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Abstract

In this paper a feasible direction method is presented to find all efficient extreme points
for a special class of multiple objective linear fractional programming problems, when
all denominators are equal. This method is based on the conjugate gradient projection
method, so that we start with a feasible point and then a sequence of feasible directions
towards all efficient adjacent extremes of the problem can be generated. Since methods
based on vertex information may encounter difficulties as the problem size increases,
we expect that this method will be less sensitive to problem size. A simple production
example is given to illustrate this method.
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1. Introduction

Multiple objective linear fractional programming (MOLFP) problems have attracted
considerable research and interest, since they are useful in corporate and financial
planning, and also in planning of production, health care, and hospitals. For single
objective linear fractional programming, the transformation of Charnes and Cooper [3]
can be used to transform the problem into a linear programming problem. Some
other approaches have been reported for solving MOLFP problems. Kormbluth and
Steuer [18] considered this problem and presented a simplex-based solution procedure
to find all weakly efficient vertices of the augmented feasible region. Benson [1]
showed that the procedure suggested by Kormbluth and Steuer [18] for computing the
numbers to find break points might not work all the time, and he proposed a failsafe
method for computing these numbers. Geoffrion [10] introduced the notion of proper
efficiency for MOLFP, and Choo [4] proved that every efficient solution for a MOLFP
was properly efficient.
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On the other hand, the problem of multiple objective linear programming (MOLP)
arises when the objective functions to be maximized are linear. Different approaches
have been suggested for solving problems of this kind [5–8, 15]. The majority of
previous methods depend on the canonical simplex tableau in multiple objective forms
to find the efficient set of an MOLP. Recently, more novel work on solving general
multiple objective mathematical programming has been done [9, 16, 17, 20, 21]. In
this paper we develop a new method to find all efficient extreme points for MOLFP,
when all the denominators are equal. This method provides us with a feasible direction
of movement from an efficient extreme point to its adjacent one, and is based mainly on
the conjugate gradient projection method. In Section 2 some notation and definitions
of the MOLFP problem are given. In Section 3 we give the main result of this method
together with a simple production example. Concluding remarks about this proposed
method are given in Section 4.

2. Definitions and notation

MOLFP problems arise when several linear fractional objectives (that is, ratio
objectives that have linear numerator and denominator) are to be maximized over
a convex constraints polytope X, which is a special case of a polytope having the
additional property that is also a convex set of points in the n-dimensional space Rn.
The MOLFP can be formulated as

maximize Z(X) = (z1(x), z2(x), . . . , zk(x))
subject to x ∈ X = {x ∈ Rn | Ax ≤ b},

where zi(x) =
cT

i x + αi

dT
i x + βi

for i = 1, 2, . . . , k.

Here ci, di are vectors in Rn, αi and βi are scalars, A is an (m + n) × n matrix
and b ∈ Rm+n. We point out that the nonnegativity condition is added to the set of
constraints, and we also assume that X is a compact set and dT

i x + βi > 0, i = 1,2, . . . , k,
for every x ∈ X. The set of all solutions of the above problem is denoted by E, and this
set has the following definition [2, 4].

Definition 2.1. A solution x0 is said to be efficient for MOLFP if x0 ∈ X, and there is
no x ∈ X such that

cT
i x + αi

dT
i x + βi

≥
cT

i x0 + αi

dT
i x0 + βi

.

Likewise, we define z0 = Z(x0) to be nondominated if there is no z = Z(x) such that
Z(x) > Z(x0).

A characterization of an efficient solution of MOLFP has been made through the
following lemma.
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Lemma 2.2. Let x0 ∈ X. Then x0 is an efficient solution of (MOLFP) if and only if there
exist λi > 0, for i = 1, 2, . . . , k, and ur ≥ 0, for all r ∈ I0, such that

k∑
i=1

λi∇zi(x0) =
∑
rεI0

urAr,

where I0 is the set of indices of the binding constrains at x0, and Ar is a sub-matrix of
the given matrix A, containing only the coefficients defined at the binding constraints
for the current point.

