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Abstract

Let S be a Riemann surface of finite type. Let ω be a pseudo-Anosov map of S that is obtained from
Dehn twists along two families {A, B} of simple closed geodesics that fill S. Then ω can be realized
as an extremal Teichmüller mapping on a surface of the same type (also denoted by S). Let φ be the
corresponding holomorphic quadratic differential on S. We show that under certain conditions all possible
nonpuncture zeros of φ stay away from all closures of once punctured disk components of S\{A, B}, and
the closure of each disk component of S\{A, B} contains at most one zero of φ. As a consequence, we
show that the number of distinct zeros and poles of φ is less than or equal to the number of components
of S\{A, B}.
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1. Introduction

According to Thurston [11], some pseudo-Anosov maps on a Riemann surface S of
type (p, n), where 3p − 3+ n > 0, can be constructed through Dehn twists along
two simple closed geodesics (with respect to the complete hyperbolic metric with
constant curvature −1). Let α and β ⊂ S be two simple closed geodesics. Denote
by tα and tβ the positive Dehn twists along α and β, respectively. We assume that
{α, β} fills S. Thurston [11] (see also [6]) proved that for all positive integers m and n,
the composition tm

α ◦ t−n
β represents a pseudo-Anosov mapping class on S.

Thurston’s method can be extended to prove the following result (see Penner [10]).
Let A, B be families of disjoint nontrivial simple closed geodesics on S so that {A, B}
fills S. Let w be any word consisting of positive Dehn twists along elements of A and
negative Dehn twists along elements of B so that the positive Dehn twist along each
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element of A and the negative Dehn twist along each element of B occur at least once
in w. Then w also represents a pseudo-Anosov mapping class, which means that the
map w can be evolved into a pseudo-Anosov map ω via an isotopy Ht (·), 0≤ t ≤ 1.
If we choose S properly, the map ω : S→ S is an absolutely extremal Teichmüller
mapping (see Bers [3]).

We call S anω-minimal surface. Associated withω there is a holomorphic quadratic
differential φ on S that may have simple poles at punctures of S. The quadratic
differential φ defines a flat metric on S. By taking a suitable power if necessary, in
this paper we assume without loss of generality that ω fixes all zeros of φ. For each
nonpuncture zero zi of φ, δi = Ht (zi ) is a Jordan closed curve on S. It is interesting to
compare the locations of all possible zeros of φ in the φ-flat metric to their locations
with respect to the complete hyperbolic metric. The aim of this paper is to locate in
a rather coarse manner all possible zeros of φ in terms of the regions obtained from
cutting along the two families {A, B} of closed geodesics on S. Write

S\{A, B} = {P1, . . . , Pu; Q1, . . . , Qv}, u ≥ 1, v ≥ 1, (1)

where {P1, . . . , Pu} and {Q1, . . . , Qv} are the collections of disk components
and once punctured disk components of S\{A, B}, respectively. The collection
{Q1, . . . , Qv} is empty if and only if S is compact. With the notation above, the
main result of this paper is as follows.

THEOREM 1.1. Let S be an ω-minimal surface, and let φ be the corresponding
quadratic differential on S. Assume that ω leaves each zero of φ fixed. Then:

(1) each nonpuncture zero zi of φ, if δi is a null curve on S, lies in the complement
of the closure of Q1 ∪ · · · ∪ Qv in S;

(2) the closure of each disk component Pi contains at most one such zero zi , with δi
being a null curve.

In particular, if S\{A, B} consists of once punctured disk components only, then either
each zero zi is a puncture, or δi is a nontrivial curve.

REMARK. By the Riemann–Roch theorem (see, for example, [5]), if p ≥ 2, then φ
has at least one zero on the compactification S̄ of S.

As a consequence of Theorem 1.1, we obtain the following result.

COROLLARY 1.2. The total number of poles and distinct zeros zi with δi being null
curves is no more than the number u + v of the components of S\{A, B}.

The idea of the proof of Theorem 1.1 is as follows. A nonpuncture zero z0 of φ
on S gives rise to a holomorphic embedding of a Teichmüller geodesic L⊂ T (S) into
the Bers fiber space F(S) over T (S). Let L̂⊂ F(S) denote the image of L under
the embedding. With the help of the Bers isomorphism ϕ of F(S) onto another
Teichmüller space T (Ṡ) for Ṡ = S\{a point}, L can be further embedded into T (Ṡ).
By invariance of metrics, one shows that ϕ(L̂) is a Teichmüller geodesic (Lemma 3.1).
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On the other hand, [3, Theorem 5] states that a modular transformation θ on T (Ṡ)
keeps a Teichmüller geodesic invariant if and only if θ is hyperbolic. Now suppose that
z0 ∈ S lies in Q1, say; then one constructs a nonhyperbolic modular transformation θ
on T (Ṡ), keeping ϕ(L̂) invariant (Theorem 4.2). It follows from Bers’ theorem that
ϕ(L̂) is not a Teichmüller geodesic, which leads to a contradiction.

