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Abstract
Design structurematrices (DSMs) arewidely known for their ability to support engineers in
the management of dependencies across product and organisational architectures. Recent
work in the field has exploited product lifecycle management systems to generate DSMs via
the co-occurrence of edits to engineering files. These are referred to as dynamic DSMs and
results have demonstrated both the efficacy and accuracy of dynamicDSMs in representing
engineering work and emergent product architectures. The wide-ranging applicability of
the theoretical model and associated analytical process to generate dynamic DSMs enables
investigations into the evolving structures within digital engineering work. This paper uses
this new capability and presents the results of the world’s first comparison of dynamic
DSMs from a set of near-identical systems design projects. Through comparison of the
dynamic DSMs’ end-of-project state, change propagation characteristics and evolutionary
behaviour, 10 emergent structures are elicited. These emergent structures are considered
in the context of team performance and design intent in order to explain and code the
identified structures. The significance of these structures for the management of future
systems design projects in terms of productivity and efficacy is also described.

Key words: design structure matrices, network analysis, graph theory, design project
guidelines, product lifecycle management

1. Introduction
The ever-increasing product complexity continues to provide challenges in the
management of product dependencies with conflicts and constraints needing to
be resolved on a daily basis. Failure to do so can lead to costly overruns and
considerable re-work. Examples include issues in the length of cabling required
in the A380, resulting in a $6.1 billion delay and faulty hybrid software resulting
in Toyota recalling 625,000 vehicles (Calleam 2011; Bruce 2015). This has led
to a growing consensus that current project management strategies (which date
back to the 1950–1980s) are beginning to be overwhelmed by the complex, multi-
disciplinary and distributed nature of modern engineering projects (Beitz et al.
1986; Linick and Briggs 2004).
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Having identified this challenge, researchers have developed newmethods and
tools that provide more pro-active and real-time design and project management
support by utilising the ever-growing digital footprint of engineering projects
(Gopsill et al. 2014; Snider et al. 2015, 2019). For example, the development of the
Boeing 787 Dreamliner involved the production of over 300,000 computer aided
design (CAD) models, which were accessed between 75,000 and 100,000 times a
week (Briggs 2012). However, Jones et al. (2016) study on the search and retrieval
behaviour of employees at Airbus revealed that engineers performed 1.1 million
searches for information over a six-month period. This continually increasing
repository of engineering project digital footprints provides the potential for
comparison of engineering digital work to reveal emergent structures (ES) in
engineering project behaviour. These structures could relate to best practice,
normal behaviour and potential issues within engineering projects, and the
identification and subsequent coding of these structures would lead to insights
that could support the management of future engineering projects. Although
logical, there remains a lack of studies investigating whether ES can be determined
through cross-project comparison and the development of methodologies to
perform such investigations.

This paper fills this gap by contributing a study that compares the digital
footprints of a set of near-identical systems design projects (Formula Student (FS))
to investigate the existence of ES of engineering project behaviour.

This has been achieved by the following:

(1) generating dynamic design structurematrices (DSMs) from the record of file
edits;

(2) generating hypotheses as to the potential ES from the design intent and
competition performance of the teams;

(3) mapping and identifying ES through comparison of the dynamic DSMs and
ES hypotheses.

The paper continues by discussing the related work (Section 2), which covers
the definition of DSMs, state-of-the-art in dynamic DSMs and rationale for their
selection as the technique for the comparison. Section 3 describes themethodused
to generate the dynamic DSMs used in this study. With this grounding, Section 4
discusses the near-identical FS systems design projects where hypotheses on the
ES are developed. This then continues into the application of dynamic DSMs
(Section 5). Section 6 presents the results of the dynamic DSMs where the focus
has been on comparing the three teams and mapping the results to hypotheses.
These are then discussed along with the future work that could be performed
(Section 7). The paper then concludes by highlighting the key contributions of
the paper (Section 8).

2. Related work
DSMs were originally developed in the 1980s by Steward (1981) as a branch of
graph theory; DSMs seek to understand the connected nature of engineering
systems through an N × N matrix of interactions between system elements
(Eppinger 1997). Since then, they have been widely applied as a means
to identify, visualise and monitor product and organisational architectures
(Browning 2016; Sosa, Eppinger & Rowles 2003). These systems can represent
individual components, assemblies of components, systems of components,
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Figure 1. A DSM of a commercial jet engine (Sosa et al. 2003).

engineers, teams of engineers, processes and/or organisational structures, with
the level of interactivity between elements being manually scored using ordinal,
categorical or binary data (Sosa et al. 2003; Gorbea et al. 2008). Partitioning
and matrix visualisation techniques are then applied to produce insights on the
product/organisational architecture.

Figure 1 shows the results of a DSM analysis that was used to uncover the
dependencies within a commercial jet engines’ product architecture. The study
revealed a disparity between the product and organisational architectures, which
was not known to the engineers at the time. Providing this information to the
project managers led to a re-organisation of the team structure and an increase in
productivity.

While insightful, the establishedmethods for capturing the primary data1 lead
to challenges in being able tomaintain DSMs that are representative of the current
state of a design. To illustrate, the generation of the DSM for a timber construction
company was achieved through an iterative interview and survey approach that
involved employees working on 60 timber structure projects over a six-month
period (Björnfot & Stehn 2007). In addition, challenges in the consistency of
the data format used have also been raised with researchers investigating data
exchange formats to enable the sharing and comparison of DSMs across the field
(Ansari et al. 2016). The limitations of the establishedmanual generationmethods
have been further confirmed by the Browning (2016) review of DSM research,
which concludes that there are two major challenges for future DSM research:

(1) the large amount of new data required to build a rich, structural model of
some systems;

(2) the absence of a versatile and user-friendly software tool set for DSM
modelling, manipulation and analysis.

The review also highlights that the established manual generation methods
are ‘tedious and error-prone’ leading to a barrier in gaining full stakeholder
1 Interviews, surveys and/or questionnaires.
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engagement and increases uncertainty in the quality and accuracy of the resulting
DSM.

