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A FUNCTIONAL ANALYTIC PROOF OF A SELECTION 
LEMMA 

L. W. BAGGETT AND ARLAN RAMSAY 

1. I n t r o d u c t i o n . If r is a mapping of a set X onto a set F, then a selection 
for r is a mapping 5 of F into X for which r o n s the identity. Analogously, if 
F is a mapping of a set F into the power set 2Z of a set Z, then a selection for F 
is a m a p p i n g / of F into Z such tha t / ( ;y) is an element of F(y) for all y in F. 
These two notions are formally equivalent: Given r mapping X onto F, 
define F(y) = r~l(y) and Z — X. Conversely, given F mapping F into 2Z, 
define X to be the subset of F X Z consisting of the pairs (y, z) for which z 
belongs to F{y), and define r on X by r(y, z) = y. A third notion is also form­
ally equivalent to these, namely the notion of a cross-section or transversal for 
an equivalence relation R on a set X. If F is the set of equivalence classes and 
r(x) is the equivalence class R[x], r maps X onto F and if 5 is a selection, then 
5 (F) is a set which meets each equivalence class exactly once. Conversely, 
define XiRx2 if and only if r(xi) = r(x2). Then if T is a transversal for R, 
(r\T)~l is a selection for r. We shall restrict our at tent ion to the first notion of 
selection, the other two notions having completely analogous results. 

Selections of course always exist by the axiom of choice. However, one is 
normally interested in situations where r, X and F possess additional struc­
ture, and then the selection is desired to have corresponding properties. 
Assume for example tha t X and F are topological spaces and tha t r is con­
tinuous. A topologist would then want the selection also to be continuous. 
However in analysis "measurabi l i ty" of the selection is often a sufficient prop­
erty. Indeed, except for the nagging question of exactly what kind of measur-
ability one wants , a measurable selection nearly always exists. The simplest 
example of such a selection theorem, and one which is the cornerstone of all 
the rest, is the selection version of the Federer-Morse Theorem about the 
existence of transversals [7, Theorem 5.1]: 

LEMMA. Let r be a continuous mapping of a compact metric space onto a 
compact metric space F. Then there exists a Borel selection for r. 

The set of ideas involved in selection theorems has traditionally been 
considered to be a par t of pointset topology. I t is our aim here to show how 
some of these results can be obtained from a completely different viewpoint, 
using functional analytic methods. The s tandard proof to the Federer-Morse 

Received June 19, 1978 and in revised form March 1, 1979. This material is based upon work 
supported by the NSF under Grant No. MCS 77-01374 A01. 

441 

https://doi.org/10.4153/CJM-1980-035-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-035-x


442 I. W. BAGGETT AND ARLAN RAMSAY 

lemma, for example, is based on a detailed topological construction. We present 
here a proof which is essentially a corollary to a kind of constructive Hahn-
Banach theorem. 

I t is well-known tha t the Hahn-Banach theorem depends on, and is in some 
sense equivalent to, a kind of choice axiom. I t is surprising then tha t a "Con­
s t ruct ive" proof exists. T h e precise functional analyt ic theorem wre prove is the 
following special selection theorem: 

T H E O R E M . Let G be a sub space of a separable normed linear space F over the 
reals, and let X and Y denote the closed unit balls in the conjugate spaces F* and 
G* of F and G respectively, each equipped with its weak-star topology. Let r be the 
restriction mapping, taking X into Y. F hen there exists a Borel mapping s of Y 
into X which satisfies: 

i) r o s is the identity. (In particular, r is onto.) and 

ii) If ç is an extreme point of Y, then s(<p) is an extreme point of X. 

Of course, the main difference between our result and the Hahn-Banach 
theorem is simply the fact t ha t 5 is Borel. Our proof is easy, and it is based on 
the classical proof to the Hahn-Banach Theorem. We give this proof in Section 
2 and show how the existence of Borel selections for continuous functions on 
compact metric spaces is an immediate consequence. Of course, the la t ter 
result would prove pa r t i) of the Theorem, bu t not pa r t ii). We should point 
out t ha t E. Effros used the Hahn-Banach Theorem to make Borel choices of 
vectors in subspaces of the dual of a separable normed space [6, Theorem 2]. 
Also, P. R. Andenaes used the endpoint choice to get extensions which are 
maximal in the order theoretic sense [1]. We are indebted to the referee for the 
lat ter reference. 

