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SUBORDINACY ANALYSISAND ABSOLUTELY
CONTINUOUS SPECTRA FOR STURM-LIOUVILLE
EQUATIONSWITH TWO SINGULAR ENDPOINTS

DOMINIC P. CLEMENCE

ABsTRACT.  The Gilbert-Pearson characterization of the spectrum is established for
a generalized Sturm-Liouville equation with two singular endpoints. It is also shown
that strong absolute continuity for the one singular endpoint problem guarantees ab-
solute continuity for the two singular endpoint problem. As a conseguence, we obtain
the result that strong nonsubordinacy, at one singular endpoint, of a particular solution
guarantees the nonexistence of subordinate solutions at both singular endpoints.

1. Introduction. We consider ageneralized Sturm-Liouville system

M W) = u(a) + ['[dQ(s) + W) |u(s)

@) Ut = ROU(D), —o <a<t<b<oo,a<0<b

where R, Q and W are real, R(t) > 0 for al t, [R(t)] is locally Lebesgue integrable,
Q and W are locally of bounded variation with W non-decreasingand z = )\ +ic isa
complex spectral parameter with Imz = ¢ > 0. Our main assumption throughout this
paper will be that (1) - (2) isin the limit point case both at x = a and x = b. Hence
a self-adjoint operator H is associated to (1)—(2) on (a, b) in the usual way [3]. We will
also consider the operator HX, k = b or a, which we associateto (1)—(2) on [0, b) or (a, 0]
respectively by the boundary condition

u(0) cosd + UM (0)sind = 0,6 < [0, 2n).

Denote by u; = ui(X, z, ) the solutions of (1)—(2) defined by the conditions

U, W _ (—sina cosa
(u[lu u[zll)(o’z’a)_(com Sina),ae[o,zﬂ).

The purpose of this paper is threefold. First, we extend the Gilbert-Pearson subordi-
nacy theory [7] to (1)—(2) on (a, b) subject to the limit point hypothesis. Our main result
in this respect is Theorem 2.1. The theory is well known for one as well as two sin-
gular endpoints Schrodinger operators [7], [6], and has been extended to (1)—(2) with
one singular endpoint [4]. Extensions and applications of the theory to Dirac systems
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and perturbed periodic Schrodinger operators are also well known [1], [2], [8]. Next, we
establish for (1)—(2) results analogous to those of [5]. In particular, we give sufficient
conditions on the absolute continuity of the spectrum of H§ to guarantee the absolute
continuity of that of H. In this respect, our main result is Theorem 2.2. Our third main
result, Theorem 2.3, gives sufficient conditions on the nonsubordinacy of the solution u;
to guarantee the nonexistence of any subordinate solutions of (1)—(2).

Asisobserved in [4], the proofs used for the Schrodinger operatorsin [7] carry over
to our case with only minor modifications. We have thus omitted much detail and refer
the reader to the relevant Schrodinger case literature as we do not see much to be gained
by publishing them here. From this viewpoint our results may be viewed as an assertion
that what one knowsto hold in the Schrodinger case doesin fact hold for (1)—(2) aswell,
in respect of Theorems 2.1-2.3.

We shall proceed as follows. In Section 2 we give the definitions pertinent to our
analysis and state our main results. We give proofs of the resultsin Section 3.

2. Definitions and statement of results. Let k denote either x = aor x = b and
set |ullg = S Ju(x)|>dW(x). Thenfor z= A € R we say asolution u(x, \) of (1)—(2) is
subordinate at x = b if for every linearly independent solution v(X)

Nk V(M

and we have a similar definition for the subordinacy of u(x, A, #), where we note that
solutions will be written as u(x, z) and u(x, z, 6) to respectively refer to the full-line and
half-line problems. We will say a solution u(x, A, #) of the half-line problem is strongly
nonsubordinateat k provided there existsa constant ¢ > 0, independent of # and A, such
i M AD)

: V(- A,

TSP e 0l =
for every linearly independent solution v(-, A, 6).

Let usrecall that if u is a positive measure on R, then a measurable subset S of R
is said to be a minimal support of x provided (i) p(R)\S = 0and (i) if S C Swith
w(S) = 0, then £(S) = 0O, where ¢ denotes Lebesgue measure. We also recall the
equivalencerelation X, which is defined by [6]

SAS « u(SAS) = ((SAS) =0

for measurable subsets Sand S of &, where SAS = (S\S) U (S\S).
Associated to (1)—(2) are the (half-line) Titchmarsh-Weyl m-functions [3] m,(2) and
my(2), which are (uniquely) defined such that

Ua(X, 2) = Ua(X, 2) + My(2us(x, 2) € L3,(a,0]

and
Up(X, 2) = Ua(X, 2) + My(2us(X, 2) € L3[0, b).
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The full-line mfunction is then given by

M1 My
3 M(2) = 2),
@ @=(m )
wheremy = 2, My = T8 and myp = My = 5 70,
It is related to the spectral function p(2) of H by the Titchmarsh-Kodaira formula

1. A2 .
(4) p(r2) = p(h) = —= ng_/h IMM(\ +ic) dA

at points of continuity A1, Az of p. Theformula (4) aso holdsin respect of the spectral
function pk(2) of H, with M replaced by my. We will say the spectrum of HY is strongly
absolutely continuous on an interval | provided that for some a, 3, o # 3, p& and pf are
absolutely continuous on | and there exist constantsM, N and N’ such that

dpk
(5) o<N<a|Ae|<M<oo
and
dp¥
6 0<N < =L
(6) < <d)\ A€l

We are now in a position to state our results.

