
ON ARCS IN A FINITE PROJECTIVE PLANE 

G. E. MARTIN 

1. Introduction and summary. The aim of this paper is to generalize 
and unify results of B. Qvist, B. Segre, M. See, and others concerning arcs in a 
finite projective plane. The method consists of applying completely elementary 
combinatorial arguments. 

To the usual axioms for a projective plane we add the condition that the 
number of points be finite. Thus there exists an integer n > 2, called the order 
of the plane, such that the number of points and the number of lines equal 
n2 + n + 1 and the number of points on a line and the number of lines 
through a point equal n + 1. In the following, n will always denote the order of 
a finite plane. Desarguesian planes of order n, formed by the analytic geometry 
with coefficients from the Galois field of order n, are examples of finite projective 
planes. We shall not assume that our planes are Desarguesian, however. 

A set K of k > 3 points in a finite projective plane such that no three are 
collinear will be called a k-arc. A line containing exactly one point of K will be 
called a tangent of K, a line containing two points of K will be called a secant of 
K, and a line that does not contain any points of K will be called an exterior line 
of K. An (n + l)-arc in a plane of order n is called an oval. We define / by the 
equation n + 2 = k + t. Thus t = (n + 1) — (k — 1) is the number of 
tangents of K at any point of K. 

Clearly a &-arc K can have at most n + 2 points since each of the n + 1 lines 
through an arbitrary point of K can contain at most one other point of K. Such 
an arc can, of course, have no tangents. Since our emphasis wTill be on incidence 
relations involving the tangents of K, we shall assume that 3 < k < n -\- 2 or 
equivalently 0 < t < n — 1 unless otherwise specified. 

(k\ Immediately we have that there are exactly kt tangents, ( 0 1 secants, and 

+ 1 1 exterior lines. 

Suppose that a point off K lies on a tangents, b secants, and c exterior lines. 
Then aJ

rb-\-c = nJrl and a + 2b = k. 
Given a &-arc Kf we distinguish the points of the plane as follows. First there 

are the points of K itself. A point off K which lies on at most one tangent will be 
called an interior point of K. A point off K which lies on at least two tangents 
will be called an exterior point of K. We note that if k is even, a point off K 
must lie on an even number of tangents, while if k is odd a point off K must lie on 
an odd number of tangents. 

We shall further distinguish the exterior points as follows. If a point off K lies 
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on exactly two (k even) or three {k odd) tangents, we shall call the point an 
ordinary exterior point. If a point off K lies on more than three tangents, we 
shall call the point an extra exterior point. A point lying on k tangents will be 
called a completion point. An arc is said to be complete if every point of the plane 
lies on a secant of the arc. 

Define et to be the number of points off K which lie on exactly i tangents. 
Thus if k is even e2j+i = 0, and if k is odd e2j = 0 (for all 7). Finally we say a 
&-arc is uniform of index v if every extra exterior point lies on exactly v tangents. 

In §2 we derive some elementary incidence theorems and incidence equations 
which will be used throughout. The most important of these is the set of 
diophantine equations (8), concerning incidence with respect to the tangents of 
an arc. These equations are equivalent to the set of equations in (9, p. 291). 
There the emphasis is on incidence relations with regard to the secants. 

In §3 we show that the properties of the ovals follow easily from the incidence 
equations and generalize some results of B. Qvist. The Hughes plane of order 9 
is used to give an example of two distinct ovals in a plane of odd order having 
\{n + 1) points in common, proving that a result of Qvist is the best possible. 

In §4 it is proved that except for some extreme values of k, a &-arc K is 
complete if it is of uniform index. Specifically if k 5̂  4 or n and K is uniform of 
even index or ii 5 < k < n — 1 and K is uniform of odd index, then K is 
complete. Counterexamples are given to show that these excepted values of k 
must necessarily be excluded. 

§5 deals with necessary and sufficient conditions that an n-arc in a plane of 
order n be complete. B. Segre has proved that every w-arc in a finite Desargue-
sian plane is contained in an oval. This result cannot be extended to the 
general finite plane. A counterexample is given by exhibiting complete w-arcs in 
the Hughes plane of order 9. 