To overcome the limitations of the current generation methods, researchers
have begun to investigate how the output of engineering work can be used to
elicit the connected nature of system components (Morkos, Shankar & Summers
2012; Senescu et al. 2012; Gopsill et al. 2016). Examples include the tracking of file
exchanges between individuals (Senescu et al. 2012), aggregation and processing
of change request documents (Morkos et al. 2012; Ghlich, Hildebrand & Schellert
2018) and the capture of file edit co-occurrences to build a probabilistic model
of dependencies (Gopsill et al. 2016). Each has the potential to provide a more
automated, system agnostic, objective and real-time method that results in the
generation of DSMs that are in line with the evolution of the project. The resulting
DSMs are herein referred to as dynamic DSMs.

To validate dynamic DSMs, Gopsill et al. (2016) used the CAD system
structural dependencies (i.e. part, sub-assembly, assembly trees) as a ground truth
and revealed that their probabilistic model of dependencies produced from the
co-occurrence of file editswas able to not only identify the structural dependencies
but also dependencies relating to the function of the product and design process.
Subsequent post-processing of the DSMwas also able to identify the likely change
propagation characteristics of models.

Although research has been performed to generate and verify these new
methods of generating dynamic DSMs, there has yet to be a study that has used
these techniques to compare design projects and to see whether ES of digital work
exist. Thus, this paper moves the DSM field forward by providing such an analysis
on a set of near-identical systems design projects.

3. Dynamic DSM generation
Dynamic DSMs is the term used for methods that generate DSMs that reflect the
dependencies within an engineering project in real time. The theoretical model
used in this paper is Gopsill et al. (2016) conditional probability model, which is
based on the co-occurrence of file edits.

In this model, it is posited that files edited within a pre-defined time period
of one another are candidates for a potential dependency. The likelihood of this
dependency being true, alongside the potential strength of this dependency, is
increased by a consistent re-occurrence of this file edit behaviour. Coupled with
the understanding that there are hundreds of thousands of file edits occurring and
the resulting low probability of a consistent re-occurrence of file edit behaviour
developing, any consistent behaviour observed is likely to relate to a dependency of
some description. Examples of consistent re-occurring file edit behaviours include
the editing of a part file and subsequent update of an assembly and the systematic
generation and subsequent editing of temporary files during simulation runs. In
the case of the latter, these can be determined through the consistency in the
timings of file edits and subsequently coded as dependencieswithin the simulation
process.

A particular affordance of this model is that it relies solely on file edit
timestamps. These are a ubiquitous source of information that is captured by
server and product data management systems. Thus, the use of this type of
information enables DSMs to be generated independently of the product lifecycle
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management architecture, thereby increasing the applicability of the model and
reducing IP/security concerns as no file content is analysed.

The implementation of this model requires the generation of an N×N matrix
that represents the co-occurrence of file edits between files within the engineering
project. This is subsequently post-processed to uncover the dependencies and
key modules of the project/product depending on the sub-set of files used. The
implementation comprises seven stages and covers the following:

(1) File selection
(2) Generation
(3) Evaluating ‘directedness’
(4) Normalisation
(5) Pruning
(6) Partitioning
(7) Optimisation

The paper continues by describing Stages 1–7. For a more in-depth discussion
of the process, please see Gopsill et al. (2016). The paper also uses a number of
matrix analysis definitions. To ensure clarity, their definitions with respect to this
context are as follows:

Partition – A grouping of highly interdependent files whilst maintaining
dependencies to other groups of files. These represent modules within a
product/project.

Components –A grouping of highly interdependent files that are not dependent
on other partitions/components within the DSM. These represent distinct
modules where changes are highly unlikely to require further changes to
additional modules within the product/project.

Modularity – A normalised metric (0–1) that indicates the level of structure
within the matrix that is beyond pure chance. Values greater than 0.3 are
often considered a good indicator for the capture of dependencies between
nodes (Newman 2004).

3.1. File selection

Stage 1 of the process requires the specification of the files to be analysed. This
depends on the engineering project and dependencies between the files one
wishes to investigate. Examples include the use of CAD files to determine product
dependencies and emails to determine process dependencies.

With the files selected, a further thresholding of the files is performed based
on file activity. At this initial stage, a file activity of greater than four updates is
often chosen. This represents the creation followed by three more edits to the file.

The aim is to remove the files that show little to no activity and, thus, may
represent areas of the product/project that cannot be altered by the team (e.g. a
bought-in part such as the engine block and/or gearbox). Imposing a low threshold
for the number of files helps prevent an overreduction in the size of dataset;
however, too low and a probabilistic model cannot be achieved as there is a lack
of edits to build up confidence in the candidate dependencies.
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Figure 2. Detecting co-occurrences of file edits.

3.2. Generation
To generate the co-occurrence DSM, one needs to identify when a co-occurrence
of file activity has occurred. To achieve this, the process iterates through each file
edit timestamp and identifies the files that have changed within a specified time
period. The matrix is then updated to reflect the frequency of the co-occurrence
of edits between the files.

Figure 2 illustrates the process of identifying the co-occurrence of file edits.
Taking File A as the file of interest, the process identifies all the timestamps where
the file has changed and generates the time periods where the occurrence of edits
to other files are retrieved. tp defines the maximum time period post a file edit
and can often be smaller due to A being edited again within this period. This is
demonstrated in Figure 2 where tp is set to 12 h, but 4, 3 and 2 h are present due to
additional edits being made to A. Dynamically adjusting the time period ensures
no double counting of file edit co-occurrences.

With the time periods for a co-occurrence with respect to A defined, one
can now refer to the edit timestamps for the other files and check whether a
co-occurrence has occurred. Figure 2 shows the three possible scenarios. Scenario
(i) occurs where File A has changed and File B changes within the post-edit time
period. This leads to a co-occurrence of file activity being recorded. Scenario (ii)
occurs where File B changes again within the same post-edit time period. Since a
co-occurrence has already been recorded, no further co-occurrences are recorded.
Scenario (iii) occurs where File B changes within a period of inactivity of File A.
In this case, there is no co-occurrence of file activity.

This results in a matrix consisting of the number of file edit co-occurrences.
This is taken to Stage 3, which normalises the matrix with respect to the number
of edits to the files.

3.3. Normalisation
At this stage, the process has generated a DSM consisting of the number of file edit
co-occurrences. If one would partition the current DSM, the resulting partitions
would be highly influenced by the files with a high number of edits.