THEOREM 1. Lét p, pac, ps, psc @Nd pp denotethe spectral measurefor H together with
its usual decompositions. Then the respective minimal supports M(H), Ma(H), Ms(H),
Ms:(H) and My(H) are as follows:

(@ M(H) = R\{X € kR : asolution u(x, \) of (1)—(2) exists which is subordinate at

a but not at b, and a solution u(x, A) of (1)—(2) exists which is subordinate at b
but not at a}.

(b) Mg(H) = {X € R : either no solution u(x, \) of (1)—(2) exists which is subor-
dinate at a, or no solution u(x, A) of (1)—(2) exists which is subordinate at b, or
both}.

() Ms(H) = {) € R : asolution u(x, \) of (1)—(2) exists which is subordinate both
ataand at b}.

(d) Mg:(H) = {) € R : asolution u(x, \) of (1)—(2) existswhich is subordinate both
ataand at b butisnot L3,(a, b)}.

() Mp(H) = {X € R : asolution u(x, \) of (1)<2) exists which is subordinate both
ataandatbandisinL?,(a,b)}.

THEOREM 2. Suppose pg to be strongly absolutely continuous on some interval | C
R, wherek = aor k= h. Then p is absolutely continuouson |.

THEOREM 3. Suppose ui(X, A, 6) to be strongly nonsubordinate either at a or at b.
Then either no solution u(x, ) of (1)—<(2) existswhich is subordinateat b, or no solution
u(x, A) of (1)—(2) exists which is subordinateat a, or both.
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3. Proofs. Wedemonstrateour resultsby establishing aseries of propositionswhich
although well-known in some cases, have hitherto not been obtained for the present case.
However, due to the similarity of proofs with the known cases, we leave out the details
and only give the reader appropriate referencesto the literature.

PROOF OF THEOREM 2.1. It sufficesto proveonly (b) and (c) since (€) iswell known,
(c) and (e) imply (d), and (b) and (c) imply (a).

PROCOF OF (B). Asin[4] or [6], one establishesthe following result.

PROPOSITION 4. Let mi(\) denotelim, o me(X +ic). The minimal supports Mgc(HY)
and Mac(HB) of p2 and pf areasfollows: (i) Mac(HZ) = {} € R : —oco < ImnE()) <
0}; (i) Mac(H?) = {)N e R: 0 < Imng(\) < oo}.

Then letting m(z) = mMu1(2) + Mpe(2) generate a measure p(2), via the Titchmarsh-
Kodaira formula (4), which is equivalent to p(z) since (pij) < pu1 + p2 < (pjj), one
proceedsasin [6] to obtain the next result.

PROPOSITION 5. The minimal support Mac(H) of pac isMac(H) = {A € R : 0 <
ImM*()\) < oo}, where M*(\) denoteslim, o M(\ + ie).

Combining Propositions 4 and 5, and recalling that minimal supportsfor ameasure i
are unique up to sets of ¢ and ¢ measure zero, we arrive at the following result.

PROPOSITION 6. Mac(H) & Mac(H2) U Mac(HD).

Combining Proposition 6 with Theorems2.1 and 2.2 of [4], and recalling the definition
of the equivalence relation ~ then compl etes the demonstration of (b).
We note the following well known consequence of Proposition 6.

COROLLARY 7. 0ac(H) = 0ac(HZ) U 0ac(HD).

PROOF OF (C).  Letting m(\) have the same meaning asin Proposition 4 we obtain,
asin [6], the following resullt.

PROPOSITION 8. Let S = {\ € R : m;(\) and m(\) exist finitely and are equal }
and S, = {} € R : Imu(2)| — o0,|My(2)] — coasz— A}. ThenMg(H) = SU S, is
a minimal support of ps.

Proposition 8 combines with Theorems 2.1 and 2.2 of [4] to yield (c), and hence
completesthe proof of Theorem 2.1.

PROOF OF THEOREM 2.2. Proceeding exactly asin the proof of Theorem 2 of [5],
we obtain the following result.

PROPOSITION 9. Let p& be strongly absolutely continuous on an interval | with con-
stants M, N and N’ as in (5) and (6). Then there exists § > 0 such that we have
Ime(A +ig)] < Nand|Imm(\ +ie)] > M uniformly for all 0 < ¢ < § on closed
subintervalsof |.

Again proceeding asin the proof of Theorem 1 of [5], but using M(2) asgivenin (3)
instead of the characteristic matrices of [5], one obtains the following.
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ProPOSITION 10. Suppose there exist constants > 0, N > 0, M > 0 such that
Imc(A +ie)] < Nand|Imm(\ +ic)] > M for all X inaclosedinterval | € ® and
0 < e < 6, then p isabsolutely continuouson |.

Combining Propositions 9 and 10 and using the fact that absolute continuity on all
closed subintervals of | implies absolute continuity on | hence completes the proof of
Theorem 2.2.

PROOF OF THEOREM 2.3. Theorem 3.1 of [4] immediately yields the following re-
sult.

ProOPOSITION 11. Let A € | and suppose ui(X, A, 6) is strongly nonsubordinate at k.
Then pf is strongly absolutely continuous on .

Hence Theorem 2.2 gives the following result.

PROPOSITION 12. Let A € | and suppose ui(x, A, 6) is strongly nonsubordinate at a
or at b. Then p is absolutely continuouson 1.

Theorem 2.3 then follows from Proposition 12 together with part (b) of Theorem 2.1.
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