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Abstract

An analytic solution is developed for the one-dimensional dissipational slip gradient
equation first described by Gurtin [“On the plasticity of single crystals: free energy,
microforces, plastic strain-gradients”, J. Mech. Phys. Solids 48 (2000) 989–1036] and
then investigated numerically by Anand et al. [“A one-dimensional theory of strain-
gradient plasticity: formulation, analysis, numerical results”, J. Mech. Phys. Solids
53 (2005) 1798–1826]. However we find that the analytic solution is incompatible
with the zero-sliprate boundary condition (“clamped boundary condition”) postulated
by these authors, and is in fact excluded by the theory. As a consequence the analytic
solution agrees with the numerical results except near the boundary. The equation also
admits a series of higher mode solutions where the numerical result corresponds to (a
particular case of) the fundamental mode. Anand et al. also established that the one-
dimensional dissipational gradients strengthen the material, but this proposition only
holds if zero-sliprate boundary conditions can be imposed, which we have shown cannot
be done. Hence the possibility remains open that dissipational gradient weakening may
also occur.

2000 Mathematics subject classification: primary 74C05; secondary 74A60, 74M25.

Keywords and phrases: crystal plasticity, dissipational gradients, strengthening and
mechanisms.

1. Introduction

In standard plasticity theories, including gradient plasticity with energetic hardening,
the (initial) yield strength is specified as a material parameter. In contrast, for
dissipational gradient theories (Gurtin et al. [3]) the yield level must be obtained as
part of the solution. This has been regarded as a difficult problem, and the general
approach has been to treat the elastoplastic problem as the limit of a viscoplastic one.

One purpose of this paper is to show that in some cases an analytic solution may
be obtained to the dissipational slip gradient problem. We demonstrate this for a
one-dimensional model proposed by Anand et al. [1] which represents the grain as
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a one-dimensional strip of length h. A concise derivation of the equation is given
in Appendix A. For the purely dissipational problem a complete analytic solution is
derived for displacement and slip at any level of applied shear strain (Sections 2 and 3).
If energetic and/or isotropic hardening is included then a solution may be obtained by
combining the results obtained here for initial yield with a complementary numerical
procedure.

As part of the solution process we show that the dissipational yield strength can be
computed analytically (through a single integration) as a function of the dimensionless
parameter a = h/2l (h is the grain size and l is the dissipational length scale) and
boundary data, here represented as a boundary slip gradient angle θ0 (Section 3). The
yield strength can in fact be interpreted as an eigenvalue for the dissipational gradient
equation.

The specification of appropriate boundary conditions for the dissipational gradient
problem is of particular interest. Since the analytic solution developed here is a
general one, it includes all possible boundary constraints. However Gurtin and others
have proposed the concept of microscopically hard or clamped boundaries where the
sliprate is constrained to be zero. In Section 2 we show that the one-dimensional
dissipational gradient equation is not compatible with microscopically hard boundary
conditions. This has consequences for the dissipation functional introduced by Anand
et al. [1], and is discussed in Section 4.

Further clarification of this point is made in Section 5 where the analytic solution
is compared with plots of the numerical results given by Anand et al. [1] assuming
a hard boundary constraint. Good quantitative agreement is obtained except near
the boundaries where the numerical results can be interpreted as approximating a
boundary discontinuity.

The main argument in this paper concerns the fundamental solution of the
one-dimensional dissipational gradient equation which has also been identified
numerically. However the equation also admits higher mode solutions as pointed out in
Section 3 with examples presented in Section 6. In Section 7 we discuss the extension
of the one-dimensional results to two and three dimensions.

Further discussion in the Conclusions (Section 8) hypothesizes that the dissipational
gradient mechanism is intimately connected with slip discontinuities which must occur
at the interface between the grain and the grain boundary.