Thus, normalisation against the number of edits is performed to adjust for
the unequal distribution of edits across the files. To do this, the process applies
conditional probabilities. Referring back to the theoretical model, this is the
assessment of the consistency of file edit co-occurrences and is achieved by taking
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the number of co-occurrences between two files u and v(Cu,v) and dividing it by
the total number of edits of u(Eu) to give the probability of an edit in u leading to
a co-occurrence edit in v(Pu,v). This is shown in the following equation:

Pu,v =
Cu,v

Eu
, (1)

where Pu,v is the conditional probability of an edit in u post v, Cu,v is the number
of co-occurrences between u and v and Eu is the number of edits to file u.

The result of this normalisation is a directed DSM that represents the
conditional probabilities of a dependency between the files. To continue, the
process evaluates the ‘directedness’ of the DSM to determine whether a directed
or undirected DSM should be used and the appropriate partitioning technique is
applied.

3.4. Evaluating the ‘directedness’
Up until this point, the DSM has been inherently directed where a change in the
file in the row vector (u) has a likelihood of leading to a change in the file in
the column vector (v). This ‘directedness’ (D) is subsequently analysed to assess
its significance in order to ensure that the appropriate directed or undirected
partitioning techniques are applied (Equation (2)). This is evaluated by taking the
average of the absolute differences in the conditional probabilities between the
files within the DSM. If D is close to <0.1, then it is argued that no significant
directionality exists within the DSM.

D =
∑
∆Pu,v∑

E
=

∑
|(Pu,v − Pv,u)|∑

E
. (2)

As the focus of this paper is not to discuss the process entirely, the paper will
focus on the analysis of undirectedmatrices as this was found to be the case for the
systems design projects to be compared. Equation (3) details the transformation
from a directed to undirected matrix (Uu,v), which takes the average of the two
directed conditional probabilities (Pu,v, Pv,u).

Uu,v = Uv,u =
Pu,v + Pv,u

2
. (3)

With the DSM normalised and directionality determined, the process moves
to the pruning of the DSM where further noise is removed from the DSM ahead
of performing the partitioning.

3.5. Pruning
The objective of pruning is to omit candidate dependencies that are a likely result
of randomness and concurrency of engineering work. In addition, this reduces
the computational time taken to partition and analyse the DSM by increasing the
spareness of the matrix. This enables the DSM to be maintained and updated
in real time as the project evolves. Pruning is the act of running through all
the candidate dependencies and removing any that are below a defined pruning
value (p). The optimum value for p is generated during Stage 7 (Section 5.8).
Pruning the matrix also has the ability to disconnect files and groups of files from
the rest of the matrix. In the first case, the process removes this file from the
rest of the analysis, while in the second case, the group of files remain within
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the matrix, thereby forming components. With the pruning complete, the co-
occurrenceDSM is ready to be partitioned to uncover the underlying and evolving
architecture of the engineering project.

3.6. Partitioning
Partitioning reveals the DSM’s underlying structure. While there are many
algorithms that could be applied to reveal the underlying structure of the DSM,
this paper applies the Louvain community partitioning algorithm (Blondel et al.
2008). This algorithm is typically applied to communication transactions, such
as email and social media, to reveal communities within social networks. As the
co-occurrence measurements used to form the DSMs are also of a continuous and
transactional form, it is argued that the partitioning algorithmwill also be suitable
for this case.

The algorithm works by allocating files to partitions with the objective of
returning a partition set that produces the highest modularity score for the DSM.
Modularity (Q) is an assessment of the quality of the matrix partition and is
defined as (Newman 2004)

Q =
1

2m

∑
u,v

[
Au,v −

kukv
2m

]
δ(cu, cv), (4)

where m = 1
2
∑

u,v Au,v and is the sum of the co-occurrences’ conditional
probabilities within the matrix. δ is the Kronecker delta function and is 1 if a
co-occurrence exists between two files and 0 otherwise. kukv/2m is the probability
that a co-occurrence may exist between two files, where ku is the number of
files that have co-occurrences with file u and kv is the number of files that have
co-occurrences with file v. And Au,v is the weighted co-occurrence between two
files in the matrix.

To start, the algorithm assigns each file to its own partition. The algorithm
then sequentially moves one file to a different partition and calculates the change
in modularity (Equation (5)).

∆Q =

[
Pin + ki,in

2m
−

(
Ptot + ki

2m

)2
]
−

[
Pin
2m
−

(
Ptot
2m

)2

−

(
ki

2m

)2
]
, (5)

where Pin is the sumof all the co-occurrence probabilities within the partition that
file i is being included in, Ptot is the sum of all the co-occurrence probabilities to
files within the partition that i is being included in, ki is the co-occurrence degree
of i and ki,in is the sum of the co-occurrence probabilities i and other files within
the partition that i is merging with.

From this, the maximummodularity change can be identified. The associated
files are then assigned to the same partition and the algorithm repeats the previous
step of identifying the next file movement that will result in a further increase in
modularity. If no further movement of files achieves an increase in modularity,
the algorithm terminates, resulting in the partition set that gives the highest
modularity score. This iterative process results in a partition set that are highly
connected internally and weakly connected to one another.

The process of generating the partition from the bottom-up makes the
approach inherently hierarchical and maps well to the hierarchical nature of
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Table 1. FS competition events

Static events Dynamics events

Engineering design (150 pts) Skid-pad (50 pts)
Cost and sustainability analysis (100 pts) 1 km Autocross/sprint (150 pts)
Business presentation (75 pts) 75 m acceleration (75 pts)
Technical inspection (0 pts) 22 km endurance (300 pts) and fuel economy (100 pts)

product architectures within CAD systems. Hence, it is suitable for analysing
DSMs generated from the co-occurrence of edits to files.

3.7. Optimisation
With the generation process defined, Stage 7 optimises and evaluates the stability
of the DSM partitioning as a function of time period (tp) and pruning threshold
(p). The stage seeks to optimise for the following objective O function:

O = f (tp, p) =
QNp R

Nc
, (6)

where Q is the modularity of the matrix partition, Np is the number of matrix
partitions, R is the ratio of the matrix that remains after pruning and Nc is the
number of matrix components.

