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SUBORDINACY ANALYSIS AND ABSOLUTELY
CONTINUOUS SPECTRA FOR STURM-LIOUVILLE
EQUATIONS WITH TWO SINGULAR ENDPOINTS

DOMINIC P. CLEMENCE

ABSTRACT. The Gilbert-Pearson characterization of the spectrum is established for
a generalized Sturm-Liouville equation with two singular endpoints. It is also shown
that strong absolute continuity for the one singular endpoint problem guarantees ab-
solute continuity for the two singular endpoint problem. As a consequence, we obtain
the result that strong nonsubordinacy, at one singular endpoint, of a particular solution
guarantees the nonexistence of subordinate solutions at both singular endpoints.

1. Introduction. We consider a generalized Sturm-Liouville system

(1) u[1](t) ≥ u[1](a) +
Z t

a

h
dQ(s) + zdW(s)

i
u(s),

(2) u[1](t) � R(t)u0(t),�1 � a Ú t Ú b � 1, a Ú 0 Ú b

where R, Q and W are real, R(t) ½ 0 for all t, [R(t)]�1 is locally Lebesgue integrable,
Q and W are locally of bounded variation with W non-decreasing and z ≥ ï + i¢ is a
complex spectral parameter with Im z ≥ ¢ ½ 0. Our main assumption throughout this
paper will be that (1) - (2) is in the limit point case both at x ≥ a and x ≥ b. Hence
a self-adjoint operator H is associated to (1)–(2) on (a, b) in the usual way [3]. We will
also consider the operator Hk

í
, k ≥ b or a, which we associate to (1)–(2) on [0, b) or (a, 0]

respectively by the boundary condition

u(0) cos í + u[1](0) sin í ≥ 0, í 2 [0, 2ô).

Denote by u1 ≥ u1(x, z,ã) the solutions of (1)–(2) defined by the conditions 
u1 u2

u[1]
1 u[1]

2

!
(0, z,ã) ≥

 
� sinã cosã
cosã sinã

!
,ã 2 [0, 2ô).

The purpose of this paper is threefold. First, we extend the Gilbert-Pearson subordi-
nacy theory [7] to (1)–(2) on (a, b) subject to the limit point hypothesis. Our main result
in this respect is Theorem 2.1. The theory is well known for one as well as two sin-
gular endpoints Schrödinger operators [7], [6], and has been extended to (1)–(2) with
one singular endpoint [4]. Extensions and applications of the theory to Dirac systems
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and perturbed periodic Schrödinger operators are also well known [1], [2], [8]. Next, we
establish for (1)–(2) results analogous to those of [5]. In particular, we give sufficient
conditions on the absolute continuity of the spectrum of Hk

í
to guarantee the absolute

continuity of that of H. In this respect, our main result is Theorem 2.2. Our third main
result, Theorem 2.3, gives sufficient conditions on the nonsubordinacy of the solution u1

to guarantee the nonexistence of any subordinate solutions of (1)–(2).
As is observed in [4], the proofs used for the Schrödinger operators in [7] carry over

to our case with only minor modifications. We have thus omitted much detail and refer
the reader to the relevant Schrödinger case literature as we do not see much to be gained
by publishing them here. From this viewpoint our results may be viewed as an assertion
that what one knows to hold in the Schrödinger case does in fact hold for (1)–(2) as well,
in respect of Theorems 2.1–2.3.

We shall proceed as follows. In Section 2 we give the definitions pertinent to our
analysis and state our main results. We give proofs of the results in Section 3.

2. Definitions and statement of results. Let k denote either x ≥ a or x ≥ b and
set kuk2

N ≥
RN

0 ju(x)j2dW(x). Then for z ≥ ï 2 < we say a solution u(x,ï) of (1)–(2) is
subordinate at x ≥ b if for every linearly independent solution v(x)

lim
N!k

ku(Ð,ï)k
kv(Ð,ï)k N

≥ 0;

and we have a similar definition for the subordinacy of u(x,ï, í), where we note that
solutions will be written as u(x, z) and u(x, z, í) to respectively refer to the full-line and
half-line problems. We will say a solution u(x,ï, í) of the half-line problem is strongly
nonsubordinate at k provided there exists a constant c Ù 0, independent of í and ï, such
that

lim sup
N!k

kv(Ð,ï, í)k
ku(Ð,ï, í)kN

� c

for every linearly independent solution v(Ð,ï, í).
Let us recall that if ñ is a positive measure on <, then a measurable subset S of <

is said to be a minimal support of ñ provided (i) ñ(<)nS ≥ 0 and (ii) if S0 ² S with
ñ(S0) ≥ 0, then ‡(S0) ≥ 0, where ‡ denotes Lebesgue measure. We also recall the
equivalence relation