2. Solution of the dissipational gradient equation

We first restrict the model to be purely dissipational with no isotropic or energetic
hardening (later this restriction will be relaxed). The flow equation for the one-
dimensional model is then (see Appendix A)

τ̃ = g
ν

dp
− l2 d

dx̃

(
g

dp

dν

dx̃

)
(2.1)
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[3] An analytic solution for one-dimensional dissipational strain-gradient plasticity 409

where τ̃ is the (spatially constant) Schmid stress, v = ε̇ is the sliprate, g is the coarse-
grain yield strength, and

dp =
√
ν2 + l2(ν′)2 (2.2)

is the generalized plastic strain rate. The quantity τ̃ can be thought of as the yield
strength τ̃Y of the material. It will be shown that τ̃Y cannot be assigned arbitrarily, but
is obtained as an eigenvalue of the differential equation in terms of material constants
and boundary data.

Next scale τ̃ by g and x̃ by l and then set y = ν′/ν. Here we assume that ν is
nonzero in the interior of the domain, but will admit the possibility of ν = 0 on the
boundary (approached as a limit). We choose the coordinate origin at the midpoint
of the strip, so that the scaled x-coordinate varies from −a to +a and a = h/2l.
Then (2.1) can be written

y′ = (1+ y2)
(
1− τ(1+ y2)1/2

)
.

Now substitute y = tan θ . Then

θ ′ = 1− τ sec θ. (2.3)

The sliprate ν can then be obtained as a function of θ according to

ν = A exp
(∫

tan θ dx

)
(2.4)

where A is a constant to be determined. From (2.3)∫
tan θ dx =

∫
tan θ

dx

dθ
dθ =

∫
sin θ dθ

cos θ − τ

and hence (2.4) integrates to

ν =
A

τ − cos θ
. (2.5)

Note that, according to (2.5), ν is always nonzero and symmetric about θ = 0 where
it attains a maximum, and if τ > 1 it is bounded. The gradient ν′ = dν/dx = ν tan θ
is zero at θ = 0 and infinite at the ends of the range θ =±π/2. Note however that the
ends of the strip (at x =±a) do not necessarily coincide with the full range of θ .

A complete solution for the sliprate profile ν(x) is then obtained by first identifying
the constant of integration A, followed by integration of (2.3) to obtain θ(x), and
finally determination of the yield level τ . The two latter tasks will be completed in the
next section.

To determine the constant A we proceed as follows. First note that after plastic
onset we have

τ̃ = µ(u′ − ε), (2.6)
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where µ is the shear modulus, u is the displacement and ε is the slip. We first rescale
the variables and then integrate from −a to a. Since τ̃ is constant,

0Y = 0 −
1

2a

∫ a

−a
ε dx, (2.7)

where 0Y = τ̃ /µ is the strain at yield, and 0 is the current applied strain (which we
may think of as a time variable). Since ε =

∫ 0
0Y
ν d0 it follows from (2.7) and (2.5)

that

0 − 0Y =

∫ 0

0Y

A d0 ·
1

2a

∫ a

−a

dx

τ − cos θ

which is satisfied with A constant and given by

A−1
=

1
2a

∫ a

−a

dx

τ − cos θ
. (2.8)

Then the slip at any loading is determined as

ε = (0 − 0Y )ν. (2.9)

3. Sliprate profile and yield strength

The integration in (2.3) may be performed with the result (see Gradshteyn and
Ryzhik, [2, Sections 2.553 and 2.554])

x = θ −
2τ

√
τ 2 − 1

tan−1

{√
τ + 1
τ − 1

tan
(
θ

2

)}
+ x0, (3.1)

where we have assumed τ > 1 that is yield strengthening. In the following, for
convenience, we restrict x to be an odd function of θ , in which case the constant
of integration x0 = 0. More general nonsymmetric solutions may be analysed by the
methods of this paper. By inversion, (3.1) with x0 = 0 defines the function θ(x) which
may then be substituted in (2.4) to give the sliprate profile ν(x).