The authors feel t ha t the existence of a Borel choice of Hahn-Banach 
extensions can have other uses in mathemat ical problems. For example, we 
use it in Section 3 to prove the Isomorphism Theorem for Borel functions due 
to Lusin and Souslin [9, pp. 396-398]: If r is a one-one Borel mapping of a 
Borel set X in a Polish space into a Polish space Y, then the range of r is a 
Borel set in Y and r is a Borel isomorphism between X and r(X). (A space is 
called Polish if it is homeomorphic to a complete separable metric space.) This 
result shows t ha t the selection and transversal versions of the Federer-IVIorse 
Theorem are equivalent. We point out t ha t the same functional analyt ic idea 
can be used to prove both theorems, as wrell as another selection theorem for 
compact spaces which seems different from the known results (Lemma 5). 

Perhaps the most general hypotheses one would wan t for measurable selec­
tion theorems would be for r to be a Borel mapping from a metric space X onto 
a metric space Y. I t is known however t ha t no Borel selection need exist, even 
when X and F a r e both Polish and r is continuous [3, Theorem 4.3]. Theorem 
2.2 of [12] showrs t ha t for separable metric spaces we can assume tha t a Borel 
function is continuous, bu t t ha t doesn ' t help. There is a kind of measurabil i ty, 
however, which is always a t ta inable in this case, which we will call Souslin 

https://doi.org/10.4153/CJM-1980-035-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-035-x


A SELECTION LEMMA 443 

measurability. A subset 5 of a separable metric space Y is called a Souslin set 
(or analytic) if there is a Borel set B in a Polish space and a Borel function/ 
taking B onto 5. A function g from Y into a metric space Z is Souslin measurable 
if g~l(E) is in the (7-algebra 5^ generated by the Souslin sets whenever £ is 
Borel in Z. The ^--algebra !ff is important, partly because if /z is a finite Borel 
measure on a Polish space, then its completion is defined at least on Sf [12, 
Theorem 6.1]. The famous selection theorem of von Neumann [13, p. 448] 
asserts that if r is a continuous mapping of a Souslin set into the reals, then r 
has a Souslin measurable selection. The proof actually covers more generality. 
In Section 4 we show how von Neumann's result follows from that of Federer-
Morse, by a method which also leads to the transversal theorems of Bourbaki 
[2, p. 135] and Dixmier [4, Lemma 2]. 

We point out that our functional analytic result leads to a strengthening of 
von Neumann's theorem in this special normed linear space context. Thus if 
XQ and F0 denote the sets of extreme points in X and Y respectively, then the 
continuous mapping r of X0 onto F0 has a Borel selection. Since both X0 and 
F0 are Polish spaces, von Neumann's theorem would have applied, but the 
resulting selection would only have been known to be Souslin measurable. 

2. A Borel Hahn-Banach Theorem. Our first goal is to prove the func­
tional analytic selection theorem stated in the introduction, using the basic 
inequality of the classical proof. We see that the original result for the separable 
case depends only on induction. 

THEOREM 1. Let G be a sub space of a separable normed linear space F over the 
reals, and let X and Y denote the closed unit balls in the conjugate spaces F* and 
G* of F and G respectively, each equipped with its weak-star topology. Let r be the 
restriction mapping, taking X into Y. Then there is a Borel mapping s of Y into 
X which satisfies: 

i) r o s is the identity. (In particular, r is onto.) and 
ii) If ip is an extreme point of Y, then s(<p) is an extreme point of X. 

Proof. Let f\,f2, . . . be such that the linear span Gœ = [G,/i,/2, . . .] is 
dense in F and define Go = G, Gn = [G,fi, . . . ,/n] for 1 ^ w < oo. For each 
n, let Yn be the closed unit ball in Gre*, with its weak-star topology. These are 
all compact and metrizable, and since Gœ is norm dense in F, X is naturally 
homeomorphic to Yœ. Thus to define s : Y —> X we may define 5 : F0 —> Yœ. 

First define sn: Yn —•> Fw+i for 0 g n < oo as follows; for <p £ Yn, let 

an(<p) = sup [<p(f) - | | / - / n + i | | : / G Gn) and 

bn(<p) = inf {«,(/) + | | / - / n + i | | : / e Gn). 