In this paper we are interested in solving the above MOLFP when the denominators
are all equal. In this case, the MOLFP takes the form

maximize Z(X) = (z1(x), z2(x), . . . , zk(x))
subject to x ∈ X = {x ∈ Rn, Ax ≤ b},

where zi(x) =
cT

i x + αi

dT x + β
for i = 1, 2, . . . , k.

(2.1)

If we assume that β , 0, then MOLFP (2.1) is equivalent to

maximize Z(X) =

(
cT

i −
αi

β
dT

) x
dT x + β

+
αi

β
for i = 1, 2, . . . , k

subject to
(
A +

b
β

dT
) x
dT x + β

≤
b
β
,

and by defining y = x/(dT x + β) ≥ 0, it is further simplified to

maximize Z(y) =

(
cT

i −
αi

β
dT

)
y +

αi

β
, i = 1, 2, . . . , k

subject to
(
A +

b
β

dT
)

y ≤
b
β
.

(2.2)

MOLFP (2.2) can be written as a multiple objective linear programming problem:

maximize Z(y) = Cy +
αi

β
for i = 1, 2, . . . , k

subject to Gy ≤ g,
(2.3)

where C is a k × n matrix whose rows are those represented by (cT
i − (αi/β)dT ),

G = A + (b/β)dT is the constraint matrix, and g = b/β.
From the definition of y above, x = y(dT x + β), and then premultiplying by the

vector dT in Rn on both sides, we have dT x = dT y(dT x + β). Simplifying further, this
leads to

x = β
y

1 − dT y
. (2.4)

Remark 2.3. The assumption that β , 0 is essential in our algorithm, because if β = 0,
we have dT y = 1, and then equation (2.4) cannot be defined. Also, our transformation
maintains the dimension of the given one unlike the classical transformation used by
Charnes and Cooper [3], where the dimension of the defined problem is increased by 1.
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Based on the above definition of the MOLP problem (2.3), this problem can be
considered as an equivalent of the MOLFP defined by equation (2.1), where all
denominators of the objective functions are equal. Hence, due to the well-known
theorem for MOLP [7, 8, 23], we can find λ ∈ Rk and λ > 0 (weights) so that y will be
an optimal solution for the linear program

maximize λTCy
subject to Gy ≤ g.

(2.5)

Note that our transformation also gives us the advantage of constructing the
objective space in the form Z = {η ∈ Rk |Qη ≤ q}, which is done by defining the dual
of equation (2.5) as

maximize uT g
subject to uTG = λTC and u ≥ 0.

(2.6)

Since the set of constraints of the dual problem is in matrix form, we can multiply this
set of constraints by a matrix T = (T1 | T2), where T1 = CT (CCT )−1 T1 = CT (CT | T2),
and the columns of the matrix T2 constitute the bases of N(C) = {v; Cv = 0}, we get
uTGT1 = λT , uTGT2 = 0 and u ≥ 0, and hence we have the following two cases:

(1) If k = n, then GT2 = 0, and the dual of equation (2.6) takes the form

maximize λTη

subject to GT1η ≤ b,

where T1 is the inverse of the given matrix C.
(2) If k < n, then GT2 , 0; in this case an l × (m + n) matrix P of nonnegative

entries is defined such that PGT2 = 0. This matrix P can be considered as
the polar matrix of the given matrix GT2, and will play an important role for the
construction of the objective space Z to be in the form Z = {η ∈ Rk | PGT1η ≤ Pb}
or simply can be written as Z = {η ∈ Rk | Qη ≤ q}, where Q = P GT1 and q = Pb.
In this case the dual of equation (2.6) takes the form

maximize λTη

subject to Qη ≤ q.