Now let us assume that θ = tan−1(ν′/ν) has some specific value θ0 on the boundary
x = a. For this orientation of the x-axis, θ0 varies between −π/2 and +π/2 but the
values from 0 to +π/2 correspond to negative sliprates and negative τ . Since this
gives no new information, the range of θ0 may be restricted to [−π/2, 0] with possible
exclusion of the endpoints. Equation (3.1) yields

a = θ0 −
2τ

√
τ 2 − 1

tan−1

{√
τ + 1
τ − 1

tan
(
θ0

2

)}
. (3.2)

This defines the yield strength τ(a, θ0) in terms of the grain size parameter a and
the boundary data θ0. Graphical considerations suggest that there is a unique yield
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strength for each (a, θ0) pair, so that τ(a, θ0) may be considered as an eigenvalue
for (2.1) together with its boundary data. More generally θ0 may be specified on the
interval In = [−π/2, 0] − 2nπ with n = 0, 1, 2, . . . and this gives rise to a sequence
of eigenvalues τn = τ(θ0n, a) where θ0n ∈ In . Note however that the modes θ0n =

θ0 − 2nπ all correspond to the same boundary value of (ν′/ν)0 = tan θ0. Furthermore
each boundary mode θ0n gives rise to a sliprate profile mode νn = ν(x, θ0n, a). For the
moment we restrict attention to the fundamental mode n = 0. The amplitude (2.8) may
then be evaluated:

A−1
=−

1

a(τ 2 − 1)

[
2

√
τ 2 − 1

tan−1

{√
τ + 1
τ − 1

tan
(
θ0

2

)}
+

τ sin θ0

τ − cos θ0

]
. (3.3)

Using (3.2) this expression can be simplified to

A−1
=

1

a(τ 2 − 1)

[
a − θ0

τ
−

τ sin θ0

τ − cos θ0

]
or

A =
aτ(τ 2

− 1)(τ − cos θ0)

(a − θ0)(τ − cos θ0)− τ 2 sin θ0

and the value of ν on the boundary is then

ν0(a, θ0)=
aτ(τ 2

− 1)

(a − θ0)(τ − cos θ0)− τ 2 sin θ0
(3.4)

where τ(a, θ0) is obtained from (3.2). Finally we note that the scaled displacement
u = ũ/g may be obtained from (2.6) in the form

u(x)= (0 − 0Y )
A(θ0)a

A(θ)
+ 0Y x + 0a (3.5)

where A(θ) is given by (3.3) with θ0 replaced by θ , and 0Y = ατ where α = g/µ.
In (3.5) θ can be written as a function of x by inverting (3.1) (with x0 = 0). Note
that (3.5) satisfies the displacement boundary conditions u(a)= 2a0, u(−a)= 0;
and at yield onset u(x)= 0Y (x + a), which is therefore continuous with the elastic
displacement prior to yield.

Figure 1 exhibits the relation between boundary sliprate ν0 and boundary gradient
angle θ0 = tan−1(ν′/ν) for fixed grain size a = 1. This figure shows that the range
of possible boundary sliprates is constrained to a small subset of the half-line with an
internal maximum. Furthermore, for some sliprates there are two boundary gradient
angles and it is not clear which is physically relevant. In contrast the boundary
gradients cover the full range apart from the limit point at θ0 =−π/2. When the higher
modes are included θ0 extends over the entire negative real axis apart from excluded
limit points at θ0 =−π/2− 2nπ (the positive real axis corresponds to a reversal in
orientation of the x-coordinate). For this reason it appears that the one-dimensional
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FIGURE 1. Boundary slip and maximum slip against boundary gradient angle for the fundamental mode.

TABLE 1. Asymptotic values.

τ a νmax ν0

1 ∞ 2 0
∞ 0 1 1

dissipational gradient equation is more properly characterized as a type of Neumann
boundary problem (for log ν) rather than as a Dirichlet boundary problem.

The maximum value of ν is at θ = 0 (see Figure 2) and is given by

νmax(a, θ0)=
aτ(τ + 1)(τ − cos θ0)

(a − θ0)(τ − cos θ0)− τ 2 sin θ0

and is shown in Figure 1 as a function of θ0 for a = 1. As τ → 1 then a→∞ and
hence the amplitude A→ 0. Conversely as τ →∞ then a ∼−τ−1 sin θ0 and then
A ∼ τ . The asymptotic values are presented in Table 1. Note that the asymptotic
values are all independent of θ0.
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FIGURE 2. Sliprate profiles for several grain sizes. Compare with Figure 3(b) of Anand et al. [1].