The second statement of Theorem 1.1 follows from Theorem 4.1. Suppose that z0
and z1 are two zeros of φ in the closure of a disk component P1. Associated with z0
and z1 there are two Teichmüller geodesics ϕ(L̂1) and ϕ(L̂2) in T (Ṡ) under the Bers
isomorphism. Theorem 4.1 asserts the existence of a common hyperbolic modular
transformation leaving both ϕ(L̂1) and ϕ(L̂2) invariant. This contradicts the fact that
there is only one invariant geodesic under a hyperbolic transformation.

2. Preliminaries

We begin by reviewing some basic properties in Teichmüller theory. Let H denote
the hyperbolic plane {z ∈ C | Im z > 0} endowed with the hyperbolic metric

ds =
|dz|

Im z
.

Write H= {z ∈ C | Im z < 0} and let % :H→ S be the universal covering with
covering group G. Then G is a torsion-free finitely generated Fuchsian group of the
first kind with H/G = S.

Let M(G) be the set of Beltrami coefficients for G. That is, M(G) consists of
measurable functions µ defined on H and satisfying the following two properties:

(i) ‖µ‖∞ = ess.sup {|µ(z)| : z ∈H}< 1; and
(ii) µ(g(z))g′(z)/g′(z)= µ(z) for all g ∈ G.

According to Ahlfors and Bers [1], for every µ ∈ M(G), there are nor-
malized quasiconformal maps wµ and wµ of C onto itself such that for
z ∈H, ∂z̄wµ(z)/∂zwµ(z)= µ(z) and ∂z̄w

µ(z)/∂zw
µ(z)= µ(z); and for z ∈H,

∂z̄wµ(z)/∂zwµ(z)= µ(z) and ∂z̄w
µ(z)/∂zw

µ(z)= 0.
Note that wµ maps H onto H while wµ maps H onto an arbitrary quasidisk. Two

elements µ and ν in M(G) are said to be equivalent ifwµ|∂H = wν |∂H, or equivalently,
wµ|∂H = w

ν
|∂H. The equivalence class of µ is denoted by [µ]. The Teichmüller

space T (S), where S =H/G, is defined to be the space of equivalence classes [µ] of
Beltrami coefficients µ ∈ M(G). It is well known that T (S) is a complex manifold of
dimension 3p − 3+ n. The Teichmüller distance 〈[µ], [ν]〉 between two points [µ]
and [ν] ∈ T (S) is defined by

〈[µ], [ν]〉 = 1
2 inf {log K (wµ ◦ w

−1
ν )},

where K is the maximal dilatation ofwµ ◦ w−1
ν on H and the infimum is taken through

the homotopy class of wµ ◦ w−1
ν that fixes each point in ∂H. The set Q(G) of
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integrable quadratic differentials consists of holomorphic functions φ(z) on H such
that

(φ ◦ g)(z)g′(z)2 = φ(z) ∀z ∈H and all g ∈ G

and

‖φ‖ =

∫∫
1

|φ(z)| dx dy = 1,

where 1⊂H is a fundamental region of G. Every φ ∈ Q(G) can be projected to
a meromorphic quadratic differential on S that may have simple poles at punctures
of S, which is also denoted by φ. The differential φ assigns to each uniformizing
parameter z a holomorphic function φ(z) such that φ(z) dz2 is invariant under a change
of local coordinates. Away from zeros of φ there are naturally defined coordinates so
that φ defines a flat metric that is Euclidean near every nonzero point z. Associated
with each φ there are horizontal and vertical trajectories defined by φ(z) dz2 > 0 and
φ(z) dz2 < 0, respectively. For any t ∈ (−1, 1) and any φ ∈ Q(G), we have that
t (φ̄/|φ|) ∈ M(G). The set [

t
φ̄

|φ|

]
∈ T (S), t ∈ (−1, 1), (2)

is called a Teichmüller geodesic. If t in (2) is replaced by a complex variable
z ∈ D= {z ∈ C : |z|< 1}, we obtain a complex version of the geodesic that is also
called a Teichmüller disk.

Notice that every self-map ω of S induces a mapping class and thus a modular
transformation χ that acts on T (S). The collection of all such modular transformations
form a group ModS that is discrete and isomorphic to the group of biholomorphic
automorphisms of T (S) when S is not of type (0, 3), (0, 4), (1, 1), (1, 2), and (2, 0);
see Royden [9] and Earle–Kra [4] for more details.

For each χ ∈ModS , Bers [3] introduced an index

a(χ)= inf[µ]∈T (S)〈[µ], χ([µ])〉.