I t is shown that for an ^-arc N in a plane of even order each of the following is 
equivalent to Nbeing contained in an oval: 

(i) N is uniform of index n. 
(ii) There exists a tangent with at most one extra exterior point. 
(iii) Every tangent contains at most one extra exterior point. 
(iv) There exist at most two extra exterior points. 
(v) No secant contains an extra exterior point. 
(vi) There exist n — 1 collinear interior points. 
(vii) The number of interior points is at most n — 1. 
(viii) The number of interior points is exactly n — 1. 
(ix) The number of exterior points is at least n2 — n + 2. 
(x) The number of exterior points is exactly n2 — n + 2. 
I t is similarly shown that for an w-arc 7V in a plane of odd order each of the 

following is equivalent to Nbeing contained in an oval: 
(i) N is uniform of index n. 
(ii) The number of interior points is at most \n{n + 1). 
(iii) The number of interior points is exactly \n(n + 1). 
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(iv) There exist n collinear interior points. 
(v) No secant contains an extra exterior point. 
(vi) Every secant contains exactly \(n — 3) ordinary exterior points. 
(vii) Every secant contains exactly \{n + 1) interior points. 
(viii) Every exterior line but one has exactly \{n + 3) interior points. 
(ix) Every exterior line but one has exactly \{n — 1) ordinary exterior 

points. 
(x) At each point of N, one tangent contains exactly one interior point and 

the other tangent contains exactly \{n + 1) interior points. 
This paper is an augmentation of the second chapter of the author's disserta­

tion "On Arcs in the Finite Projective Planes" (University of Michigan, 
1964). 

2. Elementary incidence theorems. Let L be a secant of a &-arc K in a 
plane of order n. Let m be the minimum and M the maximum of the number of 
secants through a point of L off K. Thus each such point lies on at least m — 1 
and at most M — 1 secants different from L. There are n — 1 points on L off K. 
Also, the number of secants intersecting L off K is 

- 2{k - 1) + 1. 

Hence, 

in - l)(m - 1) < - 2{k - 1) + 1 < (w - 1)(M - 1) 

or 

a) m < z = 1 + 2(k - 1) + 1 in - 1) < M. 

We write z in three different forms, each of which will be of use below. 

(2) 
_ k _ t(n - t) 

2 ~ 2 2(n - 1) 
tin - t) _ 1 

,2(w - 1) 2. 

2/ + 1 1 t(t - 1) 
+ 2 + 2(» 2 D' 

Now if a point lies on z secants, then it lies on k — 2z tangents. This fact, 
together with (2), gives the following theorem. 

(3) THEOREM. Let Kbea k-arc in a plane of order n. Every secant contains a point 
off K which lies on at most 

k _ tin - i) 
2 2(n ~ 1) 
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secants and hence on at least t — [t{t — l)/(n — 1)] tangents. Every secant 
contains a point off K which lies on at least 

k _ t(n - t) 
2 2 0 + 1) 

secants and hence on at most t — [t(t — l)/(n — 1)] tangents. 

We remark that this theorem is the best possible in the sense that the upper 
and lower limits as stated in the theorem can actually be achieved. This can be 
observed as follows. Let P be an exterior point of an oval in the plane of order 7. 
Form a 6-arc K by deleting from the oval the two points on a secant through P. 
Let L be a secant through P which does not contain the exterior point of the 
oval formed by the intersection of the tangents to the oval at the deleted points. 
Then every point on L off K lies on exactly two tangents and exactly two 
secants of K. Note that L is a secant without an interior point. 

(4) COROLLARY. Let Kbea k-arc in a plane of order n.Ifkis even and 

t(n - t)/[2(n - 1)] < 1 

or if k is odd and t(n — t)/[S(n — 1)] < 1, then every secant contains an interior 
point. 

Proof. Any point off K can lie at most \k secants if k is even and at most 
\{k — 1) secants if k is odd. With the notation as above, z < M. By the first 
expression for z in (2), if k is even and t(n — t)/[2(n — 1)] < 1, then M = \k. 
Likewise by the second expression for z in (2), if k is odd and 

Ltn^l_ I , , 
2(n - Ï ) 2 ^ x' 

then M = \{k — 1). Therefore every secant has at least one point that does 
not lie on more than one tangent. Such a point is an exterior point. 

(5) COROLLARY (6). Let K be a k-arc in a plane of order n. If n is even and 
n > \t(t — 1) + 1, then on every secant there is at least one point off K which lies 
on at least t tangents. If n is odd and n > t(t — 1) + 1, then on every secant there 
is at least one point off K which lies on at least t + 1 tangents. 

Proof. I t follows from (1) and the third expression for z in (2) that if n is even 
a n d ^ - l ) /[2(« - 1)] < l , then 

m < \{n - 2t+ 1) - \ 

(an integer). Similarly, if wis odd and t(t — l)/n < 1, then m < \{n — 2t + 1) 
(an integer). A point on at most m secants lies on at least k — 2m tangents. The 
corollary follows from the identity 

k - 2\\(n - 2t + 1) + \\ = t + 1 - 2 ( | ) . 

