
On the rheology of till

Andrew C. FOWLER
Mathematical Institute, University of Oxford, 24^29 St Giles’, Oxford OX13LB, England

E-mail: fowler@maths.ox.ac.uk

ABSTRACT. The deformation of subglacial till is instrumental in causing certain gla-
cier surges, the motion of rapid ice streams in ice sheets, and ice-sheet surges which are
associated with Heinrich events, and consequent rapid climatic shifts, during the last ice
age. It may also be the means whereby drumlins are formed, and these in turn may act as
a brake on large-scale ice flow. It is therefore important in building models to understand
the rate at which till deforms, and how this controls the basal ice velocity. In recent years,
two paradigms have emerged. On the one hand, theoreticians have tended to use a viscous
rheology, though this lacks quantitative support. On the other hand, field and laboratory
studies suggest that till behaves plastically. In this paper I will examine some of the dynamic
consequences of this latter assumption, and show how the dichotomy between viscous and
plastic may be less clear-cut than previously thought.

1. INTRODUCTION

The mechanism of basal motion and subglacial drainage
is fundamental to the understanding of many of the dra-
matic phenomena exhibited by glaciers and ice sheets.
Within the context of fast glacier flow, surging glaciers
(Clarke and others, 1984), surging ice sheets (MacAyeal,
1993), ice streams (Bentley, 1987) and receding tidewater
glaciers (Meier and Post, 1987) are all able to attain their
rapid ice velocities by means of water-assisted basal
motion.

There are two main conceptual paradigms available
to understand how such rapid motion occurs. These are
the sliding of ice over a rough surface (which might be
bedrock, or stiff till) (Lliboutry, 1979; Weertman, 1979),
and the deformation of water-saturated till at high pore-
water pressures (Boulton and Jones, 1979; Clarke, 1987).
Because of the occurrence of layers of apparently deform-
ing subglacial till in certain glaciers (e.g. Clarke and
others, 1984; Blankenship and others, 1987; Truffer and
others, 2000), much of the attention of modellers has
shifted from earlier `̀ hard-bed’’ studies to the study of sub-
glacial till deformation, and its consequence for glacier
motion.

The subject of this paper is the rheology of till: what
is the best flow law to describe sediment motion and
transport? Various theoretical studies have used a power
law advocated by Boulton and Hindmarsh (1987) of the
form

_"ij ˆ f…½ ; N†
½

½ij ; …1:1†

in which _"ij is the strain-rate tensor, ½ij is the deviatoric stress
tensor and N is the effective (overburden minus pore-water)
pressure. Equation (1.1) is not the most general viscous law
one could suggest. For an isotropic material, f is in general a
function of the first (N), second (½) and also third invariant
of the effective-stress tensor. For an anisotropic material, this

may not be the case. Boulton and Hindmarsh proposed a
power law of the form

f…½ ; N† ˆ A½ r

Ns
; …1:2†

but the reliability of this law has never been demonstrated.
Nevertheless, it hasbeen used frequently in theoretical mod-
els of subglacial processes (e.g. Alley and others,1987; Hind-
marsh,1998; Fowler, 2000; Ng, 2000), at least partly because
of its conceptual simplicity. It also enshrines the apparently
reasonable expectation that till deformation should increase
with increasing shear stress, and decrease with increasing
effective pressure.

However, till is a granular material, and as such can
be expected to have the characteristics of an elastic^plas-
tic material, with a yield stress determined by a Mohr^
Coulomb failure criterion due to internal frictional slip
(e.g. Harris, 1992). Indeed, much recent work has demon-
strated that a plastic flow law is better suited to the de-
scription of subglacial till (Kamb, 1991; Hooke and
others, 1997; Iverson and others, 1997; Tulaczyk and
others, 2000; Kamb, 2001).

In this paper, I examine the implications of this for
the flow of till, in particular because deformation of till
with depth is commonly inferred, or observed, to occur
(Boulton and Dobbie, 1998; Alley, 2000; Truffer and
others, 2000; Porter and Murray, 2001), and it is not in-
trinsically obvious how such observations can be used
to distinguish plastic rheology from an effectively vis-
cous behaviour. Indeed, Hindmarsh (1997) suggested
(without any justification) that local plastic behaviour
might become apparently viscous at larger scales of obser-
vation. Iverson and Iverson (2001) showed that a model
based on discrete slip events of a Coulomb plastic material
could lead to distributed deformation. A different attempt
in this direction is that of Tulaczyk and others (2000); see
also Tulaczyk (1999).
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2. PLASTICITY THEORY