A sub-matrix P of the given matrix P satisfying

PGT1 = λT > 0

will play an important role in specifying the positive weights needed for detecting
the nondominated point of this multiple objective linear programming problem (2.3).
Also, our proposed method will depend mainly on the previously specified weights.

At a given optimal point of (2.5), we must find u ≥ 0, λ > 0 such that

uTG = λTC,
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where G is an n × n sub-matrix of the given matrix G containing only the coefficients
of the set of active constraints at the current point. Then, we get a similar result in
the objective space if we consider the multiple objective linear programming MOLP
of the form

maximize Iη
subject to Qη ≤ q,

(2.7)

where I is the k × k identity matrix. Hence according to the objective space point of
view, we have the following straightforward proposition.

Proposition 2.4. A point η0 is a nondominated point of (2.7) if there exist u ≥ 0 and
λ > 0 satisfying uT Q = λT , where Q represents the set of active constraints at the given
point η0.

Corollary 2.5. If Q′′ represents the set of nonactive constraints at the given point η0,
then uT Q′′ = 0 has only the zero solution.

Our main task now is to find the first efficient extreme point for (2.3) with the
assumption that β , 0, which is done by considering the linear programming problem

maximize F(y) = eTCy
subject to Gy ≤ g,

where e ∈ Rk with all entries equal to 1. If eTC = pT , the above linear program is
written as

maximize F(y) = pT y
subject to Gy ≤ g.

(2.8)

This problem can also be written in the form

maximize F(y) = pT y
subject to GT

l y ≤ gl, l = 1, 2, . . . ,m + n,
(2.9)

where GT
l represents the lth row of the given matrix G. Then, in the nondegenerate

case, an extreme point (vertex) of Y = {y ∈ Rn | GT
l y ≤ gl}, l = 1, 2, . . . ,m + n, has

exactly n linearly independent subsets of Y .
Starting with an initial feasible point, a sequence of feasible directions is generated

to find the optimal extreme point of this problem. In general, if yk−1 is a feasible point
obtained at iteration k − 1 (k = 1, 2, . . .), then at iteration k our procedure finds a new
feasible point yk given by

yk = yk−1 + γk−1µ
k−1, (2.10)

where µk−1 is the direction vector along which the point moves, and is given by

µk−1 = Hk−1 p. (2.11)

Here Hk−1 is an n × n symmetric matrix, that is

Hk−1 =

I if k = 1,
Hq

k−1 if k > 1.
(2.12)
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For each active constraint s = 1, 2, . . . , q at the current point, Hq
k−1 is defined as

Hq
k−1 = Hs−1

k−1 −
Hs−1

k−1GsGT
s Hs−1

k−1

GT
s Hs−1

k−1Gs
, (2.13)

with H0
k−1 = I . Then Hk−1 = Hq

k−1 and the step length

γk−1 = min
l=1,2,...,m+n

{
el

∣∣∣∣∣ el =
g1 −GT

l yk−1

GT
l µ

k−1
, and el > 0

}
(2.14)

is always positive. Proposition 2.8 below shows that such a positive value must exist
if a feasible point exists. Also due to the well-known Kuhn–Tucker condition [13, 14],
for the point yk to be an optimal solution of the linear program (2.8), there must exist
u ≥ 0 such that GT

r u = p and
u = (GrGT

r )−1Gr p, (2.15)

where Gr is a sub-matrix of the given matrix G containing only the coefficients of the
set of active constraints at the current point yk. This fact will act as a rule for stopping
in our proposed algorithm.

Proposition 2.6. For the matrix Hk−1 defined in equation (2.12), we have (Hk−1)2 =

Hk−1.