To find the optimum values for tp and p, a grid search using a range of time
periods (0 to 24 h in increments of 1 h) and pruning values (0–1 in increments of
0.05) is used to generate the co-occurrence DSM and perform the partitioning.
From this, the structural characteristics of each DSM are computed and O is
obtained. The values that produce Omax are then selected as the optimum time
period and pruning values. Further analysis of this grid search can also reveal the
sensitivity of the identified structures and provide confidence in their significance
to the project.

3.8. Summary
With the dynamic DSM method introduced, the paper now continues by
describing the set of near-identical systems design projects, the dataset that has
been generate and example process of applying the dynamic DSM generation
method.

4. A set of near-identical systems design projects
The sets of near-identical systems design projects that have been selected for
the comparison are the annual FS projects run at the University of Bath. FS is
a motor-sport educational programme where teams of students from universities
compete in designing, building and racing a single-seat race car (Figure 3). It is
an international competition with events held worldwide. The UK event has been
running since 1999 with each team being judged on a mixture of dynamic and
static events (Table 1).
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Figure 3. Formula Student.

Team Bath Racing have been designing and building FS cars for over a decade
and consists of approximately 30 engineering students in their final year of
study. A range of engineering courses including automotive, aerospace, electrical,
manufacturing andmechanical engineering are represented by the teammembers
and highlight the multi-disciplinarity of the project. The team have an allocated
workspace and are provided with a shared network drive space where all the files
pertaining to the car are stored and worked upon. Given the decades worth of
experience in running the FS project, detailed design processes and product data
management procedures (e.g., naming convention, check-in/out, version control
and sign-off procedures) have been developed to support the team and are in line
with industry best practice. In addition, TeamBathRacing are one of the few teams
that design and build a car from scratch each year, and eachmember is required to
do a final year project on an element of the car as part of their degree. Thematurity
of both the team and event and the consistency in the rules and judging provide
a controlled environment where the design intent, competition performance and
digital footprint can be captured and compared.

The following section details the design intent and competition performance.
This will then be used during the comparison of the teams’ DSMswhere evidence-
based arguments will be made that map the ES within the DSMs to design intent
and product performance.

4.1. Design intent
The design intent statements given to the FS judges by the three teams are
presented in Table 2. From these statements, it can be seen that Team A’s design
intent was centred on generating a reduced design cycle in order to allow for more
time to be associated with the build and testing of the product. In contrast, Team
B’s focus is on the transient performance and user-centred design of the vehicle
alongside a rapid design cycle in order to increase time for building and testing.
TeamC further emphasises the importance of developing a carwith good transient
performance, and to achieve this, their aim is to have a highly detailed build plan
that allows for significant time for testing.
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Table 2. FS team’s design intent as presented to the FS judges

Keyword Definition

Team A
Elegant Referring to a ‘cleverly simple and ingenious’ design
Efficient A time and resource efficient design to allow a reasonable design and build

time
Proven Extensive testing to be carried out on the car to optimise set-up and life

components
Team B
Lightweight Acceleration is one area of transient performance; from Newton’s second

law (F = ma), there are two ways to increase acceleration: increase force
or reduce mass. Below 160 kg was initially targeted

Responsive Driver confidence has a massive effect on lap time; accurate steering and
minimal power delay will maximise this

Efficient Time and resources need to be maximised to get a car built early; this will
allow extensive testing. During car operation, the fuel used needs to be
reduced to capitalise on the fuel efficiency points. Aligning ourselves to
the automotive industry trend to be more efficient and have less
environmental impact will make our product more marketable to
modern market and sponsors

Team C
Dynamically excellent The focus is on the transient performance of the vehicle including

acceleration, deceleration and cornering, where the philosophy of the car
is to have a high∆ velocity performance

Organisation and planning To create highly detailed and exhaustive build plan to ensure resource are
used optimally and efficiently to reach our goals.

Testing Ensure a timely build to enable significant testing to occur before the race
events

In addition to the competition design and business reports, each engineer is
required to produce a report on their work as part of a university assessment. Thus,
the work discussed in these reports can provide an insight into the specific areas
of focus for each team member and provides an indication of the allocation of
resources across the design and manufacture of the car.

Natural language processing was applied to extract the commonly used terms
across the reports. Stop-word lists were used to remove context independent terms
from the analysis (e.g., the, a, and). Table 3 presents the top 12 terms for each team.

A consistent theme across all three teams is the importance of the engine in
the development of the car. This is a logical outcome as the engine is integral to
the power train and forms a central part of the chassis. Therefore, this is a crucial
area for the team to understand in order for the rest of the car to be built.

Continuing down the list of terms, one can see the teams diverge due to their
respective design intent. TeamA focuses onwheel,weight, suspension, fuel, torque,
chassis and tyres, which alignswith their intent of an ‘elegant’ designwhere they are
wishing to create a simple robust design. These terms all relate to the fundamental
principles of vehicle design and features of the car that have to exist in order for

11/29

https://doi.org/10.1017/dsj.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2019.20


Table 3. Most common terms used across the team reports (in descending order)

Team
A B C

Engine Engine Engine
Front Test Test
Wheel Data Rear
Weight Model Front

Suspension Wheel Model
Fuel Tyre Torque
Rear Speed Weight
Load Pressure Fuel
Mass Force Monocoque
Torque Load Power
Chassis Flow Data
Tyre Front Pressure

a car to function. The focus on simplicity is further highlighted by the lack of
any terms relating to the aerodynamics and/or sensor data capture that one might
expect on a racing car. Therefore, one would expect their DSM to have partitions
centred around the chassis, suspension and wheel and tyres.

In contrast, Team B focuses on aerodynamics, data capture and testing with
terms test, data, pressure and flow being used. In addition,model appears in the list,
which highlights the greater use of digital modelling and simulation technologies
used by Team B. Again, the set of terms aligns well to their design intent that
focuses on being ‘lightweight’ and ‘responsive’ as it is argued that a considerable
amount of modelling is required in order to understand how design concessions
affect the transient performance of the car. Given the focus on testing, one would
hypothesise that TeamB’s DSMwill bemoremodular to reflect themany tests that
they wish to perform.

