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Abstract

Let all the zeros of a polynomial P(z) of degree n lie in |z|< 1 and a be a given complex number. In
this paper we study the location of the zeros of higher derivatives of the polynomial (z — z)P(z) and
obtain certain generalizations of some results of Rahman and Rubinstein. We shall also extend a result
of Goodman, Rahman and Ratti for the zeros of the polar derivative of the polynomial P(z) given
P(1)=0.
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Let all the zeros of a polynomial P(z) of degree n lie in the closed unit disk
| z|< 1. It was asked by Rahman [3], given a complex number a what is the radius
of the smallest disk centred at a containing at least one zero of the polynomial
((z — a)P(z))? He has answered the question by showing that one and only one
zero of ((z — a)P(z)) lies in

8)) z—al<—

provided |a|> (n + 2)/n. The remaining (n — 1) zeros of ((z — a)P(z)) lie in
|z|=< 1.

Here we first obtain an extension of this result for the zeros of the higher
derivatives of the polynomial (z — a)P(z) and thereby give an independent proof
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[2] Critical points of polynomials 5
of (1) as well. We prove

THEOREM 1. If all the zeros of a polynomial P(z) of degree n lie in |z|< 1 and
F(z) = (z — a)P(z), then F*¥(2), 1 < k < n, has one and only one zero in

k(la| +1)
) lz—al<= o7

provided|a|> (n + k + 1)/(n — k + 1). The remaining n — k zeros of F\*)(z) lie
in|z|< 1. The example P(z) = (z + e’®y” where @ = arg a shows that the result is
best possible.

For the proof of this theorem we need the following lemma, which is the
Coincidence Theorem of Walsh [2, page 62].

LEMMA. Let G(z,, z,...,2,) be a symmetric n-linear form of total degree n in
2y, 25,...,2, and let C be a circle containing the n points w,, w,,...,w,. Then there
exists at least one point a belonging to C such that

G(a,a,...,a) = G(w,w,,...,w,).

PrROOF OF THEOREM 1. We have F(z) = (z — a)P(z), so that
(3) F®(z)=(z—a)P®(z) + kP*V(z), k=1,2,...,n.

Clearly F¥)(z) is a polynomial of degree n — k + 1. Since all the zeros of the
polynomial P(z) lie in |z |< 1, it follows by the Gauss-Lucas Theorem that all the
zeros of the polynomial P*~D(z) of degree n — k + 1 also lie in |z|< 1.
Therefore, if wy, w,,...,w,_,4, are the zeros of P*~(z), then |w|<1, j =
1,2,...,n — k + 1. If now w is any zero of F*)(z), then from (3) we have

(4) (w— a)P®(w) + kP~ D(w) = 0.

This is an equation which is linear and symmetric in the zeros of P*~V(z), that is
in w;, wy,...,w,_,,,. Hence an application of the lemma above shows that w will
also satisfy the equation obtained by substituting into equation (4)

P*D(z) = (z — a)n—k+l,

where a is a suitably chosen point in |z |< 1. That is, w satisfies the equation
(n—k+1Dw—a)w—a)"  +k(w—a)" *' =0,

or equivalently

(w—a)" “{(n—k+1)(w—a)+k(w—a)) =0.
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Thus w has the values

(n—k+ a+ka
w=a or w=

n+1
Since |a < 1, it follows that all the zeros of F®)(z) lies in the union of the two
circles
_(n—k+1a k
(5) |z|<1 and 3 <7

and hence also lie in the union of the two circles

<k(|a|+l)

6 =<1 -
(6) |21<1 and |z —al<=

Since |a|> (n + kK + 1)/(n — k + 1), it follows that the closed interiors of the
two circles defined by (6) have no point in common and we show that F*)(z) has
one and only one zeroin |z — a|< k(ja| +1)/(n + 1). Since

zP®(z) "_§+] z
B z—w,

PETN(z) 5 /

and|wj|< 1,;=12,...,n— k + 1, we have

eiﬂp(k)(em) _ n—k+1 o't

e , Re —
P(k—n)(exo) j§l e — ;
n—k+1 _
> E l _n k+1 ’
= 2 2

for points e’%, 0 < £ < 2, other than the zeros of P*~Y(z). This implies
|eP®(e®) — (n — k + 1)P*~ () |<| PP ()]

for points e’® other than the zeros of P*~!(z). Since this inequality is trivially

true for points e® which are the zeros of P~ 1(2), it follows that

(7) [zP¥)(z) — (n — k + )P V(z)|<|P¥)(z)|  for|z|= L.

Now the degree of the polynomial zP¥)(z) — (n — k + DP*~I(z) is at most

equal to the degree of the polynomial P*)(z) and P®)(z) does not vanish in

|z|> 1, we conclude with the help of the Maximum Modulus Principle that the
inequality (7) holds for | z|> 1 also. Thus

(n—k+ )P |
P¥)(z) h

1 for|z|>1.
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[4] Critical points of polynomials 7

We write
(n—k+ 1)P*=D(z)

z)y=z- PO(2) ,

then 8(z) is an analytic function defined for all {z|> 1 and |8(z)|< 1-for |z|> L.
If |a|> 1, then

PO(z) _ (n—k+ 1)B(2)
P*(z)y  (z—a)B(z) — 1

where B(z) = 1/(8(z) — a) is analyticin |z|> 1 and

1 1
(8) rmﬂﬂ(l)lﬂ"ﬁ-

Since for |z|> 1
(z = a)P¥)(z) + kP*V(z) _(n+t)(z—a)B(z) — k
P¥D(z) (z—a)B(z)—1 °
the zeros of F®)(z) = (z — a)P®(z) + kP*~D(z) in |z|> 1 are the same as the
zeros of (n + 1)z — a)B(z) — k. Now if

n+k+1 k(la] +1)
lal> s —% 7 2™ —,

then from (8) we have

<|z —al<|a|—1,

k<|(n+1)(z—a)B(z)].
Applying Rouche’s theorem we conclude that (n + 1)(z — a)B(z) — k and (n +
1)(z — a)B(z) have the same number of zeros in |z — a|< k(|a| +1)/(n + 1),
namely one. Now it easily follows from (6) that the remaining n — k zeros of
F%)(z) lie in | z|< 1. This completes the proof of the theorem.