Throughout this paper, we consider those modular transformations χ for which
a(χ) > 0. There are two cases: a(χ) is achieved and a(χ) is not achieved. In the
former case, χ is called hyperbolic. In the latter case, χ is called pseudo-hyperbolic.
If χ is hyperbolic, then by [3, Theorem 5], a(χ) assumes its value on any point in
a geodesic L. The transformation χ keeps L invariant. Conversely, if an element
χ ∈ModS keeps a Teichmüller geodesic L invariant, then χ must be hyperbolic. In this
case, χ is induced by a self-map of S, and for each Riemann surface S on L, χ is
realized as an absolutely extremal self-mapping ω of S. Associated with the map ω
there is an integrable meromorphic quadratic differential φ on the compactification
of S which is holomorphic on S and may have simple poles at punctures of S (see
Bers [3]). Furthermore, ω leaves invariant both horizontal and vertical trajectories
defined by φ.
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Topologically, the map ω that associates with a pair of transverse measured
foliations determined by the quadratic differential φ is also called pseudo-Anosov. By
Thurston [11], the set of pseudo-Anosov mapping classes on S consists of all possible
nonperiodic mapping classes that do not keep any finite set of disjoint simple nontrivial
closed geodesics invariant.

The Bers fiber space F(S) over T (S) is the collection of pairs

{([µ], z) | [µ] ∈ T (S), z ∈ wµ(H)}.

The natural projection π : F(S)→ T (S) is holomorphic. We fix a point a ∈ S and let
Ṡ = S\{a}. Theorem 9 of [2] states that there is an isomorphism ϕ : F(S)→ T (Ṡ) that
is unique up to a modular transformation of T (Ṡ).

Let χ ∈ModS be induced by a map ω : S→ S. We lift the map ω to a map
ω̂ :H→H. The map ω̂ has the property that ω̂Gω̂−1

= G. Suppose that ω′ : S→ S is
another map isotopic to ω. As usual, the map ω′ can also be lifted to a map ω̂′ :H→H
that is isotopic to ω̂ by an isotopy fixing each point in ∂H. That is, ω̂ and ω̂′ induce
the same automorphism of G. In this case, ω̂ and ω̂′ are said to be equivalent and we
denote the equivalence class of ω̂ by [ω̂].

Using the map ω̂, one constructs a biholomorphic map θ of F(S) onto itself by the
formula

θ([µ], z)= ([ν], wν ◦ ω̂ ◦ (wµ)−1(z)) for every pair ([µ], z) ∈ F(S), (3)

where ν is the Beltrami coefficient of wµ ◦ ω̂−1.

LEMMA 2.1 (Bers [2]). Let ω̂ and ω̂′ be in the same equivalence class. If ω̂ is replaced
by ω̂′, the resulting map θ defined as (3) is unchanged. In other words, θ depends only
on the equivalence class [ω̂].

Therefore, the map θ is uniquely determined by [ω]. Lemmas 3.1 to 3.5 of Bers [2]
demonstrate that θ is a holomorphic automorphism of F(S) that preserves the fiber
structure and that all such θs form a group mod(S) acting on F(S) faithfully.

Note that each element g ∈ G acts on F(S) by the formula

g([µ], z)= ([µ], wµ ◦ g ◦ (wµ)−1(z)).

In this way, the group G is regarded as a normal subgroup of mod(S), and the quotient
mod(S)/G is isomorphic to the modular group ModS . Let i :mod(S)→ModS denote
the natural projection that is induced by the holomorphic projection π : F(S)→ T (S).

By [2, Theorem 10], the Bers isomorphism ϕ : F(S)→ T (Ṡ) induces an
isomorphism ϕ∗ of mod(S) onto the subgroup Moda

S of ModṠ that fixes the
distinguished puncture a via the formula

mod(S) 3 [ω̂]
ϕ∗

→ ϕ ◦ [ω̂] ◦ ϕ−1
∈Moda

S.

The image of [ω̂] in Moda
S under ϕ∗ is denoted by [ω̂]∗.
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3. Invariant geodesics embedded into another Teichmüller space via a Bers
isomorphism

In this section, we assume that χ ∈ModS is a hyperbolic transformation that
keeps a Teichmüller geodesic L⊂ T (S) invariant. We further assume that [0] ∈ L
is represented by S. Choose φ ∈ Q(G) so that

L=
{[

t
φ̄

|φ|

]
, t ∈ (−1, 1)

}
.

Write µ= φ̄/φ. Choose ω̂ :H→H that projects to ω : S→ S that induces χ . We
assume that ω is an absolutely extremal Teichmüller mapping on S. By an argument
of Kra [7], there is a hyperbolic Möbius transformation M that leaves invariant (−1, 1)
as well as D and satisfies the equation

χ([tµ])= [Beltrami coefficient of wtµ
◦ ω̂−1

] = [M(t)µ] ∀t ∈ D.

Suppose that z0 ∈ S is a zero of φ. Let ẑ0 ∈H be such that %(ẑ0)= z0. Let

L̂= {([tµ], wtµ(ẑ0)), t ∈ (−1, 1)} ⊂ F(S). (4)

It is easy to see that the projection π : F(S)→ T (S) defines an embedding of L̂ into
T (S) with L= π(L̂).

The following result is well known and the argument is implicitly given in [7].

LEMMA 3.1. The image L = ϕ(L̂) under the Bers isomorphism ϕ : F(S)→ T (Ṡ)
is a Teichmüller geodesic.