Team C appears to be an amalgamation of the previous two teams with a
mix of fundamental features of the car such as weight, monocoque and power,
whilst also considering the modelling and aerodynamics side of the car with the
use of terms data, pressure and model. As the design intent of Team C is to be
‘dynamically excellent’, it can be argued that to achieve this, a team would need
to be able to harmonise the fundamental chassis and suspension design with the
additional loads generated by the supporting aerostructures. In addition, test is
rated particularly high in TeamC’s results, which further confirms the team’s focus
on their design intent of ‘Testing’. Thus, it is hypothesised that Team C’s DSM
would also contain more partitions to reflect testing and that the partitions will
also centre around chassis and aerodynamic components.

This analysis of the teams’ design intent highlights that although each team
is creating the same product, the approach each team has taken has had a
considerable impact on the allocation of resources across the product architecture.
Thus, there is potential in that similarities and differences can be observed in the
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Table 4. FS competition results

Team
A B C

Statistic Position Score Position Score Position Score

Overall position 7th 4th 4th
UK team 2nd 1st 1st
Endurance event 4th 1546.970 1st 1484.170 6th 1443.300
Efficiency results 12th 63.900 10th 68.600 15th 59.600
Sprint event (s) 13th 78.666 12th 55.763 22nd 52.232
Skid pan (s) 9th 6.088 13th 5.158 22nd 5.170
Acceleration event (s) 8th 4.501 18th 4.594 18th 4.325
Design judging 7th 135.00 12th 126.000 5th 139.000

comparison of DSMs for the FS teams and that structures within the DSMs may
correspond to the design intent of the teams.

4.2. Product performance
Table 4 presents the results from the FS competition and the hypothesis is that
the comparison of DSMs may provide structures that indicate the potential
performance of the final product.

In terms of overall position and top UK team, Teams B and C both outperform
Team A with both teams placing 4th in their respective competition years.
However, there is little difference in the UK team performance. Moving to
the vehicle performance events, Team C outperformed Team A and B in the
endurance event, which suggest that they were able to meet their design intent
of ‘testing’ as reliability is the main concern for this event. Team B performed the
best in efficiency and further confirms that they were able to translate their design
intent of ‘efficient’ into the real-world product. However, in the sprint event, it is
Team C that is the top performing team with a time of 52.232 s. This clearly aligns
with their ‘dynamically excellent’ design intent.

Overall, Team C outperformed the other two teams at the competition;
however, there were events that Team B did excel at. In contrast, whilst Team A
did complete all the events of FS, their competition performance was not at the
same level as Teams B and C. Therefore, there is potential for the study to uncover
relationships in the DSM structures and overall competition and/or individual
event performance.

4.3. Summary
From the discussion of both the teams’ design intent and product performance,
the ES one hypothesises will exist within the DSMs are the following:

(i) Team A’s DSM partitions should be centred around the chassis, suspension
and wheel and tyres.
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(ii) TeamA’s aim for an elegant and simple design will be reflected in a DSMwith
few disconnected modules.

(iii) Team B’s DSM is expected to be more modular to reflect the priority on
testing the various systems of the car.

(iv) Team C’s DSMwill contain more partitions to reflect the testing and that the
partitions will also centre around chassis and aerodynamic components.

(v) Team C’s as-designed architecture revealed by the DSM will be more closely
aligned to their as-planned architecture, given their focus on planning and
organisation.

(vi) The joint results of Teams B andC reveal that their car is easier tomodify and
tune for each event, which would be reflected in lower change propagation
statistics of their DSMs.

5. Applying dynamic DSMs to systems design
projects

With the generation of the dynamic DSM process discussed and description of
the systems design projects made, this section presents the generation process as
applied to the datasets of these projects. This section starts by describing the digital
footprint dataset followed by an example application of the dynamicDSMprocess.

5.1. Systems design projects dataset
The data capture focused on the CAD files of the three teams. This is due to
the maturity of the CAD file management system that the teams had in place,
which managed the naming conventions, relationships, organisation and check-
in/out status of these product models. The teams also associated their models to
a consistent product architecture featuring 10 systems:

(1) Brake System
(2) Complete Assembly
(3) Electrical
(4) Engine and Drivetrain
(5) Frame and Body

(6) Standard Parts
(7) Miscellaneous
(8) Steering
(9) Suspension
(10) Wheels and Tyres

In comparison, other common files found in engineering projects, such as
computational fluid dynamic and finite element analysis files, were stored in
a more ad hoc manner and across many storage devices, thus making it more
challenging and erroneous to capture.

A Raspberry Pi2 connected to the network was used to monitor the CAD file
management system. The Pi recorded the status of the file management system
using a custom-built folder monitoring package written in Node.js.3 The tool
monitors the entire folder/file structure containing the CAD files and detects any
accesses or modifications to them. These are then recorded in a NoSQL database.

Table 5 presents a summary of the number of files and edits across the three
teams. The summary reveals that Teams B and C produced almost twice the
number of models compared to that of TeamA; however, the total number of edits
2 https://www.raspberrypi.org/.
3 https://www.npmjs.com/package/fal.
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Figure 4. Distribution of product models with respect to the team defined product
sub-systems.

Table 5. FS CAD file statistics
Statistic/team A B C

Product models 539 1053 1006
Number of model updates 4609 4246 3172

recorded was consistent between Teams A and B, whilst Team C contained fewer.
To further investigate this, Figure 4 shows the distribution of product models by
sub-system. This reveals that the additional models present in Teams B and C
come from the Frame and Body and Suspension sub-systems, respectively. This
aligns with the design intent of the two teams where they have focused on the
transient performance and user-centred design aspects of the vehicle and indicates
the potential of mapping intent and product performance to structures within
the DSM. In all other sub-systems, the number of product models remains fairly
consistent across the three teams. The final aspect to note is the reduction in the
Standard Part counts across the teams, and following a discussion with the team
members, it was revealed that these were allocated to more specific areas of the
sub-system architecture. This provides an indication that Teams B and C were
more confident in their allocation of the product models during the early design
phases than Team A.