REMARK. Since |a|> (n + k + 1)/(n — k + 1), it can be easily seen that the
two circles defined by (5) have no point in common. Hence it follows by the
similar reasoning as above that, in fact, F*)(z) has one and only one zero in the
circle

_(n—k+1a -k
n+1 a1

Next we prove the following result which is valid for |a|= 1. For simplicity we
assume that a is real and a = 1.
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THEOREM 2. If all the zeros of a polynomial P(z) of degree n lie in |z|< 1 and
F(z)=(z— aYP(z), a=1, then F**)z), 1 <k <n+r— 1, has at least one
zero in both the circles

©) z—“+(azlﬂl“kilﬂ<(azlﬂl—kll)
and
(10) |z—ﬂ<u+4ﬂ1—ki1y

ProoF. First we observe that the circle defined by (9) is contained in the circle
defined by (10). So to prove the theorem it suffices to show that F¥)(z) has a
zero in the circle defined by (9).

We assume k = r. Since F(z) = (z — a)'P(z), it is easy to see that

F(k+l)(a) _ k+1 P(k—r+l)(a)

(1) F®(a) T k—r+1 P*=")(q) ’

Now F®(z) and P**~")(z) are polynomials of degree n + r — k and therefore, if
@, a,,...,a,,,_, are the zeros of F¥)(z) and B,, B,,...,B,.,_ are those of
P*71)(z), then from (11) we have

n+r—k ntr—k
1 k+1 1
2 =

= 2 .
ey k—r+1 = a—pB

Since by the Gauss-Lucas theorem all the zeros of P*~7(z) lie in |z|<1,
therefore | B;{< 1 forallj = 1,2,...,n + r — k and thus

1 1
= — — —_
Rea—,Bj P forallj=1,2,...,n+r— k.
Now
n+r—k ntr—k
1 k+1 1
El Rea—olj_k—r+1 El Rea—Bj

_(k+)(ntr—k)
T (k—r+1)at+1)’
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and therefore,

1 1
Re = Max Re
a—a Isj<n+r—k a—aq;

1 n+r—k 1
>
n+r—k El Re

a—aj

- (k+1)
Ta+D)k—r+1)°

This implies
“_“Jr(a;1)(1—k11)l<(a;1)(1_k4:1)’

which is equivalent to (9) and the theorem is established.

The following corollary is obtained from Theorem 2 by taking r = k.

COROLLARY 1. If all the zeros of a polynomial P(z) of degree n lie in|z|< 1 and
F(z) = (z — a)*P(z), a = 1, then at least one zero of F\*)(z2) lies in both the circles

a+1 < a+1

—_ + =
AT+ )| 2+ 1)
and
_a<catl
|z al\k+l'

In particular when k = 1 and a = 1, then the Corollary 1 states that if all the
zeros of a polynomial F(z) = (z — 1)P(z) lie in |z|=< 1, then F'(z) has at least
one zero in both the circles

(12) |z—%|<%
and
(13) |z —al|< 1.

The result (12) is due to Goodman, Rahman and Ratti [1] and (13) was proved
by Rubinstein [4].

Finally we prove the following result which extends (12) for the zeros of the
polar derivative with respect to a = 1 of the polynomial P(z) having all its zeros
in the closed unit disk.
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THEOREM 3. If all the zeros of a polynomial P(z) of degree n lie in |z|< 1 and
P(1) = 0, then the polynomial nP(z) + (a — z)P’(z) has at least one zero in the
circle

(14)

—I|<=~%5— wherea=1.

PROOF. We write
G(z) =nP(z) + (a —z)P'(z) and P(z)=(z— 1)Q(z),
then
G(z) (n—=1DP(z)+ (a—2z)P"(2)
(15) G(2) - nP(2) + (a—2)P(2)

The case &« = 1 is trivial, so we assume « > 1. If z = 1 is a multiple zero of P(z)
then z = 1 is also a zero of P’(z) and therefore z = 1 is a zero of G(z). Since 1
lies in (14), the assertion is true in this case. Hence we assume that z = 1 is a
simple zero of P(z). Now from (15) we have
(16) G'(1) _n—1 P(1) _n—1 + 2Q’(l).

G(1) a«—1 P(1) a-—1 o(1)

If w,, w,,...,w,_, are the zeros of G(z) and z,, z,,...,z,_, are those of Q(z),

n

then from (16) we have

nil 1 n—1
j:ll—wj l—z
Since | z;|< 1, so that
1 1 .
Re1 3 forallj =1,2,...,n—1,
and therefore
n—1 n—1
1 n—1
g Rel—wl_az—l_i_zg Rel— ;
Jj=1 J = J
>n—l+n = (n—l)a
a—1 a—1
Hence
Re L = Max Re
l—w <j=a— 1 —w
1 g 1 a
= =
a1 2 Rey— >0
Jj=1 J
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This implies

___S__._
2 2a 2 2a’

which is equivalent to (14) and the theorem is proved.

! 1 1 1 1
w—
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