PROOF. By definition, L= L(t)⊂ T (S), t ∈ (−1, 1), is an isometric embedding. For
any two points x, y ∈ L, let x̂, ŷ ∈ L̂ be such that π(x̂)= x and π(ŷ)= y. Let
x∗ = ϕ(x̂) and y∗ = ϕ(ŷ). By complexifying there is a Teichmüller disk D ⊂ T (S)
with L⊂ D and a holomorphic map s : D→ F(S) defined by sending the point [zµ],
z ∈ D and µ= φ̄/|φ|, to the point ([zµ], wzµ(z0)). It is easy to check that L̂⊂ s(D)
with s(x)= x̂ and s(y)= ŷ. Now ϕ ◦ s : D→ T (Ṡ) is holomorphic and is distance
nonincreasing. Therefore, we obtain

〈x∗, y∗〉 ≤ 〈x, y〉. (5)

Notice that the natural projection π : F(S)→ T (S) is holomorphic, so π ◦ ϕ−1
:

T (Ṡ)→ T (S) is holomorphic and hence distance nonincreasing. It follows that
〈x, y〉 ≤ 〈x∗, y∗〉. Combining with (5), we conclude that

〈x, y〉 = 〈x∗, y∗〉 for any two points x, y ∈ L.

Hence L = L(t) must also be an isometric embedding, which says that L is also a
Teichmüller geodesic, as claimed. 2
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By [7], the element θ = [ω̂] ∈mod(S) acts on L̂ via the formula

θ([tµ], wtµ(ẑ0))= ([M(t)µ], w
M(t)µ

◦ ω̂(ẑ0)) ∀([tµ], w
tµ(ẑ0)) ∈ L̂.

From Lemma 2.1, one shows that the image θ(L̂) in F(S) only depends on [ω̂]. In
summary, we have the following result.

LEMMA 3.2 (Kra [7]). Suppose that z0 ∈ S is a zero of φ. An element θ ∈mod(S)
keeps the line L̂ invariant if the representative ω̂ of θ satisfies the condition that
ω̂(ẑ0)= ẑ0.

4. Proof of Theorem 1.1

Let L⊂ T (S) be a geodesic invariant under a hyperbolic transformation χ . Assume
that φ has a nonpuncture zero z0. Let ẑ0 ∈H be such that %(ẑ0)= z0. Theorem 1.1
follows from Lemma 3.1 and the following two results.

THEOREM 4.1. If z0 ∈ Pi for some i for which 1≤ i ≤ u, then there is an element θ
in mod(S) such that θ∗ = ϕ∗(θ) is hyperbolic with the following properties:

(1) θ projects to χ under the projection induced by π : F(S)→ T (S); and
(2) the lift L̂ of L that passes through ẑ0 and is defined by (4) is an invariant line

under θ .

THEOREM 4.2. If z0 ∈ Q j for some j with 1≤ j ≤ v, and δ0 is a null curve, then
there is an an element θ in mod(S) such that θ∗ = ϕ∗(θ) is nonhyperbolic with
properties (1) and (2) in Theorem 4.1.

PROOF OF THEOREM 1.1. (1) If S is compact, there is nothing to prove. So we
assume that n ≥ 1 and z0 ∈ S is a zero of φ that is not a puncture of S, and that δ0
is a null curve. We further assume that Q1 is a component of S\{A, B} that contains
z0 and a puncture z1. Clearly, z0 6= z1. Let L̂ be defined in (4). By Lemma 3.1,
ϕ(L̂)⊂ T (Ṡ) is a Teichmüller geodesic. By Theorem 4.2, ϕ(L̂)⊂ T (Ṡ) is invariant
under an element θ∗ that is not a hyperbolic modular transformation on T (Ṡ). Hence
by [3, Theorem 5], ϕ(L̂) is not a Teichmüller geodesic in T (Ṡ). This contradiction
proves (1) of Theorem 1.1.

To prove (2), we assume that there are two zeros z0 and z1 lying in the closure of a
disk component P1, say. Let P̂1 ⊂H be such that %|P̂1

: P̂1→ P1 is a homeomorphism.

Let ẑ0, ẑ1 ∈ P̂1 be such that %(ẑ0)= z0 and %(ẑ1)= z1. Let L̂0 and L̂1 be the lines
passing through ẑ0 and ẑ1, respectively. From Lemma 3.1, ϕ(L̂0) and ϕ(L̂1) are
distinct Teichmüller geodesics in T (Ṡ).