4. Yield strengthening and weakening

After multiplying (2.1) by ν and integrating over the range of x we get an expression
for the yield stress

τ =
1

2a

∫ a

−a
dp dx −

νν′

2adp

∣∣∣∣a
−a

(4.1)

(assuming the normalization (1/2a)
∫ a
−a ν dx = 1 which is implied by (2.8) above).

Anand et al. [1] assume that ν = 0 on the boundary (“clamped boundary condi-
tions”) and so the second term on the right vanishes. However we have seen that such
a boundary condition is incompatible with (2.1). The correct expression in this case is

τ =
1

2a

∫ a

−a
dp dx −

ν0

a
sin θ0. (4.2)

Anand et al. [1] use (4.1) without the boundary term to deduce that τ > 1, that is, the
dissipational gradients strengthen the material. However this result cannot be deduced
from (4.1) when the boundary term is present (recall that θ0 is negative), and it seems
possible that weakening solutions (with τ < 1) may also be obtainable. For example, if
τ < 1 then (2.5) is unbounded for some value of θ , and this may represent rupture, or
failure, of the weakening material. However this case must be investigated separately
because many expressions used here (for example (3.1)) are only valid when τ > 1.

Note that (4.2) also shows that the dissipational yield stress cannot be identified
with the dissipation functional (the integral in (4.2)) as proposed by Anand et al. [1].
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FIGURE 3. Dimensionless yield strength as a function of grain size.

5. Comparison with numerical results

If the full range of θ extends over the strip then we take θ0 =−π/2 at x = a. This is
the case considered by Anand et al. [1]. When θ0 =−π/2 the above formulae reduce
to

a =−
π

2
+

2τ
√
τ 2 − 1

tan−1

(√
τ + 1
τ − 1

)
, (5.1)

ν0 =
τ 2
− 1

1+ (τ + π/2)/a
, (5.2)

A =
τ(τ 2
− 1)

1+ (τ + π/2)/a
, νmax =

τ(τ + 1)
1+ (τ + π/2)/a

.

Figure 3 summarizes the relation between τ and a as expressed in (5.1). The figure
also shows the upper bound a = 1/(τ − 1) given by Anand et al. [1]. Having found τ ,
the sliprate profile at yield may be computed from (2.4). Note that the calculation of τ
is identical when isotropic and/or energetic hardening are included since in this case
ε = 0 and g has its initial value.

Figure 2 shows sliprate profiles ν(x) obtained from (2.5) for several grain sizes.
Figure 4 is a magnification, showing the approach to the vertical tangent at the
boundary. There is close agreement with Figure 3(b) of Anand et al. [1], obtained
by finite element methods and in the viscoplastic limit. The values of a = 0.5, 1, 5
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FIGURE 4. Magnification of the sliprate profile near the boundary (x =−a) for a = 0.5 showing a vertical
tangent. The boundary slip ν0 = 0.705377 is also indicated.

correspond to l/h = 1, 0.5, 0.1 respectively. Note that the exact solution given here
does not extend down to ν = 0 on the boundary but terminates at some nonzero ν
given by (5.2). The numerical “solution” in Anand et al. [1] attempts to force the
zero-sliprate boundary condition by including what looks like a sliprate discontinuity
at the boundary. Note also that the sliprate profile does not tend to the zero-gradient
profile (ν ≡ 1) as l→ 0. This is because the boundary conditions θ = θ0 =−π/2 do
not permit it.

Once the yield strength is known the subsequent solution after yield may be
obtained numerically. For pure dissipation the analytic solution given above is
available.

6. Higher modes

The higher modes n = 1, 2, . . . for the boundary gradient angles appear to be
associated with much smaller sliprate amplitudes, as shown in Figure 5 for n = 1 and
grain size a = 1 (compare with Figure 1). Figure 6 shows the corresponding maximum
sliprate.