In this section we discuss some classical continuum
models of plasticity. An alternative approach is that of
distinct-element modelling (Cundall and Strack, 1979;
Morgan and Boettcher, 1999), in which direct simulation
of `̀ particle’’ motion using Newton’s law together with
suitable friction rules is done. This approach is similar in
some ways to that used by Iverson and Iverson (2001). The
basic theory of plasticity is enunciated by Hill (1950). A
more recent text which discusses plasticity for soils is that
of Chen and Mizuno (1990). An elastic^plastic material is
one for which the rheology is elastic for stresses `̀ below’’a
yield surface in (six-dimensional) stress space. If ¼ij is the
stress tensor and ½ij is the deviatoric stress tensor, then
frame indifference must allow us to write the yield surface
in the form

f…¼ij† ˆ f…I1; J2; J3† ˆ fc ; …2:1†

where I1, J2 and J3 are first, second and third stress
invariants defined by

I1 ˆ ¼ii; J2 ˆ 1

2
½ij½ij; J3 ˆ 1

3
½ij½jk½ki ; …2:2†

and we employ the summation convention over repeated
indices. A plastic material is one whose stresses cannot go
beyond the yield surface. Thus, deformation is purely elas-
tic until the yield surface is reached, and then plastic de-
formation occurs along the yield surface. In general, an
increment of stress d¼ij causes an increment in strain
d"ij ˆ d"e

ij ‡ d"p
ij, where d"e

ij is the increment of elastic
strain, and d"p

ij is the increment of plastic strain (which
must be determined). An ideal plastic material is one for
which the yield surface f…¼ij† is fixed (i.e. is not state-de-
pendent), and in which there is an associated flow rule, said
to satisfy the normality condition:

d"p
ij ˆ d¶

@f

@¼ij
: …2:3†

As we discuss further below, soils (and tills) do not satisfy
either of these conditions. Because of the extra condition
on the stress, the quantity ¶ in Equation (2.3) is unknown,
and acts as a Lagrange multiplier. It follows from the
usual constitutive equations of elasticity that

d"ij ˆ dI1

9K
¯ij ‡ d½ij

2G
‡ d¶

@f

@¼ij
; …2:4†

and consistency (f is constant) requires

d¶ ˆ
2G

@f

@¼ij
d"ij ‡ K ¡ 2

3
G

³ ´
d"kk

@f

@¼ll

2G
@f

@¼ij

@f

@¼ij
‡ K ¡ 2

3
G

³ ´
@f

@¼kk

³ ´2
: …2:5†

Note that for f ˆ f…I1; J2; J3†, we have

@f

@¼ij
ˆ ¯ij

@f

@I1
‡ ½ij

@f

@J2
‡ ½ik½kj ¡ 2

3
J2¯ij

³ ´
@f

@J3
: …2:6†

Various yield criteria are commonly used in plasticity the-
ory, and these must be written in terms of the invariants of
the stress. The Von Mises criterion is J2 ˆ k2, the Tresca
criterion is ¼1 ¡ ¼3 ˆ 2k, and the Coulomb model can be
written in the form 1

2
…¼1 ¡ ¼3† ˆ ¡ 1

2
…¼1‡

¼3† sin ¿ ‡ cos ¿, where ¼1 > ¼2 > ¼3 are the principal
stress components, ¿ is the internal angle of friction, and c

is the cohesion. In terms of invariants, these are messy, and
take the form

Coulomb:
1

3
I1 sin ¿ ‡

�������
1

3
J2

r h
…1 ‡ sin ¿† cos ³

¡ …1 ¡ sin ¿† cos ³ ‡ 2

3
º

³ ´i
¡ c cos ¿ ˆ 0 ;

Tresca : 4J 3
2 ¡ 27J2

3 ¡ 36k2J 2
2 ‡ 96k4J2 ¡ 64k3 ˆ 0 ;

Von Mises : J2 ¡ k2 ˆ 0 ; …2:7†

in the first of which

³ ˆ 1

3
cos¡1 3

���
3

p

2

J3

J
3=2
2

Á !

