deleterious alleles, so long as — 8 is small,
so that M[p]pl. For example, if [7 = 0-1 and
W{X) = t-"02X, M=V=25 and L = l-e~u is
approximately 0-1, if the fitness of the mutation-free
genotype is regarded as Wm&%.

In contrast, under U > 1 our approach can always
be used, but the mutation load is tolerable only with
the synergistic epistasis between slightly deleterious
mutations. Thus, data on a high U value provide
indirect evidence for synergistic epistasis. Some data
suggest that such epistasis is possible (Mukai, 1969;
Malmberg, 1977), but much more information is
needed. Unfortunately, there are no direct data on the
natural mutation load, and it is not clear how it could
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be measured. Thus, now we can only say that
fecundities of most species seem to be consistent with
high load, provided that selection against mutations is
an important cause of natural mortality.

Evolvability of fitness is probably easier to measure
than the load, because it depends on the mean, instead
of the maximal, fitness. Some data show that
evolvability of traits associated with fitness, usually its
components, can be rather high (Mukai et al. 1974;
Houle, 1992). The most promising approach to
measuring D in nature seems to be the measurement
of the correlation of fitnesses between relatives in
species with low fecundity and presumably low
random mortality. This, together with more data on
U, can decide the importance of the phenomena
studied in this paper.
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