Proof. This can be proved by induction. Define a matrix Q1 = G1GT
1 /G

T
1 G1. Since

H1
k−1 = I − (G1GT

1 /G
T
1 G1), it follows that H1

k−1Q1 = 0, Q2
1 = Q1, (H1

k−1)2 = H1
k−1 and

H1
k−1 is an orthogonal projective matrix. Also, if we define

Q2 =
G2GT

2 H1
k−1

GT
2 H1

k−1G2
and H∗k−1 =

(
I −

G2GT
2 H1

k−1

GT
2 H1

k−1G2

)
,

then, since H2
k−1 = H1

k−1[I − (G2GT
2 H1

k−1/G
T
2 H1

k−1G2)], we have H∗k−1Q2 = 0, Q2
2 = Q2

and (H∗k−1)2 = H∗k−1. Since H1
k−1 H∗k−1 and both matrices H1

k−1 and H∗k−1 are orthogonal
projective, H2

k−1 is also orthogonal projective, and (H2
k−1)2 = H2

k−1. Applying the same
argument, we conclude that Hk−1 = Hq

k−1 is an orthogonal projective matrix such that
(Hk−1)2 = Hk−1. �

Proposition 2.7. Any solution yk given by this algorithm through equation (2.10) is
feasible, and it increases the objective function value for the linear programming
problem defined by equation (2.8).

Proof. Here Hq
k−1 is defined as

F(yk) − F(yk−1) = pT yk − pT yk−1

= γk−1 pT Hk−1 p

= γk−1 pT H2
k−1 p

= γk−1‖Hk−1 p‖ > 0,
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which proves that yk increases the objective function. Next, to prove that yk is a feasible
point, it must satisfy all constraints of problem (2.9). Then

GT
l (yk−1 + γk−1µ

k−1) ≤ gl,

for all l ∈ {1, 2, . . . ,m + n}, which can be written as

γk−1GT
l µ

k−1 ≤ gl −GT
l yk−1, l = 1, 2, . . . ,m + n.

This is valid for any l, since if there is w ∈ {1, 2, . . . ,m + n} such that GT
wµ

k−1 > 0
and GT

wµ
k−1 > gw −GT

wyk−1, then (gw −GT
wyk−1)/GT

wµ
k−1 < γk−1. This contradicts our

definition of γk−1. �

The next result guarantees the existence of γk−1 defined in equation (2.10).

Proposition 2.8. At any iteration k, if a feasible point that increases the objective
function exists, then γk−1 as defined in equation (2.14) must exist.

Proof. Here, it is enough to prove that

GT
l µ

k−1 ≤ 0 (2.16)

cannot be true for all i ∈ {1, 2, . . . ,m + n}. Now suppose that relation (2.16) is true for
l ∈ {1, 2, . . . ,m + n}. Then, rewriting (2.16) in matrix form and multiplying both sides
by uT , we get

uTGµk−1 ≤ 0,

that is,
uTGHk−1 p ≤ 0. (2.17)

Since the constraints of the dual problem for the linear programming problem (2.8)
can be written in the form uTG = pT , u ≥ 0. Then equation (2.17) can be written as
pT H2

k−1 p ≤ 0, since (Hk−1)2 = Hk−1, that is, ‖Hk−1 p‖ ≤ 0. This contradicts the fact that
the norm must be positive, which implies that relation (2.16) cannot be true for all
l ∈ {1, 2, . . . ,m + n}. Thus, if a feasible point yk exists then γk−1 as defined before must
exist. �

Remark 2.9. If at any feasible point yk we get the directions µk = Hk p = 0, then the
point yk is optimal, and we cannot improve the value of the objective function. Also,
we note that although the matrix Hk is singular and the vector p is nonzero, this does
not cause the breakdown of this algorithm, rather it indicates that all subsequent search
directions µk+1 are orthogonal to p.

Based on the above results, in the next section we give a full description of our
algorithm for solving the equivalent MOLP to find all efficient extreme points of
MOLFP in two phases as follows.
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3. New algorithm for solving MOLFP problems

Phase I: Use first the linear programming problem (2.9) to find an initial efficient
extreme point for the equivalent MOLP through the following steps.

Step 0 Set k = 1, H0 = I, µ0 = p, let y0 be an initial feasible point, and apply
relation (2.14) to compute γ0.