ñ
¾, which is defined by [6]

S
ñ
¾ S0 () ñ(S4S0) ≥ ‡(S4S0) ≥ 0

for measurable subsets S and S0 of <, where S4S0 ≥ (SnS0) [ (SnS0).
Associated to (1)–(2) are the (half-line) Titchmarsh-Weyl m-functions [3] ma(z) and

mb(z), which are (uniquely) defined such that

ua(x, z) � u2(x, z) + mz(z)u1(x, z) 2 L2
W(a, 0]

and
ub(x, z) � u2(x, z) + mb(z)u1(x, z) 2 L2

W[0, b).
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The full-line m-function is then given by

(3) M(z) ≥
 

m11 m12

m21 m22

!
(z),

where m11 ≥
1

ma�mb
, m22 ≥

mamb
ma�mb

and m12 ≥ m21 ≥
1
2

ma+mb
ma�mb

.
It is related to the spectral function ö(z) of H by the Titchmarsh-Kodaira formula

(4) ö(ï2)� ö(ï1) ≥ �
1
ô

lim
è!0

Z ï2

ï1

Im M(ï + i¢) dï

at points of continuity ï1, ï2 of ö. The formula (4) also holds in respect of the spectral
function ök

í
(z) of Hk

í
, with M replaced by mk. We will say the spectrum of Hk

í
is strongly

absolutely continuous on an interval I provided that for some ã, å, ã Â≥ å, ök
ã and ök

å
are

absolutely continuous on I and there exist constants M, N and N0 such that

(5) 0 Ú N Ú
dök

ã

dï
jï2I Ú M Ú 1

and

(6) 0 Ú N0 Ú
dök

å

dï
jï2I .

We are now in a position to state our results.

THEOREM 1. Let ö, öac, ös, ösc and öp denote the spectral measure for H together with
its usual decompositions. Then the respective minimal supports M(H), Mac(H), Ms(H),
Msc(H) and Mp(H) are as follows:

(a) M(H) ≥ <nfï 2 < : a solution u(x,ï) of (1)–(2) exists which is subordinate at
a but not at b, and a solution u(x,ï) of (1)–(2) exists which is subordinate at b
but not at ag.

(b) Mac(H) ≥ fï 2 < : either no solution u(x,ï) of (1)–(2) exists which is subor-
dinate at a, or no solution u(x,ï) of (1)–(2) exists which is subordinate at b, or
bothg.

(c) Ms(H) ≥ fï 2 < : a solution u(x,ï) of (1)–(2) exists which is subordinate both
at a and at bg.

(d) Msc(H) ≥ fï 2 < : a solution u(x,ï) of (1)–(2) exists which is subordinate both
at a and at b but is not L2

W(a, b)g.
(e) Mp(H) ≥ fï 2 < : a solution u(x,ï) of (1)–(2) exists which is subordinate both

at a and at b and is in L2
W(a, b)g.

THEOREM 2. Suppose ök
í

to be strongly absolutely continuous on some interval I ²
<, where k ≥ a or k ≥ b. Then ö is absolutely continuous on I.

THEOREM 3. Suppose u1(x,ï, í) to be strongly nonsubordinate either at a or at b.
Then either no solution u(x,ï) of (1)–(2) exists which is subordinate at b, or no solution
u(x,ï) of (1)–(2) exists which is subordinate at a, or both.
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3. Proofs. We demonstrate our results by establishing a series of propositions which
although well-known in some cases, have hitherto not been obtained for the present case.
However, due to the similarity of proofs with the known cases, we leave out the details
and only give the reader appropriate references to the literature.