Let θ∗0 and θ∗1 denote the hyperbolic transformations obtained from ẑ0 and ẑ1

respectively (Theorem 4.1). Since ẑ0 and ẑ1 ∈ P̂1, by construction of Theorem 4.1, if
δ0 is trivial, then θ∗0 = θ

∗

1 . Set θ∗ = θ∗0 = θ
∗

1 . By Lemma 3.2, θ∗ keeps both ϕ(L̂0)

and ϕ(L̂1) invariant. It follows from [3, Theorem 5] that θ∗ is hyperbolic. This
contradicts the uniqueness of the invariant geodesic of a hyperbolic transformation.
This proves (2). 2
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PROOF OF COROLLARY 1.2. Note that the closure P̄i or Q̄ j of each component Pi
or Q j in expression (1) is a polygon with geodesic boundary segments (with respect
to the hyperbolic metric on S). By the argument of Theorem 1.1, each P̄i or Q̄ j
cannot contain more than one zero z j with δ j a null curve. Each pole of φ must be a
puncture of some Q j . By Theorem 1.1(1), each Q̄ j contains at most one zero z j that
is the puncture of Q j . In this case, z j cannot be a pole of φ. Moreover, if there are
components Pi and Pj in expression (1) with the null curve property so that a zero of
φ lies in P̄i ∩ P̄j , then there do not exist any other zeros in either Pi or Pj . If a zero z0
with δ0 a null curve lies in the intersections of αi and β j for some αi ∈ A and β j ∈ B,
then the closure of a polygon in expression (1) one of whose vertices is z0 does not
include any other zeros with the null curve property. Overall, we conclude that the
total number of poles and distinct zeros zi with δi being null curves is no more than
the number of components of S\{A, B}. 2

The rest of this paper is devoted to the proof of Theorems 4.1 and 4.2.

5. Reducible maps projecting to pseudo-Anosov maps

Let Ṡ be a Riemann surface as defined in Section 2. We know that Ṡ has
type (p, n + 1). Let W be a nonperiodic nonpseudo-Anosov self-map of Ṡ. By
Thurston [11], there exists an admissible system

{c1, c2, . . . , cs}, s ≥ 1, (6)

of simple nontrivial geodesics on Ṡ so that for every i , where 1≤ i ≤ s, W (ci ) is
homotopic to c j for some j with 1≤ j ≤ s. Here by ‘admissible’ we mean that no
loop in (6) bounds a once punctured disk and ci is not homotopic to c j whenever i 6= j .
Note that W may permute the components {R1, . . . , Rq} of S\{c1, c2, . . . , cs}, and
if W keeps a component R j invariant, the restriction W |R j could be either the identity,
or periodic, or pseudo-Anosov. Thus there is an integer K such that W K keeps every ci
and every R j invariant, and for each j , where 1≤ j ≤ q , W K

|R j is either the identity
or pseudo-Anosov. If all W K

|R j are the identity, W K is a product of powers of positive
and negative Dehn twists along certain loops in (6). In general, W K induces a pseudo-
hyperbolic transformation on T (Ṡ). See Bers [3] for details.

We now consider a special case. Let θ = [ω̂] be an element of mod(S) that projects
to χ ∈ModS . We assume that χ is induced by ω : S→ S that is an absolutely extremal
Teichmüller mapping. Let φ ∈ Q(G) be the corresponding quadratic differential. By
Royden’s theorem [9] (see also Earle–Kra [4]), θ∗ = ϕ∗(θ) is a modular transformation
on T (Ṡ). Thus θ∗ is induced by a quasiconformal self-map W of Ṡ. The map W is
isotopic to ω if W is viewed as a self-map of S. Notice that W is nonperiodic; it may
or may not be pseudo-Anosov. Even if W is pseudo-Anosov, Ṡ may not be the right
candidate in T (Ṡ) that makes W an absolutely extremal self-mapping on Ṡ.

LEMMA 5.1. Assume, with the above notation, that S is not compact and W is
not pseudo-Anosov. Then W is reduced by a single closed geodesic c1 that is a
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boundary of a twice punctured disk �⊂ Ṡ that encloses a. More precisely, if we write
Ṡ\c1 =� ∪ R, then W |� is the identity and W |R is pseudo-Anosov and essentially the
same as ω, and W induces a pseudo-hyperbolic transformation on T (Ṡ).

PROOF. Let W be reduced by (6), and let γi denote the geodesic on S obtained
from ci by adding the puncture a. Since W is isotopic to ω on S, ω keeps the curve
system {γ1, . . . , γs0} invariant, where s0 = s if neither two elements ci and c j bound
an a-punctured cylinder, nor does an element ci project to a trivial loop; s0 = s − 1
otherwise.

Since ω is pseudo-Anosov, the set {γ1, . . . , γs0} is empty. Hence, the only
possibility is that all geodesics in (6) are boundaries of twice punctured disks
enclosing a. Since geodesics in (6), if not empty, are disjoint, we must have that
s = 1 and c1 in (6) is the boundary of a twice punctured disk.

As a is filled in, c1 becomes a trivial loop. This means that W |R is essentially the
same as ω. Notice that � is a twice punctured disk, and W |� fixes each boundary
component. It follows that W |� is isotopic to the identity. The lemma is proved. 2

The following result, along with Lemma 5.1, establishes the relationship between
elements in mod(S) and nonpseudo-Anosov elements in Moda

S via the Bers
isomorphism ϕ∗. Recall that [ω̂]∗ = θ∗ ∈Moda

S is induced by W : Ṡ→ Ṡ.

LEMMA 5.2. Suppose that S is not compact. Assume that ω : S→ S is pseudo-
Anosov and fixes at least one puncture of S. Then certain nonpseudo-Anosov maps W
of Ṡ exist with the property that W projects to ω. All possible nonpseudo-Anosov
maps W projecting to ω are obtained from those ω̂ :H→H that fix a fixed point of a
parabolic element T of G. In particular, if ω : S→ S does not fix any punctures of S,
then every W so obtained must also be pseudo-Anosov.