Step 1 Apply relation (2.10) to find a new solution yk.
Step 2 Apply relation (2.15) to compute u. If u ≥ 0 stop. The current solution yk is the

optimal solution, otherwise go to Step 3.
Step 3 Set k = k + 1, apply relations (2.12)–(2.14) to compute Hk−1, µ

k and γk−1

respectively, and go to Step 1.

Given an initial feasible point y0 and a vector p, Step 0 computes γ0 in O(m + n).
Computing yk in Step 1 requires O(n), while testing the optimality of the current
solution yk in Step 2 requires O(n3). Step 3 of the algorithm requires O(n3) to compute
Hk−1 while computing µk−1 and the feasible direction that increases the value of the
objective function requires O(n2). Finally, computing of γk−1 requires O(m + n).
Hence the application of each iteration of our algorithm requires O(max{m + n, n3}).

Remark 3.1. Assuming that q is the number of active constraints at point yk, if q < n
and relation (2.15) is satisfied, this indicates that yk is an optimal nonextreme point. In
this case, the objective function cannot be improved through any feasible direction.

Remark 3.2. If yk−1 is an extreme but nonoptimal point (that is, there are n active
constrains at point yk−1 and relation (2.15) is not satisfied), then a move is made
through a direction µk−1 lying in the nullity of a subset of the set the active constrains
at yk−1, where each constraint in this subset satisfies relation (2.14).

Next, we prove that the number of iterations that our algorithm requires to solve the
linear programming problem defined by equation (2.9) is at most n.

Proposition 3.3. Our algorithm solves the linear programming problem (2.9) in at
most n iterations.

Proof. Since our allowed directions (2.11) which improve the value of the objective
function lie in the nullity of a subset of the given matrix G, in all iterations we are
moving in a direction parallel to a certain subset of the (m + n) constraints. Also, since
at least one constraint is added at a time starting with H0

0 = I, an optimal extreme point
may be reached in at most n steps. �

In our analysis to find all efficient extreme points in multiple objective linear
programming problems, we proceed from a given efficient point defined by Phase I to
its adjacent efficient extremes. This is done by defining a frame for a Cone (H) denoted
by F, called a minimal spanning system. For an n × n matrix H, denote the set of
indices of the columns of H by IdH . Hence if H = (h1, . . . , hn), then IdH = {1, 2, . . . , n}.
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For matrix H, we define the positive cone spanned by the columns of H (called a
conical or positive hull [19]) as

Cone(H) = Cone(hi, i ∈ IdH)

=

{
h ∈ Rn

∣∣∣∣∣ h =
∑
i∈IdH

τihi, τi ≥ 0
}
.

A frame F of Cone(H) is defined as a collection of columns of H such that Cone
(hi, i ∈ IdH) = Cone(H) and, for each i ∈ IdH ,

Cone(hi | i ∈ IdH) , Cone(H).

Based on the above definitions, we start Phase II to find all efficient extreme points for
the equivalent MOLP problem through a finite number of steps as follows.

Phase II:

Step 1 Let yk be an efficient point. Compute Hk corresponding to this point yk.
Step 2 Construct a frame F of Cone (Hk) using the method of Wets and Witzgall [22].
Step 3 For each hi ∈ F, determine γ∗ obtained by solving the system of linear

inequalities of the form γAhi ≤ g −Gyk (the boundary points of this interval
give γ∗).

Step 4 Compute y∗ = yk + γ∗hi as an efficient extreme point for this MOLP problem,
and go to Step 1.