5.2. File selection
To select the files of interest, Figure 5 shows the frequency distribution of file edits.
It is interesting to note that all the teams follow a similar profile with the additional
files present within Teams B and C’s datasets appearing to extend the tail of the
frequency distribution. This suggests that these files represent standard/bought-in
components that are not edited further by the team.

The files are filtered based on the number of updates made. For this study, this
has been set to four as this includes the creation of the product model followed
by three further updates. This removes models that show little to no activity and
may represent constraints in the team’s design space that they are unable to alter
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Figure 5. Frequency of edits per product model.

Figure 6. Co-occurrence DSMs.

(e.g., a bought-in part such as the engine block and/or gearbox) as well as standard
parts/fixings (such as nuts and bolts). Following this filtering, the files of interest
totalled 353, 379 and 311 for Teams A, B and C, respectively.

5.3. Generation
A time period (tp) of 2 h has been selected following the optimisation strategy
being performed across the datasets (see Section 5.8). Figure 6 presents the output
of this stage, which is an N×N matrix containing the frequency of co-occurrences
between the files.

5.4. Normalisation
Following the generation of the co-occurrence DSM, the three teams’ DSMs are
normalised. Figure 7 shows the impact of normalisation on the DSMs of the three
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Figure 7. Conditional probability of file edit co-occurrences.

Table 6. ‘Directedness’ of the DSMs
Team A B C

D 0.038 0.067 0.058

teams. It is immediately apparent that the normalisation of the co-occurrence
of values and distribution of the ratios is consistent across the three teams. This
provides an initial indicator that a similar structure is present across the teams.

5.5. Evaluating the ‘directedness’
Table 6 reveals the ‘directedness’ of the teamsDSMswith respect to themeasure D.
In all cases, the measure is significantly low enough to permit the application of
an undirected DSM for further partitioning. This was performed on all DSMs for
consistency in the analysis.

5.6. Pruning
The pruning level (p) for the three teams’ datasets was set to 0.3 (see Section 5.8)
and the results are presented in Table 7. The pruning has had a considerable effect
on reducing the candidate dependencies within the DSMs. The results from the
pruning also give an indication to the level of co-occurrence activity with Team A
havingmuch greater co-occurrence of activity (40,018) compared to that of Teams
B and C. The impact of this is discussed in Sections 6 and 7.
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Table 7. Reducing the effect of false positive dependencies

Team A B C

Initial DSM
Product models 353 379 311
Dependencies 40,018 8790 5727
Pruned DSM
Product models 348 282 201
Dependencies 3185 1588 694

Figure 8. Aggregated optimisation results for the three FS teams.

5.7. Partitioning
The DSMs are then partitioned and Figure 9 demonstrates the ability for the
partitioning technique to reveal the underlying structure in the DSMs. The red
boundaries indicate the architecture as planned by the team, whilst the blue
boundaries indicate the architecture as designed and produced from this analysis.
This visual indication highlights the potential of the technique to uncover the
ES within the teams’ architectures. These results, along with the mapping to the
hypotheses, form the ES that are presented in the following section.

5.8. Optimisation
To determine tp and p for the DSM generation, the optimisation strategy was
performed across all three datasets and the average for each set of tp and p values
was taken. Figure 8 shows that a tp = 2 and p = 0.3 provides the optimum values
the three datasets. Also, the variance across the three datasets was very low for
the entire range of tp and p values, which further highlights the consistency in
working practices across the three teams.
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Figure 9. Partitioning of a DSM.

6. Mapping and results
Comparison of the three teams’ DSMs with respect to their design intent and
competition performance has been performed through three lenses. These lenses
are the comparison of the following:

(1) end-of-project DSM
(2) change propagation characteristics
(3) evolution of the DSMs
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Table 8. End-of-project DSM summary

Team
Statistic A B C

Q partitioned by planned system architecture 0.24 0.41 0.37
Partitions 9 38 28
Components 1 29 21
Q partitioned by co-occurrence of file activity 0.56 0.64 0.81
∆Q +0.32 +0.23 +0.44

The end-of-project comparison examines the final product architecture, whilst
the change propagation characteristics reveal the potential impact the product
model changes would have across the product architecture. The examination of
the evolution of DSMs takes advantage of being able to automatically generate
DSMs in real time and examines the working practices among the three teams.
This is a feature that has yet to be explored given the lack of datasets to be able to
investigate this.

Throughout the presentation of the results, mapping against the teams’ design
intent and competition performance has been made. This leads to ES in digital
engineering work and is highlighted in the form of ESx. These are subsequently
summarised and discussed in Section 7.

6.1. End-of-Project DSMs
Figure 9 and Table 8 present the results from the analysis of the end-of-project
DSM. Team A’s DSM has the fewest partitions (9) and components (1) and the
lowest modularity (0.56), which reveals that Team A has the most interdependent
product model out of the three teams. This is surprising as the teamwere focusing
on an ‘elegant’ design with the aim of keeping it simple. The DSM analysis appears
to counter their argument for a simplified design and is a potential reason for them
under-performing when compared to Teams B and C.

Team B’s design is the most modular with their DSM containing 38 partitions
as opposed to 9 and 28 of Teams A and C, respectively. In addition, 29 of
these partitions were components. This highlights that Team B had a better
understanding of the dependencies between components and were therefore able
to generate a more modular design. This is further confirmed by their as-planned
partitions scoring a modularity of 0.41, the highest of all the teams. In addition,
the team have the smallest ∆Q (+0.23) between their as-planned partitioning
and the as-designed partitioning, revealing that they had a good understanding of
their intended architecture and maintained it through the development and build
phases. This is in line with Team B’s design intent of an efficient design process to
ensure more testing can be performed.

In contrast, Team C’s DSM has 28 partitions with 21 being components. This
shows that TeamC’s design consists of fewer, largermodules that are disconnected
from one another (Figure 9f). In addition, Team C’s design achieved the highest
modularity (0.81) score by partitioning through co-occurrence. This reveals that
their as-designed product model is the most structured and well-defined when
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compared to the other teams, and although you would not expect a modularity
score of 1 as interfaces must exist between product models, it highlights that
TeamC’s interfaces aremore defined. In addition, theirmodularity score increases
the most from their as-planned architecture (+0.44), revealing that they were
better at furthermodularising the architecture during the design phase. This aligns
with Team C’s design intent of ‘organisation and planning’ in order to create a
well-defined product model. This clarity of interfaces between components is also
reflected in their competition performance and indicates a greater knowledge and
understanding of their product model. Thus, ES1 is that a focus on planning and
organisation leads to a more defined product architecture with ES2 showing that
a more modular architecture positively affects competition performance.