PROOF. Assume that ω̂ :H→H fixes the fixed point x of a parabolic element T ∈ G.
This implies that ω̂ ◦ T = T k

◦ ω̂ for some k ≥ 1. That is,

[ω̂]∗ ◦ T ∗ = T ∗k ◦ [ω̂]∗. (7)

From Theorem 2 of [7, 8], T ∗ is represented by a Dehn twist t∂� along the boundary
∂� of a twice punctured disk �⊂ Ṡ. Let W : S→ S be a map that induces [ω̂]∗.
From (7) we obtain

tW (∂�) = tk
∂�.

(In fact, it is easily shown that k = 1.) It follows that the map W leaves ∂� invariant.
So W is not pseudo-Anosov.

Conversely, assume that W is not pseudo-Anosov. By Lemma 5.1, W is reduced
by a single geodesic c that is a boundary of a twice punctured disk. This means that
W ◦ tc = tc ◦W . By Theorem 2 of [7, 8] again, there is a parabolic element T ∈ G
such that T ∗ = tc. Hence, [ω̂]∗ ◦ T ∗ = T ∗ ◦ [ω̂]∗. Thus ω̂ ◦ T k

= T k
◦ ω̂ for any

integer k. It follows that ω̂ fixes the fixed point of T .
In particular, if ω : S→ S does not fix any punctures of S, then W must be pseudo-

Anosov. 2
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REMARK. The disk �⊂ Ṡ obtained from Lemma 5.1 contains another puncture
b 6= a, which is viewed as a puncture of S corresponding to the conjugacy class of T .
Conversely, every [ω̂] ∈mod(S) that fixes a parabolic fixed point of G produces a
nonpseudo-Anosov map W on Ṡ that is characterized in Lemma 5.1.

6. Pseudo-Anosov maps and their lifts defined by geodesics

Let A = {α1, . . . , αq} and B = {β1, . . . , βr }. Let w be as defined in the
Introduction. One writes

w =

N∏
i

(tni1
α1
◦ · · · ◦ t

niq
αq ◦ t−mi1

β1
◦ · · · ◦ t−mir

βr
) (8)

for a positive integer N and nonnegative integers ni j and mik with the property that

N∑
i=1

n2
i j 6= 0 and

N∑
i=1

m2
ik 6= 0, (9)

where 1≤ i ≤ N , 1≤ j ≤ q and 1≤ k ≤ r . By [10], the map w : S→ S represents a
pseudo-Anosov mapping class on S. Let z ∈ S\{A, B}. Let1 be a fundamental region
of G and let ẑ = {%−1(z)} ∩1.

Let α̂1 ⊂H be a geodesic such that %(α̂1)= α1 and 1 ∩ α̂1 6= ∅. Note that there
may be more than one choice for such a geodesic α̂1. The geodesic α̂1 is invariant
under a simple hyperbolic element gα̂1 of G. Let Dα̂1 and D′

α̂1
be the components of

H\α̂1.
To obtain a lift τα̂1 of tα1 with the fixed geodesic α̂1, we take an earthquake shifting

along α̂1 in such a way that it is the identity on D′
α̂1
∪ α̂1, and is gα̂1 on Dα̂1 away from

a small neighborhood of α̂1. We thus define τα̂1 on H via G-invariance. Note that if
τα̂1 is a lift obtained in this way, then g−1

α̂1
◦ τα̂1 or τα̂1 ◦ g−1

α̂1
is also a lift of tα1 defined

by the other component D′
α̂1

. Thus one may assume without loss of generality that
τα̂1(ẑ)= ẑ and ẑ ∈ D′

α̂1
.

The construction of τα̂1 gives rise to a collection Eα̂1 of half-planes, among which
a partial order can be naturally defined. There are infinitely many disjoint maximal
elements of Eα̂1 and for each maximal element Dα̂1 = D1

α̂1
of Eα̂1 , there are infinitely

many second-level elements D2
α̂1
⊂ D1

α̂1
; and for each such D2

α̂1
, there are infinitely

many third-level elements D3
α̂1

in D2
α̂1

, and so on.

The quasiconformal homeomorphism τα̂1 restricts to the identity on the complement
of disjoint union of all maximal elements of Eα̂1 in H; it is quasiconformal
with Beltrami coefficient supported on (disjoint) neighborhoods of α̂1 and its
G-translations. Moreover, from the construction, τα̂1(ŷ)= ŷ for points ŷ on the
boundaries of all maximal elements of Eα̂1 . τα̂1 naturally extends to a quasisymmetric
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mapping of ∂H onto ∂H that fixes infinitely many hyperbolic fixed points of G and
infinitely many parabolic fixed points if S is not compact.