The classical proof shows that an(<p) S bn(<p) and that \jy —>^(/w+i) takes 
S(if) = {̂  G Gn+i*:\p\Gn = <pand ||^|| = ||^||} one to one onto K ( ^ ) , bn(<p)]. 
We define sn(<p) to be the extension of <p with sn(<p)(fn+i) = bn(<p). 
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Notice t ha t bn is an inf of continuous functions, so it is upper semi-con­
tinuous. T h u s f o r / G Gn+\ sn(<p)(f ) depends in a Borel way on <p. Since the 
evaluation functionals induce a compact metrizable topology on F n + i , sn is 
Borel. Suppose cp is extreme in Yn and sn((p) = t\pi + (1 — 0^2 where 

0 < t < 1 and \j/u ^2 6 F7i+1. Then 99 = /(^i |Gn) + (1 - 0 (^2|Gn), so we must 
have \pi (z S((f) and ^ 2 G -S(<p). Combining this with the fact t ha t bn(ç) = 

SnMUn+l) = ^ i ( / „ + l ) + ( 1 - 0 * 2 ( / „ + l ) , i t follows t h a t ^ ( / n + i ) = Mfn+l) 

= bn((p). T h u s 1̂1 = 1̂2 = sn(p) , and sn(<p) is an extreme in F n + i . 
Now define 5 : F 0 -> Fœ by defining s(<p)(fn) = ((sn_i o . . . o S O ) G P ) ) ( / „ ) 

for n = 1 , 2 . . . . Then s(<p)(fn) is Borel in cp for each w, so s(<p)(f ) is Borel in 
(p f o r / G Goo. Hence 5 is Borel. If <p is extreme in F0 , an easy induction shows 
tha t s((p)\Gn is extreme in Yn for n = 1 , 2 , . . . . Hence s(<p) is extreme in Fœ . 

LEMMA 2. (Fédérer and Morse [7]) If X and Y are compact metric spaces and 
r'.X —» F is continuous and onto, then r has a Borel selection. 

Proof. Let 7̂  = C(X, R ) , G = {gor'.gt C(Y, R ) } . Then X can be identi­
fied with the set of those extreme points in the unit ball of T7* whose values at 
1 are 1, and likewise F for G*. Then taking 5 from Theorem 1, s\ Y is a Borel 
selection. 

Remark. Fédérer and Morse actually prove there is a Borel t ransversal : a 
Borel set B such tha t r\B is one to one and onto. Using the result of our next 
section, Borel selections and transversals are equivalent. 

The next lemma is proved by a s tandard technique, which can be found in 
the proof of Lemma 1.1 of [11]. 

LEMMA 3. / / X is a a-compact metric space, Y is a metric space and r'.X —> F 
is continuous, then r has a Borel selection. 

Proof. If K\, K2 . . are compact in X and have union X, or even if only 
r(X) = Uw^i r(Kn), we can let sn be a Borel selection for r/Kn, n = 1 , 2 , . . , 
and define 5 to agree with sn on r(Kn)\\Jj<n r(Kj). For each n, r(Kn) is com­
pact and hence Borel, so r(X) is Borel and 5 is Borel. 

3. T h e i s o m o r p h i s m t h e o r e m . This fundamental result can be s ta ted in 
several ways, using facts about Polish spaces. We shall use the fact t h a t a 
Borel set in a Polish space is Borel isomorphic to a compact metric space, 
indeed any one with the same cardinali ty [9, p. 358, Remark 1]. T h u s the 
lemma below implies t ha t a one to one Borel image of a Borel set in a Polish 
space, under a mapping into a Polish space, is a Borel set. Since this applies 
to all Borel sets, a one to one Borel mapping of a Borel set is an isomorphism 
onto a Borel set. We will use the separation theorem for Souslin sets [9, p. 393], 
as do other proofs. 

LEMMA 4. Let X and Y be compact metric spaces and let r'.X —» F be one to one 
and Borel. Then r(X) is Borel. 
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Proof. Let °tt be a countable base for the topology of X. For U £ %, r(U) 
and r(X — U) are disjoint analytic sets, so there is a Borel set B(U) in F 
containing r(U) and disjoint from r(X — U). Let Gi be the algebra of real 
functions on F genera ted by C(Y, R ) and {<pB(u) • U G ^ } . Then Gi is separable 
relative to the sup norm, so the set 

Yi = {y G Y'.g 6 Gi implies |g(y)| g sup {|g(r(*))| :* G X}} 

is determined by a countable dense set of g's in Gi and thus is Borel. 
Let Go be the uniform closure of {g\ Yi :g £ Gi}. Then G2 + 2G2 is uniformly 

closed and closed under complex conjugation, so it is isomorphic to the com­
plex C(Z) for some compact metric space Z. If y £ Fi, it follows tha t 8y(g) = 
g(y) defines an extreme point of the unit ball of G2*. Since G2 is separable and 
each g G G2 is Borel, y -* by\s Borel. 