Figure 10 reveals the compositions of the as-designed partitions. Through this,
it can be seen that Team A’s partition composition is the most diffuse with each
partition featuring a range of product models from the pre-defined sub-systems
(Figure 10a). This further highlights that Team A were unable to identify a clear
sub-system structure during the early design phases, and this may have led to the
issues in the product’s performance and the appropriate allocation of resources
during the project.

Figure 10(b) further highlights that Team B’s more modular design can be
clearly seen through the greater number of smaller partitions that are focused on
single pre-defined sub-systems. In addition, the larger partitions for Team B are
noticeably more in line with the initial sub-system classification outlined by the
team, which further highlights that Team B were able to better classify the models
during the early design phases.

These features are also present inTeamC’s composition of clusters (Figure 10b)
where there is a number of large inter-related partitions as well as a number of
smaller partitions relating to specific sub-systems. These smaller partitions may
also relate to specific work packages that were assigned during the generation of
the project build. The fact that they exist in the final DSM highlights that Team B
and C were both able to identify independent elements of work within the build
of the vehicle during the early design phases. This aligns to their design intent of
‘organisation and planning’. Thus, ES3 is a clear identification, and adherence to
the pre-defined sub-system structure leads to improved competition performance
as well as further confirming ES1.

6.2. Change propagation
A typical application of DSMs is to use them as a predictor/indicator for the
capability of a system to accommodate changes along with an evaluation of
the level of propagation a change will likely generate (Clarkson, Simons &
Eckert 2004). To investigate this, the study processed the cumulative conditional
probabilities of change for each file within the DSM.

This was achieved by taking the file of interest and selecting the files that exist
within one and two branch paths. One and two branch paths were selected as the
inference of a likely change to a file beyond the third branch has been shown to be
unreliable (Pasqual & deWeck 2012). With this list of files and associated one and
two branch paths, it is possible to calculate the conditional probability of a change
propagating to the neighbouring files.

For example, take File A as the file of interest and File B as a neighbouring file
with one and two branch paths between the files. The conditional probability of
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Figure 10. Composition of DSM partitions.

File B changing is determined by taking the product of probabilities along each
of the paths, which gives the probability of each of the paths being traversed,
and calculating the probability of at least one of these being traversed if a change
occurs. A threshold value for the conditional probability (0.5 in this case) is taken
to indicate that a change would occur in B as a result of a change to A.

Performing this analysis across all the files gives the distribution of the likely
level of change that is to occur across the DSM and gives an insight into the DSMs’
resilience to handle changes. Figure 11 highlights this characteristic through a
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Table 9. Change propagation statistics

Team
Statistic A B C

Mean 0.71 0.08 0.03
Standard deviation 0.19 0.04 0.04
Minimum 0.00 0.04 0.00
Maximum 0.99 0.17 0.15

Figure 11. Change propagation distribution.

histogram depicting the proportion of the system that is likely to change by file
changes. Table 9 shows the characteristics of each team’s histogram.

Comparing the distributions, it can be seen that Team A has a much wider
distribution over the proportion of system to change with some models requiring
checks across almost the entire product architecture. This is in stark contrast
to Teams B and C, which exhibit much lower maximum proportions of change
values. Inspecting the mean, it can be observed that Team A has a much higher
average than that of Team B or C. This indicates that a change within Team A’s
product architecture would require significantly more resource in order to handle
the propagation of change, thus making it potentially more challenging for the
team to accommodate changes. Hence, ES4 is that smaller change propagation
trees correspond with improved competition performance.

Figure 12 shows the distribution of the top 30 product models that are most
likely to change as a consequence of a change in another product model. In Team
A’s DSM, the top 30 product models are distributed across a range of sub-systems,
whilst the most likely models to change from Team B are exclusively from the
Frame and Body and Engine and Drivetrain. Team C is similar to that of Team B
with the addition of models assigned to the suspension sub-system. As the Frame
and Bodymodels form the external structure of the design, this may indicate that
Team B’s design was such that any internal changes within the design could be
accommodated by the Frame and Body alone. This can also be said for Team C
with the suspension sub-system as this is an external element of the vehicle. In
contrast, Team A’s design required more extensive cross sub-system alterations to
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Figure 12. Model most likely to change as a consequence to a change in another
model.

accommodate changes. Therefore, ES5 is that competition performance improves
when the engineering changes can be accommodated by external sub-systems.

6.3. Evolution of DSMs
A particular affordance of automatically generated DSMs is that they can be
produced in real time. To investigate this, a pseudo real-time generation of
the DSMs for the three projects has been generated. This has been achieved
by generating and analysing the DSM as it accumulates product model
updates throughout the project. At every product model update, the following
characteristics of the DSM have been calculated:

(i) the number of product models that form the DSM;
(ii) the number of dependencies between product models;
(iii) the number of partitions within the DSM;
(iv) the modularity of the DSM;
(v) the number of components within the DSM.

The results are presented in Figure 13 where the cumulation of updates has
been normalised in order for comparisons to be made between the three teams.
In addition, it can be seen that the lines representing each teams’ DSM do not
start at 0 but further along the cumulative update scale. This is due to the fact that
during this period, the number of co-occurrences is insufficient to form a DSM.

Looking at the number of product models within the DSM (Figure 13a), it is
interesting to note the similarity in the generation of models over the course of
each project. This indicates that there is a relationship between the number of
updates and maturity of the product architecture. This result provides evidence
for ES6, which states that normal and predictable behaviours exist in the design
process of near-identical projects.

However, differences start to appear when one focuses on the number of
co-occurrences weighted >0.25 (Figure 13b). Co-occurrences appear early and
see considerable growth for Teams A and B, whilst Team C’s co-occurrences ramp
upmore gradually and plateaus. Both Teams A and B see a continuing rise with an
abrupt change in the number of co-occurrences near the end of the project, which
indicates a significant change in product architecture and potential rush to finish
the product model before the deadline. With Team C performing the best out of
the three teams, ES7 is that gradual and steady growth of co-occurrences between
product models has a positive relation to competition performance.
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Figure 13. Evolving DSM statistics.