Let α̂1, . . . , α̂q ⊂H be the geodesics such that 1 ∩ α̂ j 6= ∅ for j = 1, . . . , q .
Since α1, . . . , αq are pairwise disjoint, α̂1, . . . , α̂q are pairwise disjoint as well. Since
z ∈ S\{A, B}, the maximal elements Dα̂1, . . . , Dα̂q can be properly chosen so that

ẑ ∈1\{all maximal elements of Eα̂1, . . . , Eα̂q }. (10)

Notice that the simple closed geodesics α1, . . . , αq are pairwise disjoint and that the
region 1\{all maximal elements of Eα̂1, . . . , Eα̂q } is not empty, by [12, Lemma 4],
τα̂ j1

commutes with τα̂ j2
for j1, j2 = 1, . . . , q . Now for a nonnegative integer tuple

σi = (ni1, . . . , niq) that satisfies (9), we define

T̂ σi
A = τ

ni1
α̂1
◦ τ

ni2
α̂2
◦ · · · ◦ τ

niq

α̂q
, 1≤ i ≤ N . (11)

We see that T̂ σi
A does not depend on the order of those τ ni1

α̂1
, . . . , τ

niq

α̂q
.

Similarly, let β̂1, . . . , β̂r ⊂H be the geodesics such that 1 ∩ β̂k 6= ∅ for k =
1, . . . , r . The maximal elements D

β̂1
, . . . , D

β̂r
can also be properly chosen so that

ẑ ∈1\{all maximal elements of E
β̂1
, . . . , E

β̂r
}. (12)

For a nonnegative integer tuple λi = (mi1, . . . , mir ) that satisfies (9), we define

T̂−λi
B = τ

−mi1

β̂1
◦ τ
−mi2

β̂2
◦ · · · ◦ τ

−mir

β̂r
, 1≤ i ≤ N . (13)

Again, T̂−λi
B does not depend on the order of those τ−mi1

β̂1
, . . . , τ

−mir

β̂r
.

More precisely, we assume that z lies in one component R of expression (1). The
component R is either Pi for some i with 1≤ i ≤ u, or Q j for some j with 1≤ j ≤ u.
Since % :H→ S is a local homeomorphism, there is a nonempty subset 6R of1 such
that ẑ ∈6R and %|6R :6R→ R is a homeomorphism. As we remarked earlier, there
is more than one choice of each geodesic α̂ j that meets 1 so that %(α̂ j )= α j . In any
case, there are only finitely many maximal elements of Eα̂ j and E

β̂k
that intersect 1.

The region 6R can be obtained from the fundamental region1 with the removal of all
such (finitely many) maximal elements of Eα̂ j and E

β̂k
for 1≤ j ≤ q and 1≤ k ≤ r .

We now consider the map

T̂1,R =
N∏
i

(T̂ σi
A ◦ T̂−λi

B ). (14)

LEMMA 6.1. With the above construction, the map T̂1,R defined as (14) is a lift of w
and fixes any point ẑ ∈6R . Furthermore, if 1′ is another fundamental region of G,
then there is an element h ∈ G sending 1 onto 1′ so that

h ◦ (T̂1,R) ◦ h−1
= T̂1′,R .
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PROOF. By construction, τα̂ j and τ
β̂k

are lifts of tα j and tβk , respectively. One obtains

% ◦ τα̂ j = tα j ◦ % and % ◦ τ
β̂k
= tβk ◦ %.

From (11), (13) and (14), one calculates that % ◦ T̂1,R = w ◦ %. This says that T̂1,R is
a lift of w.

Clearly, w has the property that w(z)= z for z ∈ S\{A, B}. It is immediate that
T̂1,R fixes any point ẑ ∈6R . The last statement is also trivial. 2

In what follows we fix a fundamental region 1 of G. From Lemma 6.1, each
component R of S\{A, B} corresponds to an element [T̂1,R] in mod(S) such that
T̂1,R|6R is the identity. We thus obtain an injection:

{P1, . . . , Pu; Q1, . . . , Qv} 3 R 7−→ [T̂1,R] ∈mod(S).

If R = Pi for some i with 1≤ i ≤ u, the region 6R stays away from ∂H.

LEMMA 6.2. Suppose that R contains a zero zi of φ with the property that the curve
δi is trivial. Then [T̂1,R]∗ ∈Moda

S is hyperbolic.

PROOF. Let L⊂ T (S) be the invariant geodesic under the hyperbolic mapping
class χ . Let ẑi ∈6R be such that %(ẑi )= zi . Let L̂⊂ F(S) be defined by (4), and let ω̂
be the lift of ω that fixes ẑi . By assumption, [ω̂] = [T̂1,R]. Thus from Lemma 3.2, we
see that [T̂1,R]∗ keeps ϕ(L̂)⊂ T (Ṡ) invariant. By Lemma 3.1, ϕ(L̂) is a Teichmüller
geodesic. By [3, Theorem 5], [T̂1,R]∗ is hyperbolic, as asserted. 2

REMARK. From Lemmas 6.2 and 5.2, for a disk component R containing a zero
of φ and for arbitrary fundamental region 1, we conclude that T̂1,R does not fix any
parabolic fixed point of G. A direct proof of this fact is difficult.