As noted above the higher modes reference the same velocity gradient (ν′/ν) range
so the boundary sliprates become multi-valued. The fundamental mode may well
be selected on the basis of maximal energy dissipation but this is a topic for further
investigation.
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FIGURE 5. Boundary sliprate against boundary gradient for the n = 1 mode.
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FIGURE 6. Maximum sliprate against boundary gradient angle for the n = 1 mode.
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7. Higher dimensional considerations

The generalization of (2.1) to higher dimensions (and more than one slip system)
has been given by Gurtin et al. [4]. A simple version of the multi-dimensional flow
equation excluding energetic effects can be written (in nondimensional form)

τ =
ν

dp
−∇ ·

∇ν

dp
(7.1)

where now dp =
√
ν2 + (∇ν)2 (see Appendix A for a concise derivation of this

equation). Assuming, as above, that ν is nonzero in the interior of the computational
domain, (7.1) may be written in terms of ya =∇aφ =∇a log(ν)

τ =
1√

1+ y2
− Dab∇a∇bφ,

where y2
= ya ya and the second order operator

Dab = (1+ y2)δab − ya yb

is strongly elliptic with eigenvalues

λ= 1 for d = 1
λ= 1, 1+ y2 for d = 2
λ= 1, 1+ y2, 1+ y2 for d = 3

in d = 1, 2, 3 dimensions. The corresponding eigenvectors are normal to (λ= 1), or
tangential to (λ= 1+ y2), the constant ν equipotential surfaces. The spherical part
of the operator (the Laplacian) is a direct generalization of the one-dimensional case
and the nonspherical part relates to the angular anisotropy. Furthermore, the first order
equation (2.3) has a multi-dimensional analogue

dθ

ds
= 1− τ sec θ − ρ tan θ,

where the arc-length s replaces the x-coordinate and we have written ya = |y|na ,
|y| = tan θ , ρ =∇ana . However, in spite of the intriguing correspondence between
the d > 1 and the one-dimensional cases, the solution of the multi-dimensional
problem looks to be much more difficult than its one-dimensional counterpart.

8. Conclusions

We have shown that a logical scheme is now available to solve the elastoplastic
dissipational slip gradient problem, at least in the one-dimensional case. The key to
the method is the partial integration of the flow equations followed by evaluation on
the boundary, assuming a given value for the sliprate gradient ν′/ν there. From this, a
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nonzero boundary sliprate is determined, and it has been shown that it is not possible
to have ν = 0 on the boundary in this simple one-dimensional model. The augmented
yield stress (yield strengthening) can be computed and is in general a function of both
the material properties and the applied boundary conditions.

The physical significance of these boundary conditions is open to debate. One
interpretation is to imagine that the strip consists of a region of lowered yield strength
sandwiched between two elastic regions. Then we can consider the situation where the
central part has yielded but the two ends remain elastic. In this case the slip is trivially
zero in the elastic parts and slip discontinuities given by (2.9) (with ν = ν0) must be
present at the intersections with the plastic zone. The magnitude of the boundary
discontinuity will be precisely that determined from (2.9) and (5.2). More generally,
if there are two adjoining plastic regions with different yield strengths there will be
an internal slip discontinuity at their common interface given by (2.9) and (3.4) with
the two values of θ0 (on either side of the interface) determined by the material and
geometrical parameters. This suggests that dissipational gradient plasticity equation is
best thought of as describing plastic flow in the presence of strengthened structures; for
example, grain boundaries. In that case the present analysis predicts that internal slip
discontinuities must develop at the interface between the grain and the grain boundary.

The case of dissipational gradient yield weakening has been mentioned but not
further explored in this note. Consideration of these matters and associated numerical
work will be presented in a later paper.

Appendix A. Derivation of the dissipational slip gradient equation

Plastic-flow equations for the microstructure have been proposed by many authors
(see Gurtin et al. [4] and references therein) and all involve some degree of
arbitrariness. The following is a concise derivation based on thermodynamical
principles together with a normality argument and a specific form of the yield function
proposed by Reddy et al. [5].