Now G = {g or\g (z G2} is a closed algebra of functions on X isometric to 
G2. Let F be the algebra generated by G and C(X, R ) . Then F is separable 
under the sup norm, so if X* and F* are the closed unit balls in F* and G* we 
have a Borel map s* : F* —» X* given by Theorem 1. For 3/ f 7 i , let X̂  = 
^*(5y) and ^ = \y\C(X). Then /zy is of norm 1 and ny(l) = 1, so ^ is a proba­
bility measure on X. Thus y.y has a non-empty support 5 y , which we claim has 
only one element. If not, let Xi, x2 be distinct elements, and choose a con­
tinuous fo'.X —> [0, 1] which is 1 in a neighborhood of x\ and 0 in a neighbor­
hood of x2. Then the number t = ny(fo) satisfies 0 < / < 1. Define Xi, X2 on F 
by 

X i ( / ) = t-%(f0f),\2(f) = (1 - 0 - % ( ( l - / o ) / ) . 

Then X̂  = t\i + (1 — /)X2 and if fi(x2) > 0 but /1 = 0 on supp ( / 0) then 
Xi( / i ) T6- X 2 ( / i ) . Also ||Xi|[ = ||X2|| = 1, so X̂  is not extreme. Hence Sy is a 
singleton {s(y)\. Now \y(f ) = f(s(y)) f o r / G G(X), so / o 5 is Borel. Hence 
5 is Borel from Y\ to X. 

Suppose s(r(x)) ?* x for some x G X. Then there is a continuous / : X —-> 
[0, 1] such that f(s(r(x))) > 0 a n d / = 0 on a U G ^ which contains x. Then 
the characteristic function g = I — <pB(u) in G2 is such tha t g o r = 0 on £7 
and g o r = 1 on X — U. Then f S gor, so \r(x)(f) ^ V(.r)(g) = 0, bu t 
/ > 0 on supp (MK*)), so X r ( x ) ( / ) = Mr(.r)(/) > 0. Hence s(r(a;)) = x. Now 
it is easy to see tha t r(X) = {y (z Y\\ r(s(y)) = y}, so r(X) is Borel. 

It follows tha t if ^ is a Borel selection for r :X —•> F and F is Polish, then 
s ( F ) is a Borel set 5 meeting each level set of r just once, i.e., a Borel t rans­
versal. Conversely, (r\B)~l is a Borel selection if B is a Borel transversal. 

T h e same proof applies to give the following result. I t seems natural in our 
functional analytic approach, bu t it is not obvious tha t it is either stronger 
or weaker than the more familiar selection lemmas. 

LEMMA 5. Let X and Y be compact metric spaces and let r\Y —> F be Borel. 
Suppose there are Borel sets E1} E2, . . . in Y such that whenever x (? r~l{y) there 
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is an n such*that y $ En and x is interior to r _ 1 ( £ n ) . Then there is a Borel set 

Yi 3 r(X) and a Borel s:Y± ->X such that s(y) 6 r~l(y) for y £ r(X). 

4. More genera l s e l ec t ion l e m m a s . Here we are going to use the Federer-
Morse Lemma to prove two selection lemmas with weaker hypotheses. T h e 
first one contains the essence of von Neumann ' s selection lemma. After the 
proof we will briefly recall some known methods for passing to still wreaker 
hypotheses keeping the same conclusion. Then wTe show how the same proof 
applies to get a Borel selection under slightly stricter hypotheses. T h e proof 
uses Lemma 3, and a slight extension of the method of proof of Lemma 3. 

LEMMA 6. (von Neumann [13, p. 448]) Let X and Y be Polish spaces and let 
r\X —> Y be continuous. Then there is a Souslin measurable selection s : r (X) —> X 
for r. 

Proof. First we reduce to a special case. Recall t ha t any separable metric 
space can be homeomorphically imbedded in a compact metric space [9, 
p. 119]. Suppose XQ, F 0 are compact metric spaces containing X, Y respec­
tively. Since r is continuous its graph T is a subset of X0 X F 0 which is 
homeomorphic to X. T h u s F is a G5 in X0 X F 0 [9, p. 337]. A selection for the 
projection mapping of F into F gives a selection for r by composition with the 
projection into X. Since the la t ter projection is continuous, any measurabil i ty 
is preserved. T h u s wre reduce to the following case: Z and F are compact , X is 
a GÔ in Z, r :Z —> F is continuous and we seek a selection for r\X. 