In the case of R = Q j for some j , where 1≤ j ≤ v, the set 6R touches ∂H at the
fixed point of a parabolic element of G corresponding to the puncture z j of Q j . The
following lemma handles this case. Let z ∈ R, and ẑ ∈6R be such that ρ(ẑ)= z.

LEMMA 6.3. Under the above condition, the map T̂1,R fixes both ẑ and the fixed point
of a parabolic element of G.

PROOF. From Lemma 6.1, the map T̂1,R fixes ẑ for ẑ ∈6R . Note that the boundary
of 6R consists of portions of some translations of α̂ j and β̂k . Let z j be the puncture
of Q j . We can draw a path γ in Q j that connects from z to z j without intersecting any
boundary components of Q j . In particular, γ is disjoint from any element in A or B.

Now we can lift the path γ to a path γ̂ in H that connects from ẑ to a parabolic
vertex v j of 1 (corresponding the puncture z j ). Since γ does not intersect {A, B}, γ̂
avoids all maximal elements of Eα̂ j and E

β̂k
for 1≤ j ≤ q and 1≤ k ≤ r . But since

T̂1,R fixes ẑ as well as any other points in γ̂ , by continuity, we conclude that T̂1,R
fixes v j , as asserted. 2

As an immediate consequence of Lemma 6.3, we obtain the following result.
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LEMMA 6.4. Under the same condition of Lemma 6.3, [T̂1,R]∗ is a pseudo-
hyperbolic modular transformation on T (Ṡ).

PROOF. The lemma follows from Lemmas 6.3 and 5.2. 2

7. Proof of Theorems 4.1 and 4.2

We assume that S is noncompact. Recall that Q1, . . . , Qv obtained from (1) are all
possible once punctured disk components of S\{A, B}.

Since a word w defined by (8) represents a pseudo-Anosov mapping class (see
Penner [10]), we see thatw is isotopic to a pseudo-Anosov map ω. By assumption, the
map ω fixes nonpuncture zeros. Let χ ∈ModS be induced by ω. Then χ is hyperbolic
in the sense of Bers [3]. It follows from [3, Theorem 5] that there is a Teichmüller
geodesic L in T (S) such that χ(L)= L.

Let x ∈ L be represented by S. Then ω : S→ S is an absolutely extremal
Teichmüller mapping. Let z0 ∈ S̄ be a zero of φ so that δ0 is trivial. Note that some
zeros could be punctures of S. Suppose that z0 ∈ Q1 is a nonpuncture zero of φ. Let z1
denote the puncture of Q1. Then z0 6= z1. For any point ẑ0 ∈ %

−1(z0), we can choose
a fundamental region 1 of G so that ẑ0 ∈1. Since Q1 contains a puncture, there is a
parabolic vertex v1 of 1 in ∂H that corresponds to the puncture z1.

By Lemma 6.1, the map w can be lifted to T̂1,R that fixes ẑ0. From Lemma 6.3,
T̂1,R fixes v1. Note that ω is isotopic to w. By assumption, an isotopy Ht (·) on S
connecting ω and w can be constructed to leave z0 fixed. Now ω can be lifted to ω̂ so
that ω̂(ẑ0)= ẑ0. Also, the isotopy Ht (·) can be lifted to an isotopy Ĥt (·) that satisfies
the following properties: (i) for all 0≤ t ≤ 1, Ĥt (·) ◦ G ◦ Ĥt (·)

−1
= G; (ii) for all

0≤ t ≤ 1, Ĥt (ẑ0)= ẑ0; and (iii) Ĥ0(·)= ω̂.
Since T̂1,R is a lift of w, there is an element h ∈ G such that Ĥ1(·)= h ◦ T̂1,R .

Obviously, ω̂|∂H = h ◦ T̂1,R|∂H. Since both ω̂ and T̂1,R fix ẑ0, h(ẑ0)= ẑ0. Hence h =
id . It follows that ω̂|∂H = T̂1,R|∂H and thus [ω̂] = [T̂1,R]. We conclude that ω̂ also
fixes v1. By Lemma 5.2, [ω̂]∗ ∈Moda

S is not pseudo-Anosov. Set θ = [ω̂] = [T̂1,R].
We claim that θ satisfies conditions (1) and (2) of Theorem 4.1. Indeed, condition (1)
is clear. Since ω̂ fixes ẑ0, by Lemma 3.2, θ keeps L̂⊂ F(S) (defined in (4)) invariant.
So condition (2) holds. This completes the proof of Theorem 4.2.

The proof of Theorem 4.1 is similar. Suppose that z0 ∈ P1, where z0 is a zero of φ
so that δ0 is trivial. From Lemma 6.1 again, the map w can be lifted to T̂1,R that
fixes ẑ0. From Lemma 6.2 and the same argument as above, [T̂1,R]∗ is hyperbolic and
satisfies conditions (1) and (2) of Theorem 4.1. If the condition that δ0 is trivial is not
assumed, then we can only get that [ω̂] is hyperbolic and satisfies those conditions of
Theorem 4.1.
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