; 0 µ ³ µ º

3
: …2:8†

In this form, the Coulomb model is so ugly that a simpli-
fied version (the Drucker^Prager model) is often used:

Drucker¡Prager: ¬I1 ‡
�����
J2

p
ˆ k ; …2:9†

where, roughly, ¬ ¹ ¿ and k ¹ c. The plastic stress^strain
relation for the Drucker^Prager law is then

d"p
ij ˆ d¶ ¬ ¯ij ‡ ½ij

2
�����
J2

p
³ ´

: …2:10†

Hardening plasticity: critical-state soil mechanics

Metals are often modelled using the Tresca or Von Mises
perfectly plastic yield stress, but granular materials such as
soils or till are usually thought to have state-dependent yield
stresses, and are called strain-hardening or strain-softening
materials. It is evident, for example, that a granular med-
ium becomes harder to compress as it is compressed. On
the other hand, tills in laboratory ring-shear devices have
a tendency to reduce their strength (i.e. yield stress) at large
strains (Iverson and others, 1997,1998;Tulaczyk and others,
2000). However, similar tests which allow pore pressure to
vary show that both hardening and softening behaviour
can occur, depending on the initial porosity (Iverson and
others, 2000; Moore and Iverson, 2002). Such dilatant hard-
ening can lead to stable shear, while softening behaviour
leads to catastrophic failure.

Hardening plasticity is modelled by taking the yield
surface to be dependent on the plastic strain. For example,
in isotropic hardening, we take the yield surface to be of
the form

f…¼ij† ˆ k…"p
ij† : …2:11†

Typically, we do not assume that strain increments are
normal to the yield surface (the normality rule), but we
might still assume (again, perhaps incorrectly (Mandl
and Luque,1970)) that the plastic-strain increment tensor
d"p

ij is parallel to the stress increment tensor d¼ij (the
assumption of coaxiality), in which case it follows that
there is a plastic potential function g…¼ij†, and

d"p
ij ˆ d¶

@g

@¼ij
; …2:12†

consistency (Equation (2.11) is satisfied) allows us to write
this in the form

d"p
ij ˆ 1

h

@f

@¼kl
d¼kl

³ ´
@g

@¼ij
; …2:13†
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where h is the hardening modulus, and is in general a
function of stress and plastic strain, given by

h ˆ @k

@"p
ij

@g

@¼ij
: …2:14†

We expect h > 0 for strain-hardening materials, but h < 0
for softening materials, and it seems likely that unstable
failure would be the result (as occurs in practice (e.g.
Iverson and others, 2000)).

A particular example of a hardening plasticity model
is the Cam-clay model, which is best described by a dia-
gram (Fig. 1). The yield surface consists of three parts: a
tension failure surface, the (hardening) Hvorslev sur-
face and the (softening) Roscoe surface. Generalized
models of this type are called cap models, where in
Figure 1 the Roscoe surface is the cap which prevents
the dilatant Hvorslev surface extending to large stresses.
Extensive discussion of the Cam-clay model is given by
Clarke (1987).

Finite strain

An essential complication associated with shearing flow
is that the plastic strains are large. In such cases, one can
often neglect the small elastic strains, and we have the
Levy^Mises model, in which d"p

ij ˆ d"ij. However, there
is now an issue in describing how the strain and stress ten-
sors evolve in time. The simplest situation is in ideal plas-
ticity, where we use Equation (2.3). Simply dividing by dt,
we have

_"ij ˆ ¤
@f

@¼ij
; f…¼ij† ˆ k ; …2:15†

where the Lagrange multiplier ¤ ˆ _¶ is to be determined.
This constitutes seven equations for the six stress-tensor

components ¼ij, i µ j, and ¤, and in principle we can
solve them to find

¼ij ˆ Fij… _"kl† ; …2:16†
and the plastic flow region is essentially described by a
non-linear form of Stokes’equations for slow viscous flow.

There are two particular difficulties associated with
finite strain (or with creep). The first of these is that we
would want the Stokes equations,

@¼ij

@xj
ˆ 0 ; …2:17†

which describe slow creeping flow, to form an elliptic set
of equations for the velocities ui, when Equation (2.16) is
used as a constitutive law. In hardening plasticity, this is
not always the case. The second complication is that, in
hardening plasticity, we can see from Equation (2.13) that
increments of strain depend on increments of stress, so that
division by dt will lead to a constitutive relation which in-
volves time derivatives of stress. It is well known that the
ordinary material time derivative of the stress tensor is
not objective, that is to say it is not frame-indifferent, and
therefore the time derivative of stress must be modified to
allow this to be so. There is no unique way to do this. A pop-
ular choice is to define theJaumann derivative

¼
r

ij ˆ _¼ij ¡ ¼ip!pj ¡ ¼jp!pi ; …2:18†

where ! is the spin tensor

!ij ˆ 1

2

@uj

@xi
¡ @ui

@xj

³ ´
; …2:19†

and _¼ij denotes the ordinary material derivative. Typical
constitutive relations to relate _"ij to ¼

r
ij are complicated

and fundamentally non-linear (Rudnicki and Rice, 1975;
Nemat-Nasser and Zhang, 2002), and the Jaumann deri-
vative itself is non-linear. Therefore it is by no means ob-
vious how even a simple shear flow will behave.