Figure 13(c) reveals the number of partitions identified with an almost linear
relationship between partitions and cumulative updates being exhibited. This
suggests that if the design begins with a high number of partitions, then the
product architecture will continue to be highly partitioned. In addition, the lines
appear rather jagged, showing the continual addition, merging and parting of
partitionswithin theDSMs as they evolve. Thus,ES8 is that amodular architecture
at the start of the design process will promote further modularisation of the
product architecture.

Figure 13(d) reveals how the modularity of the DSM evolves throughout the
cumulation of updates. Modularity indicates the level of structure that resides
within the matrix with a score of >0.25 indicating a structure that is beyond
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random chance. In the case of the three teams, it can be seen that the values
calculated are consistently higher than pure chance and, thus, provides further
evidence that the method is capturing and providing design process insights.
Overall, all teams’ modularity scores increase as the updates accumulate with
Team C achieving the highest modularity score. Thus, ES9 is that the design
process can be described as a process of continually increasing the level of
structure between a set of product models.

In addition, Team C provides an interesting feature within Figure 13(d) where
there is a significant decrease in modularity before returning to its previous value.
Upon reviewing the design reports of the team, it was discovered that each sub-
team developed their assemblies away from one another before integrating them
to form the complete assembly model. The feature within Figure 13(d) aligns with
this event.

The final aspect monitors the number of components throughout the
evolution of the DSM (Figure 13e). This follows a similar trend to that of the
partitions within the DSM where Teams B and C see a continual growth in
the number of components, whilst Team A contains very few. This highlights
the potential increase in the modular architecture of Teams B and C compared
with Team A. In addition, Teams B and C both have a sudden increase in the
number of components as they move beyond 0.8 cumulative updates. As these
are components and not partitions, this suggests that these product features are
separate to the main product architecture. Interrogation of the product models
within these components highlighted that these were finishing touches to the
product such as the decals on the bodywork and ancillary elements to the aero
package (e.g. gurney flap). It is interesting to see that TeamAwere unable to reach
this part of the design process and may relate to the relative lack of performance
in the competition as their product had not reached the maturity of Teams B and
C. Therefore, ES10 is that the final stages of an FS design process are indicated by
a sudden increase in the number of components to the DSM.

7. Discussion and future work
The results and mapping to the design intent and competition performance have
identified 10 ES that could be used as references to support the management of
future FS projects. The 10 ES are as follows:

ES1 A focus on planning and organisation leads to a more defined product
architecture.

ES2 A more modular architecture positively affects competition performance.
ES3 A clear identification and adherence to the pre-defined sub-system structure

leads to improved competition performance.
ES4 Smaller change propagation trees correspond with improved competition

performance.
ES5 competition performance improves when the engineering changes can be

accommodated by external sub-systems.
ES6 Normal and predictable behaviours exist in the design process of near-

identical projects.
ES7 Gradual and steady growth of co-occurrences between product models has

a positive relation to competition performance.
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ES8 Amodular architecture at the start of the design process will promote further
modularisation of the product architecture.

ES9 The design process can be described as a process of continually increasing
the level of structure between a set of product models.

ES10 The final stages of an FS design process are indicated by a sudden increase
in the number of components to the DSM that relates to ‘finishing touches’.

Upon reflection of the ES and the processing used to generate them, it is
contended that the analysis of the end-of-project DSMs and change propagation
statistics lend themselves to the generation of insights on the products’ design.
However, the analysis of the evolution of DSMs tends to produce insights that
concern the design process.

Although this study has demonstrated the elicitation of ES from the
mapping of design intent and competition performance to the analysis of
DSMs, the elicitation process remains highly qualitative and subjective due to
the interpretation of the design researchers. To improve the accuracy of the
interpretations, further work could be performed in developing methodologies of
capturing design intent throughout the design process. Such tools include work
activity monitoring tools developed by Robinson (2012) and Škec, Cash & Štorga
(2017).

To confirm these ES, the authors are currently capturing further FS projects
that will enable them to statistically model and provide relationships between
DSMs and design intent/competition performance with greater confidence and
significance. Upon completion of this exercise, the authors wish to investigate how
the introduction of dynamic DSMs and insights can support project management
activities.

In addition, there is a need to expand the analysis to other engineering
projects where it has been contended that the analysis would be more suitable
for largemulti-disciplinary and distributed projects wheremanagers are unable to
maintain direct dialogues with all the engineers involved. Although, the analysis is
capable of being performed on any engineering projects’ digital footprint, further
studies need to be performed to confirm which types of project benefit the most
from the insights that the analysis can draw.

Nonetheless, this study has realised the potential of the engineering digital
footprint to provide ES. ES can now be monitored in real time in new projects
through the continual analysis of their evolving digital footprints. The information
provided back to the design team andmanagers can now enable a more pro-active
approach to the engineering project management and is an area that the authors
are currently investigating.

8. Conclusion
DSMs have become a fundamental tool to support engineers in their handling
and management of interactions across product and organisational architectures.
With the advent of the ever-increasing engineering digital footprint, methods now
exist to generateDSMs continuously and in real time through the co-occurrence of
edits to engineering files. This ability to systematically generate DSMs throughout
an engineering project now provides researchers with a more objective method of
viewing the evolution of a project and enables cross-project comparisons to occur.
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This paper has exploited this potential by being the first to compare dynamic
DSMs for three near-identical system design projects. Through comparison of the
end-of-project DSMs and change propagation characteristics of the DSMs, 10 ES
have been elicited. These ES are considered in the context of team performance
and the design intents of the three teams in order to explain the identified
structures. The 10 structures are found to relate to approaches for organisation
and management, level of consideration of modularity and levels of performance
(quality and time). It is further shown how these 10 structures can be utilised by
engineers to improve the management of future system design projects. A key
affordance of this approach is the ability to monitor them in real time through
the analysis of DSMs, thereby leading to more pro-active project management
strategies.
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