Let X\ 2 X2 ^ . . . be open sets in Z whose intersection is X. For each n} 

there is a sequence of open sets U\n, U{\ . . . whose union is Xn, such tha t each 
has diameter a t most \/n and each has closure contained in Xn. For each n, 
order Nn lexicographically and for i £ Nn let Vt = Utl

l C\ . . . C\ Uin
n. 

For y £ r(X), let i\(y) be the first element of \j:y G r(X C\ Ujl)\, let 
iz(y) be the first element of \j\y £ r(X C\ V^^j)}, etc. Notice t ha t for 
j G Nn, n ^ 2, we have 

V • C V • 

T h u s for any n, (ii(y), • . • , in(y)) is the first element of {j G Nn: 
y e r(X r\ Vj)}, and 

^ il(v) , • • • , in(v) — V il(y) ,••-, in +1 (î/) • 

Now each Y0- is open in Z and hence c-compact, so there is a Borel selection 
Sj for r\ Vj, by Lemma 3. We define s(n) to agree with Sj on r(Vj C\ X)\ 
U « j r(ViC\ X). Then sin) is Souslin measurable because each r(V3- C\ X) is 
a Souslin set. We have 

sW(y) = 5 i l („ ) t . . . , i n ( l / )(y), so 

s{n)(y) e vil{y),...,in{y)r\r^(y). 
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Hence s(1), s{2), . . . converges uniformly on r(X) to a function 5 such tha t for 
each n, 

s(y) G Vil(y),...tiniv) H r - 1 ^ ) -

H e n c e / o s is Souslin measurable for e a c h / G C(Z), so 5 is Souslin measurable. 
Also, s(y) 6 AT„, for each n, so 5(3/) Ç X , and s is a selection for r |X. 

The original proof of von Neumann produced a Souslin measurable selection 
for a continuous map r of a Souslin set into the reals. If 5 is Souslin and 
X = NN with the product topology, he used the fact tha t there is a con­
tinuous / taking X onto S[9, p. 386]. If si is a selection for r of, measurable 
relative to a c-algebra se, he observed t h a t / o si is a selection forr, measurable 
relative to s/. If r is only Borel and 5 is Souslin, the graph of r is a Souslin set, 
and Borel isomorphic to S by [9, p. 398]. The projection is continuous, so we 
reduce to the case in which r is continuous. These techniques have been used 
more widely, for instance in [8]. 

The proof of Lemma 6 also proves the following special case of a result of 
K. Kuratowski and A. Mai t ra [10, Corollary 2]. 

LEMMA 7. Let X and Y be Polish and let r'.X —> Y be continuous. If r(U) is 

Borel whenever U is open in X, or if r(C) is Borel whenever C is closed in X, then 
r has a Borel selection. 

Proof. If r takes closed sets to Borel sets, it must do the same for all TVs 
and in particular for open sets. Thus we may concern ourselves only with the 
case tha t r takes open sets to Borel sets. Then in the proof of Lemma 6 the sets 
r(V'j C\ X) are Borel in F, so the function s turns out to be Borel, and r(X) is 
Borel. 

There is an impor tan t application of Lemma 7 which is useful for selections 
of set valued mappings and also for producing transversals of equivalence 
relations. Let X be a Polish space, a dense G5 in a compact metric space Z. 
Let c(fo(X) denote the space of non-empty closed sets in X. Under the mapping 
C —> C, ^f0(X) is mapped one to one to a subspace of the space të (Z) of all 
closed sets in Z under the Hausdorff metric. & (Z) is compact, and E. Effros 
shows in [5] tha t <T^Q(X) corresponds to a Gs, so tha t *$${X) is Polish. Let 
X* = {(x, F) [ I X &o(X): x e F} and let r be the projection of X* onto 
^Q(X). Then it is easy to show tha t X* is closed and tha t r is open. Hence 
r has a Borel selection. Projecting into X gives a Borel s:^f0(X) —* X such 
tha t for each C, s(C) G C (cf. [3, Theorem 4.2]). 

Now suppose T? is an equivalence relation on X with closed equivalence 
classes R[x] and define T^(x) = R[x] for x G X. T h e n / = s o F maps X to X, 
and is as measurable as F, because s is Borel. Suppose R[C] is Borel for each 
closed C C X. Since each open set is an Faj it follows tha t R[U] is Borel if U 
is open. Now F'.X —» &(X) is Borel in the lat ter case [4, Proof of Theorem], 
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so / is Borel. Thus {x:f(x) = x}, which is a transversal for R, is a Borel set. 
This proves the Bourbaki and Dixmier transversal lemmas [2, p. 135; 4, 
Lemma 2]. 
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