PROOF OF THEOREM 2.1. It suffices to prove only (b) and (c) since (e) is well known,
(c) and (e) imply (d), and (b) and (c) imply (a).

PROOF OF (B). As in [4] or [6], one establishes the following result.

PROPOSITION 4. Let m+
k (ï) denote lim¢#0 mk(ï + i¢). The minimal supports Mac(Ha

í
)

and Mac(Hb
í
) of öa

í
and öb

í
are as follows: (i) Mac(Ha

í
) ≥ fï 2 < : �1 Ú Im m+

a(ï) Ú
0g; (ii) Mac(Hb

í
) ≥ fï 2 < : 0 Ú Im m+

b (ï) Ú 1g.

Then letting m(z) � m11(z) + m22(z) generate a measure ö̃(z), via the Titchmarsh-
Kodaira formula (4), which is equivalent to ö(z) since (öij) − ö11 + ö22 − (öij), one
proceeds as in [6] to obtain the next result.

PROPOSITION 5. The minimal support M̃ac(H) of ö̃ac is M̃ac(H) ≥ fï 2 < : 0 Ú

Im M+(ï) Ú 1g, where M+(ï) denotes lim¢#0 M(ï + i¢).

Combining Propositions 4 and 5, and recalling that minimal supports for a measure ñ
are unique up to sets of ñ and ‡ measure zero, we arrive at the following result.

PROPOSITION 6. Mac(H)
ñac
¾ Mac(Ha

í
) [Mac(Hb

í
).

Combining Proposition 6 with Theorems 2.1 and 2.2 of [4], and recalling the definition
of the equivalence relation

ñ
¾ then completes the demonstration of (b).

We note the following well known consequence of Proposition 6.

COROLLARY 7. õac(H) ≥ õac(Ha
í
) [ õac(Hb

í
).

PROOF OF (C). Letting m+
k (ï) have the same meaning as in Proposition 4 we obtain,

as in [6], the following result.

PROPOSITION 8. Let S0 ≥ fï 2 < : m+
a (ï) and m+

b (ï) exist finitely and are equalg
and S1 ≥ fï 2 < : jma(z)j ! 1, jmb(z)j ! 1 as z ! ïg. Then Ms(H) ≥ S0 [ S1 is
a minimal support of ös.

Proposition 8 combines with Theorems 2.1 and 2.2 of [4] to yield (c), and hence
completes the proof of Theorem 2.1.

PROOF OF THEOREM 2.2. Proceeding exactly as in the proof of Theorem 2 of [5],
we obtain the following result.

PROPOSITION 9. Let ök
í

be strongly absolutely continuous on an interval I with con-
stants M, N and N0 as in (5) and (6). Then there exists é Ù 0 such that we have
jmk(ï + i¢)j Ú N and j Im mk(ï + i¢)j Ù M uniformly for all 0 Ú ¢ Ú é on closed
subintervals of I.

Again proceeding as in the proof of Theorem 1 of [5], but using M(z) as given in (3)
instead of the characteristic matrices of [5], one obtains the following.
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PROPOSITION 10. Suppose there exist constants é Ù 0, N Ù 0, M Ù 0 such that
jmk(ï + i¢)j Ú N and j Im mk(ï + i¢)j Ù M for all ï in a closed interval I 2 < and
0 Ú ¢ Ú é, then ö is absolutely continuous on I.

Combining Propositions 9 and 10 and using the fact that absolute continuity on all
closed subintervals of I implies absolute continuity on I hence completes the proof of
Theorem 2.2.

PROOF OF THEOREM 2.3. Theorem 3.1 of [4] immediately yields the following re-
sult.

PROPOSITION 11. Let ï 2 I and suppose u1(x,ï, í) is strongly nonsubordinate at k.
Then ök

í
is strongly absolutely continuous on I.

Hence Theorem 2.2 gives the following result.

PROPOSITION 12. Let ï 2 I and suppose u1(x,ï, í) is strongly nonsubordinate at a
or at b. Then ö is absolutely continuous on I.

Theorem 2.3 then follows from Proposition 12 together with part (b) of Theorem 2.1.
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