By exactly the same procedure as in Theorem (3), the following can easily be 
proved. The proof is omitted. 
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(6) THEOREM. Let K be a k-arc in a plane of order n. Every tangent contains a 
point offK which lies on at least {k — l)(k — 2)/2n secants and hence on at most 
t + 1 + [t(t — l)/n] tangents. Every tangent contains a point off K which lies on 
at most (k — l)(k — 2)/2n secants and hence on at least t + 1 + [t(t — l)/n] 
tangents. Every exterior line contains a point off K which lies on at least 

k(k- l ) / [2(n + l)] 

secants and hence on at most t — [t(t — l)/(n + 1)] tangents. Every exterior line 
contains a point off K which lies on at most k(k — l)/[2(n + 1)] secants and 
hence on at least t — [t{t — l)/(n + 1)] tangents. 

Since a point on a tangent lies on at most (k — l)(k — 2)/2n < 1 secants, 
we have 

(k - l \ 
(7) COROLLARY. Let K be a k-arc in a plane of order n. If n > ( 9 ) , then K 
is not complete. 

We now consider incidence in the whole plane. There are n2 + n + 1 — k 
points off a &-arc K in a plane of order n. The number of points off K which lie on 
exactly i tangents is et. The configuration of a point and a line through the 
point is called a flag. We consider the number of flags where the point is a point 
off K and the line is a tangent. Each tangent has exactly n points off K, and thus 
there are ktn such flags. A point off K lying on exactly i tangents accounts for 

exactly i such flags and ( 1 pairs of distinct tangents intersecting off K. The 
v? / . . (kt\ (t\ 

total number of pairs of distinct tangents is ( J , and k ( 9 ) of these have 
intersection on K. Thus we have the following set of Diophantine equations 
for a &-arc in a plane of order n : 

X) et = n2 + n + 1 — k, 

(8) X) iei = ktn, 

X i(i - i)ei = fk{k - 1). 

We have to distinguish between even and odd values of k. If k is even, then 

YJ e2j = n2 + n + 1 — k, 
j=0 

ht 

(9) X) Jt2j = \ktn, 
j=0 

£ ju - I K = m - i)k(k - 2). 
i -0 
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If k is odd, then 

è(fc-i) 
X £2j+i = n2 + n + 1 — k, 

Hk-l) 

(10) £ >2;+i = i (* ~ l)(nt - n + 1), 

Kfc-D 

X 7(j - 1)^2^1 = W - & + 3)(* + 1)(* - 3). 

We note the existence of extra exterior points for any &-arc except possibly 
the extreme case t = 1. This follows from the third equations of (9) and (10). 
In the next section we shall examine the case t = 1, i.e., the ovals. 

3. Ovals. Ovals are the (n + l)-arcs of a plane of order n. In (5) B. Qvist 
has determined the elementary properties of the ovals in a finite projective 
plane. We shall first show that the elementary properties of the ovals are an 
immediate consequence of the equations (8). 

(11) THEOREM (5). In a plane of even order n all the tangents to an oval are 
concurrent and hence every oval can be uniquely completed to an {n + 2)-arc. 

Proof. Let t = 1 with k = n + 1 odd. From (10) wre have 

u 
X) j(n- 2j)e2j+i = 0. 

Thus e2j+i = 0iîj^0orJ9é \n. Then 

\nen+i = X) jeii+i = \n-

Therefore en+i = 1, ei = n2 — 1, and all other et are zero. Thus the oval has 
exactly one exterior point which lies on n + 1 tangents. 

(12) LEMMA. If k = n + 1 is even, then e2j = 0 when j > 1. 

Proof. With t = 1 and k = n + 1, (9) gives 

Htt+l) 

j=0 

Hence e2j = 0 if j > 1. 

(13) THEOREM (1 ; 5). A k-arc in a plane of odd order has at most n + 1 points. 

Proof. The result follows from the lemma, as in particular en+\ — 0. Thus an 
oval never has a completion point. 

(14) THEOREM (5). In a plane of odd order every point off an oval lies on either 
exactly two tangents or none at all. 
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Proof. The theorem is an immediate consequence of Lemma (12) and the fact 
that a point off an oval must lie on an even number of tangents. 

(15) COROLLARY. An oval in a plane of odd order n has exactly \n{n + 1) 
exterior points and \n(n — 1) interior points. Further, every secant contains 
\(n — 1) exterior points and \(n — 1) interior points. An exterior line carries 
\{n + 1) exterior points and \{n + 1) interior points. 

Proof. Every exterior point lies on exactly two tangents. 

(16) THEOREM. Suppose V is an oval and K is a k-arc in a plane of odd order n. 
If K and Vhave more than \{n + 3) points in common, then Vcontains K. If K 
and V have more than ^(n + 1) points in common and n > 4t + 1, then V 
contains K. 

Proof. Suppose K is not contained in V but they have s points in common. 
From a point on K off V there are s lines to the common points. Say m of these 
are tangents to V. Thus we account for m + 2 (s — m) < n + 1 points of V. 
Since m is either zero or twro, it then follows that 

2 s < w + l + m < ^ + 3. 