3.1. Application to a production example Consider a company that manufactures
three kinds of products A1, A2 and A3, with a profit of $4, $5 and $3 per unit,
respectively. The production cost for each unit of the above products is $1, $2 and $1,
respectively. It is assumed that a fixed amount of $10 is added to the profit function,
and also a fixed cost of $5 is added to the cost function as an effect of expected duration
through the process of production. The first product takes 5 employment hours to
produce, while the second product takes 3 h, and the third product takes 7 h. Also, it
is assumed that a fixed employment demands amount 5 h is added to the employment
function. Furthermore, one of the objectives of this company is to maximize the ratio
of the profit to the total cost, and also the company wishes to maximize the ratio of
the employment to total cost in order to receive state aid for business development,
provided that the company has the raw materials for manufacturing and supposing the
materials needed for production is per ton 1, 2 and 1, respectively, with supply for
this raw material restricted to 10 tons. If we consider x1, x2 and x3 as the amount of
units of A1, A2 and A3, respectively, to be produced then the above problem can be
formulated as

maximize z1(x) =
4x1 + 5x2 + 3x3 + 10

x1 + 2x2 + x3 + 5
,

maximize z2(x) =
5x1 + 3x2 + 7x3 + 5

x1 + 2x2 + x3 + 5
subject to x1 + 2x2 + x3 ≤ 10, x1 ≥ 0, x2 ≥ 0 and x3 ≥ 0.
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For this MOLFP, CT
1 = (4 5 3), CT

2 = (5 3 7), dT = (1 2 1), α1 = 10, α2 = 5
and β = 5. Then, the equivalent MOLP takes the form

maximize z1(y) = 2y1 + y2 + y3 + 2,
maximize z2(y) = 4y1 + y2 + 6y3 + 1
subject to 3y1 + 6y2 + 3y3 ≤ 2, y1 ≥ 0, y2 ≥ 0 and y3 ≥ 0.

For this MOLP, the first efficient extreme point is obtained by solving the linear
programming problem

maximize z = 6y1 + 2y2 + 7y3

subject to 3y1 + 6y2 + 3y3 ≤ 2, −y1 ≤ 0, −y2 ≤ 0, and −y3 ≤ 0.

Phase I:

Step 0 k = 1, H0 =

[
1 0 0
0 1 0
0 0 1

]
, µ0 =

[
6
2
7

]
, and let y0 =

[ 1/8
1/8
1/8

]
be an initial feasible point.

Then equation (2.14) gives γ0 = 1/102, and we go to Step 1.

Step 1 Apply equation (2.10) to get y1 =

[ 1/8
1/8
1/8

]
+ (1/102)

[
6
2
7

]
=

[ 150/816
118/816
158/816

]
, and we go to

Step 2.
Step 2 For this point, y1, the first constraint is the only active constrain. Relation (2.15)

is not satisfied, which indicates that this point is not optimal, and we go to
Step 3.

Step 3 Set k = 2, then

H1 =


45/54 −18/54 −9/54
−18/54 18/54 −18/54
−9/54 −18/54 45/54

 , µ1 =


171/54
−198/54
225/54


and γ1 = 6372/161 568. Then we go to Step 1, to get

y2 =


150/816
118/816
158/816

 + (632/161 568)


171/54
−198/54
225/54

 =


49 878/161 568

0
57 834/161 568

 .
For this point, the first and the second constraints are the only active constraints,
and since equation (2.15) is not satisfied, we go to Step 3 to get

H2 =


1/2 0 −1/2
0 0 0
−1/2 0 1/2

 , µ2 =


−1/2

0
1/2

 and γ2 = 99 756/161 568

and again we go to Step 1, to get

y3 =


49 878/161 568

0
57 834/161 568

 + (99 756/161 568)


−1/2

0
1/2

 =


0
0

2/3

 .
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Note that for the point y3, equation (2.15) is satisfied with uT = [8 39], indicating
that this point is optimal for this linear programming, and consequently it is the first
efficient extreme point generated for this MOLP. Then we start Phase II.