Plastic shear flow; shear bands

This can be illustrated with the very simplest kind of flow
law, the Levy^Mises equation for the Von Mises yield
stress law Equation (2.7)3. Dividing by dt leads to the vis-
cous flow law

_"ij ˆ ¤½ij ; …2:20†
where ¤ ˆ _¶ must be consistent with the Von Mises yield
stress. For the apparently physically sensible problem of a
shear flow driven by a shear stress ½, we have J2 ˆ ½ 2, thus
½ ˆ k, and the shear velocity profile is given by

@u

@z
ˆ ¤k ; …2:21†

and ¤ is completely unconstrained. This simple example
suggests that something is amiss with the problem formu-
lation. Mandl and Luque (1970) suggest other fundamen-
tal difficulties with this model, which they associate with
the choice of an associative flow rule.

In fact, it is well known that in granular flows, deform-
ation often occurs through the formation of shear bands,
which are thin zones, typically of width about ten grain
diameters (Li and Richmond, 1997; Francois and others,
2002). It is thought that shear bands arise through an in-
stability which is associated with a transition of the
equation type from elliptic to hyperbolic (and thus ill-
posedness) (Burns,1989; Lee,1989; Schaeffer and others,

Fig. 1. A schematic representation of the Cam-clay yield surface
in conditions of plane strain.The stress space is described by the
normal (effective) stress pe and the shear stress ½, and the state
dependence (plastic strain) is described by the void ratio
e ˆ ¿=…1 ¡ ¿†, where ¿ is the porosity. The yield surface
intersects the zero shear-stress plane at the normal consolidation
line (NCL), and the Roscoe and Hvorslev yield surfaces inter-
sect at the critical-state line (CSL).
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1990; Schaeffer, 1992; Vardoulakis, 1996). In particular,
instability occurs before the ill-posedness (Schaeffer
and others, 1990), something which also occurs in
two-phase flow (Prosperetti and Satrape, 1990). What
appears not to be so clear is how one should model the
subsequent deformation. It seems clear that the forma-
tion of shear bands will lead to distributed deformation,
and some efforts to deal with this have been made in the
context of subglacial till (Iverson and others, 1998); Iver-
son and Iverson (2001) pose a model of slip deformation
which leads to effective shear with depth. Such efforts
deserve to be continued in the search for an effective
averaged flow law.

3. DISCUSSION

It is clear from the numerous laboratory experimental
studies that till behaves like other granular materials, and
is probably best modelled as a plastic material. However, it
is not at all clear from the theoretical studies of plastic
shear flow how the resulting deformation should be
modelled. It is clearly consistent with observations of shear
banding that deformation should occur at depth, but it is
completely unclear whether this can be effectively
modelled via a viscous flow law, as suggested by Hind-
marsh (1997). The more obvious recipe, that the effective
basal boundary condition for a deforming till layer should
be a prescribed shear stress, may be confounded by the
necessity, in hardening models for example, to introduce
non-linear Jaumann stress derivatives, which generate
normal stresses in a shear flow.

Nor is it clear from laboratory experiments them-
selves what the yield stress should be. The observation
that shear bands tend to have a thickness of the order of
ten grain diameters (Francois and others, 2002) suggests
that small-scale tests in thin shearing layers may not re-
flect the true yield stress, and this is also suggested by
the necessity in such experiments of removing too large
clasts. On the other hand, the existence of a yield stress
for till is consistent with many field studies, where of
course clast removal is not an issue (e.g. Fischer and
Clarke, 2001; Kamb, 2001).

A further confounding effect is the dependence of yield
stress on effective normal pressure. In a glacier, this will
vary on rapid time-scales because of the effect of pore-
water pressure. Tulaczyk (1999) used this to build a model
of deformation with depth. A better approach may be to
use experimentally derived friction laws for fault gouge
(Marone,1998) to provide a description for shear stress.

There are two major results that theoreticians require
from a model of basal deformation. These are prescrip-
tions for till flux and basal ice velocity (the `̀ sliding
law’’) in terms of basal stress and effective pressure. If we
assume a plastic flow law given by standard formulations
such as that of hardening plasticity, it seems from our dis-
cussion here that there will be effective deformation with
depth, and the resultant sliding law and till flux may well
appear to derive from an apparent rheology in which
strain rate varies locally with stress. Simply to state that
till is plastic does not of itself preclude the formulation of
distributed basal deformation over long time-scales as an
effectively viscous process.
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