The derivation starts with the expression of the mechanical stress-power as a sum
of macro and micro contributions

Ẇ = P : Ḟ + π.ε̇ +5.∇ ε̇ (A.1)

where F =∇x is the deformation gradient, P is a macroscopic stress, ε is an internal
strain-like variable (slip), and π, 5 are conjugate internal force-like and stress-like
variables. We use the tensorial inner-product notation so that if A, B are matrices then
A : B ≡ tr(ABT ). Note that the internal variables are generally vectorial, so that the
product π.ε̇ actually denotes the sum

∑
α πα ε̇α over the slip systems, and similarly

5.∇ ε̇ =
∑
α 5α · ∇ ε̇α . These summations will be understood in the following.

The stress equilibrium equations associated with (A.1) are

∇.P = p = 0, (A.2)

∇.5= π. (A.3)

https://doi.org/10.1017/S1446181109000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000066


[13] An analytic solution for one-dimensional dissipational strain-gradient plasticity 419

Note that the right-hand side p of (A.2) is zero because of momentum conservation.
This accounts for the absence of a macro-force term p.ẋ in (A.1). Otherwise there is
a complete parallelism between the macro and micro terms.

The macrostructure is connected with the microstructure by representing the
deformation gradient as a product of elastic and inelastic factors in a well-known
manner

F = Fe Fp.

The macroscopic stress power may then be formally decomposed into elastic and
plastic contributions

P : Ḟ = Pe : Ḟe + M : L p,

where L p = Ḟp F−1
p is the plastic velocity gradient, Pe = P F>p and M is the Biot

stress M = F>e P F>p for the intermediate configuration.
The second law of thermodynamics is

Ḋ = Ẇ − ψ̇ ≥ 0,

where Ḋ is the dissipation rate, Ẇ is the mechanical stress-power, and ψ is the free
energy specified as a function of the deformation gradient, and the internal strain-
like variables and their gradients. In the present case this is the set {F, Fp, ε, ∇ε}.
In the following we shall assume that the free energy depends on F, Fp through the
combination Fe = F F−1

p . For clarity we shall also ignore the dependence of the free
energy on the internal slips, which means that the corresponding energetic terms will
be absent from the flow equation. These terms are additive and it is a simple matter to
re-insert them.

Using standard thermodynamical arguments the constitutive equation for the
macroscopic (Piola–Kirchhoff) elastic stress is then established

Pe =
∂ψ

∂Fe

and the dissipation reduces to

Ḋ = M : L p + π · ε̇ +5 · ∇ ε̇. (A.4)

To derive the dissipational gradient flow equation it is convenient to assume a von
Mises type yield function (Reddy et al. [5]) for each slip system of the form

s(M, π, 5)=
√
(τ + π)2 + l−252 (A.5)

where l is an internal gradient length scale and τ = M : N is the Schmid stress relative
to the slip-system dyadic N . Here both τ and N carry the slip-system index α so that,
in more explicit terms, τα = tr(M N T

α ). A yield law is specified when the von Mises
yield function (A.5) is equated to a yield stress level g, that is

s(M, π, 5)= g at yield. (A.6)
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Assuming maximal dissipation of (A.4) under the constraint (A.6) (that is,
normality), we derive the flow equations

L p =
∑

λ̇
τ + π

s
N , (A.7)

ε̇ = λ̇
τ + π

s
, (A.8)

∇ ε̇ = λ̇l−25

s
. (A.9)

From (A.8) and (A.9) together with (A.5) we can identify the Lagrange multiplier
λ̇=

√
ε̇2 + l2(∇ ε̇)2 ≡ dp as the generalized plastic strain rate. Since s = g at

yield, (A.8) and (A.9) may be re-written

τ + π = g
ε̇

dp
, 5= gl2∇ ε̇

dp
(A.10)

for each slip system. Combining (A.10) with (A.3) the dissipational gradient equation
is obtained in the form

τ + l2
∇ ·

(
g
∇ ε̇

dp

)
= g ·

ε̇

dp
.

Note also that the plastic velocity gradient (A.7) assumes its usual form when
distributed over slip systems L p =

∑
ε̇N , and the dissipation rate (A.4) reduces to

Ḋ =
∑

g.dp, thus identifying g as conjugate to the generalized plastic strain rate dp
(on each slip system).
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