Phase II: For the above MOLP problem, we compute the matrices

T1 =


46/93 −6/93
38/93 −9/93
−37/93 21/93

 , T2 =


−5/2

4
1

 and

P =


8/47 0 39/47 0
2/41 0 0 39/41

0 8/13 5/13 0
0 2/7 0 5/7


such that PGT2 = 0. This matrix P is also used to compute

PGT1 =


6/47 3/47
21/41 −9/41
−6/13 1/13

1/7 −1/7

 .
We note that the first row in PGT1 has only strictly positive values, so λT = [6 3] as
the only positive weight defined for this problem. Hence, at the point y3, a subset of
the set of active constraints such that[

6 3
] [

2 1 1
4 1 6

]
=

[
u1 u2

] [
3 6 3
0 −1 0

]
has a solution u1 = 8, u2 = 39 which is selected to compute

H3 =


1/2 0 −1/2
0 0 0
−1/2 0 1/2

 .
A frame of the columns of H3 is used as feasible direction to find the adjacent extreme
point for x3 by solving the system of linear inequalities

3 6 3
−1 0 0
0 −1 0
0 0 −1




1/2
0
−1/2

 γ ≤


0
0
0

2/3

 .
Then with γ∗ = 4/3, we have an efficient extreme point of the form

y∗1 =

 0
0

2/3

 + (4/3)


1/2
0
−1/2

 =


2/3
0
0

 .
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For this new point, if we repeat the above steps we get the adjacent point

y3 =


2/3
0
0

 − (4/3)


1/2
0
−1/2

 =


0
0

2/3

 .
We conclude that the two efficient extreme points y3 and y∗1 are the only efficient
extreme points for this MOLP problem. Finally, using equation (2.4), we get the
points xT ∗

1 = [0 0 10] and xT ∗
2 = [10 0 0] as the only efficient extreme points for

this MOLFP.

4. Conclusion

In this paper a new method is presented to find all efficient extreme points for
MOLFPs with equal denominator, based on a feasible direction of movement from
an efficient extreme point to its adjacent one. This method starts with an initial
efficient extreme point found by solving a single linear programming problem using
the conjugate gradient projection method [11, 12]. Since most of the proposed methods
for solving MOLFPs depend on the simplex tableau, we expect our method to be less
sensitive to problem size.

References
[1] H. P. Benson, “Finding certain weakly-efficient vertices in multiple objective linear fractional

programming”, Manag. Sci. 31 (1985) 240–245; doi:10.1137/0132004.
[2] H. P. Benson and T. L. Morin, “The vector maximization problem proper efficiency and stability”,

SIAM J. Appl. Math. 32 (1977) 64–72; doi:10.1137/0132004.
[3] A. Charnes and W. Cooper, “Programming with linear fractional functions”, Naval. Res. Logist.

Quart. 9 (1962) 181–186; doi:10.1002/nav.3800090303.
[4] E. U. Choo, “Technical note – Proper efficiency and the linear fractional vector maximum

problem”, J. Oper. Res. 32 (1984) 216–220; doi:10.1287/opre.32.1.216.
[5] J. G. Ecker and I. A. Kauda, “Finding all efficient extreme points for multiple objective linear

programs”, Math. Program 14 (1978) 249–261; doi:10.1007/BF01588968.
[6] J. G. Ecker, H. S. Hegren and I. A. Kauda, “Generating maximal efficient faces for multiple

objective linear programs”, J. Optim. Theory Appl. 30 (1980) 353–361; doi:10.1007/BF00935493.
[7] J. P. Evans and R. F. Steuer, “Generating efficient extreme points in linear multiple objective

programming: two algorithms and computing experience”, in: Multiple criteria decision making
(eds J. L. Cochran and M. Zeleny), (University of South Carolina Press, Columbia, 1973).

[8] T. Gal, “A general method for determining the set of all efficient solutions to a linear vector
maximum problem”, European J. Oper. Res. 1 (1977) 307–322;
doi:10.1016/0377-2217(77)90063-7.

[9] X. Gandibleux, M. Sevaux, K. Sörensen and V. T’kindt, “Meta-heuristics for multi-objective
optimization series”, Volumne 535 of Lecture Notes in Economics and Mathematical Systems,
(2004) 82.

[10] A. H. Geoffrion, “Proper efficiency and the theory of vector maximization”, J. Math. Anal. Appl.
22 (1968) 618–630; doi:10.1016/0022-247X(68)90201-1.

[11] D. Goldfarb, “Extension of Davidson’s variable metric method to maximization under linear
inequality and equality constraints”, SIAM J. Appl. Math. 17 (1969) 739–764;
doi:10.1137/0117067.

https://doi.org/10.1017/S1446181114000200 Published online by Cambridge University Press

http://dx.doi.org/10.1137/0132004
http://dx.doi.org/10.1137/0132004
http://dx.doi.org/10.1002/nav.3800090303
http://dx.doi.org/10.1287/opre.32.1.216
http://dx.doi.org/10.1007/BF01588968
http://dx.doi.org/10.1007/BF00935493
http://dx.doi.org/10.1016/0377-2217(77)90063-7
http://dx.doi.org/10.1016/0022-247X(68)90201-1
http://dx.doi.org/10.1137/0117067
https://doi.org/10.1017/S1446181114000200


[13] Solving a special class of multiple objective linear fractional programming problems 103

[12] D. Goldfarb and L. Lapiduo, “Conjugate gradient method for non linear programming problems
with linear constraints”, Find & Eng. Chem. Fund. 7 (1968) 148–151.

[13] D. M. Greig, Optimization (Longman, London and New York, 1980).
[14] F. S. Hillier and G. J. Lieberman, Introduction to operations research, 5th edn (McGraw-Hill,

New York, 1990).
[15] H. Isermann, “The enumeration of the set of all efficient solution for a linear multiple objective

program”, Oper. Res. Quart. 28 (1977) 711–725; doi:10.2307/3008921.
[16] D. F. Jones, S. K. Mirrazavi and M. Tamiz, “Multi-objective meta-heuristics: an overview of the

current state-of-the-art”, European J. Oper. Res. 137 (2002) 1–9;
doi:10.1016/S0377-2217(01)00123-0.

[17] N. Jozefowiez, F. Glover and M. Laguna, “Multi-objective meta-heuristics for the traveling
salesman problem with profits”, J. Math. Model. Algorithms 7 (2008) 177–195;
doi:10.1007/s10852-008-9080-2.

[18] J. S. H. Kornbluth and R. E. Steuer, “Multiple linear fractional programming”, Manag. Sci. 27
(1987) 1024–1039.

[19] J. Stoer and C. Witzgall, Convexity and optimization in finite dimension I (Springer, Berlin, 1970).
[20] C. Stummer and M. Sun, “New multiobjective metaheuristic solution procedures for capital

investment planning”, J. Heuristics 11 (2005) 183–199; doi:10.1007/s10732-005-0970-4.
[21] M. Sun, “Some issues in measuring and reporting solution quality of interactive multiple objective

programming procedures”, European J. Oper. Res. 162 (2005) 468–483;
doi:10.1016/j.ejor.2003.08.058.

[22] R. J. B. Wets and C. Witzgall, “Algorithms for frames and linearity spaces of cones”, J. Res. Natl.
Bur. Stand. 71B (1967) 1–7.

[23] M. Zeleny, Linear multiobjective programming (Springer, Berlin, 1974).

https://doi.org/10.1017/S1446181114000200 Published online by Cambridge University Press

http://dx.doi.org/10.2307/3008921
http://dx.doi.org/10.1016/S0377-2217(01)00123-0
http://dx.doi.org/10.1007/s10852-008-9080-2
http://dx.doi.org/10.1007/s10732-005-0970-4
http://dx.doi.org/10.1016/j.ejor.2003.08.058
https://doi.org/10.1017/S1446181114000200

	Introduction
	Definitions and notation
	New algorithm for solving MOLFP problems
	Application to a production example

	Conclusion
	References