Thus s < \ in + 3), which proves the first part of the theorem. 
For the second part, assume K and V have exactly \{n + 3) points in 

common. From each point o n l o f f V we have two tangents to V tangent at a 
common point. Each such tangent contains two points of K. Hence 

2[k - è(» + 3)] < M » + 3), 

which reduces to 4& < 3 (n + 3) or n < U + 1. 

(17) COROLLARY (5). If n is odd, n > 5, and two ovals in a plane of order n have 
more than half their points in common, then the ovals coincide. 

Proof. Let t = 1 in the second part of the theorem. 

The statements of Theorem (16) and Corollary (17) are the best possible in 
the sense indicated in the following theorem. 

(18) THEOREM. There exist planes of odd order n containing arcs which are subsets 
of no oval but which have \{n + 3) points in common with an oval. There exist 
planes of odd order n > 7 containing two distinct ovals with \{n + 1) points in 
common. 

In the proof of this theorem we shall use an important result due to B. Segre, 
which we state without proof. 

(19) THEOREM (8). In a Desarguesian plane of odd order, every oval is an 
irreducible conic. 

The converse of Segre's theorem is well known. 
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Proof of Theorem (18). A very simple construction demonstrates the first 
statement. Let Q be an exterior point of an oval in a finite Desarguesian plane of 
odd order n. Let the tangents from Q intersect the oval at Pi and P2 (Theorem 
(14)). From each of the \{n — 1) secants through Q, select one of the two 
points in common with the oval. Then these \{n — 1) points together with 
Pi , P2, and Q form a | ( w + 5)-arc which has \(n + 3) points in common with 
the oval. If n > 7, so that \{n + 3) > 5, the point Q does not lie on any non-
degenerate conic containing the remaining \(n + 3) points of the \(n + 5)-arc. 
The result follows from Segre's theorem. 

We remark that L. Lombardo-Radice (4) has shown that in the above 
situation, if n = 3 (mod 4), if the oval is taken to be z2 = xy, and if the 
exterior point is taken to be the origin (0, 0, 1) and the points on the secants 
through the origin are chosen so that the coordinates are all squares, then the 
resulting \{n + 5)-arc is actually complete. 

We have yet to demonstrate the second statement of Theorem (18). By 
Corollary (17) and Theorem (19), the desired construction is impossible in a 
Desarguesian plane. Therefore we produce a non-Desarguesian plane of order 9 
which will be of use: 

Points: Au Bt, CUDUEU Fu Gu where i = 0 ,1 , 2 , . . . , 12. 
Lines and incidence given by: 

L\\ A 0, A1, A 3, A 9, Bo, Co, Do, EQ, FQ, GO ; 
L2: A0, Bi, Bs, Dz, Du, E2, E5, E&, Gq, G9; 
L3: Ao, C\, Ca, ET, EQ, P3, Fn, G2, G5, G$; 
Lc Ao, Bi, P9 , DI, D&, F2, F$, FQ, G%, G H ; 

L5: Ao, B2, B$, B&, C3, Cn, Eh Es, FT, FQ; 

LQ: A 0, CT, C9, D2, D5, DQ, EZ, En, Fi, F8 ; 
Li'. Ao, Bz, Bu, C2, C5, CO, D-j, D§, G\, G%; 
LsA

m: add m to subscripts of Ls and reduce (mod 13), 
5 = 1, 2, . . . , 7 and m = 1, 2, . . . , 12. 

There are 91 points and 91 lines. This is the plane introduced by O. Veblen and 
J. Wedderburn in 1907 (10; cf. 2, p. 411). I t is also the Hughes plane of order 9, 
and D. R. Hughes (3) has determined that 

Fx = S^o, Au A,, A,, B2, C8, C9, Ds, D9, E2} 

is an oval. Let M be the collineation defined by 

PM = P[(BC)(DF)(EG)]A\ 

for every point P ; cf. (3 ). Then 

V2= ViM = {A6, A,, A12, Ao, Cs, Bh B2, Fh F2, G8] 

is an oval. A0, AQ, AT, B2, and C8 are common to Vi and V2. That is, V\ and V2 

intersect in exactly \{n + 1) points. This completes the proof of Theorem (18). 
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The following theorem is a slight generalization of Qvist's theorem: if two 
in + 2)-arcs have more than half of their points in common, then they 
coincide. 

(20) THEOREM. Let C be an (n + 2)-arc and K a k-arc in a plane of order n. If C 
and K have more than \(n + 2) points in common, then C contains K. 

Proof. Suppose K is not contained in C, but they have 5 points in common. 
Consider the lines from a point on K off C through the s common points. Each 
such line is a secant of C. Hence 2s < n + 2. The theorem follows. 

We note that two ovals in a plane of even order may have as many as n 
points in common and still be distinct. Such ovals would, of course, be contained 
in the same (n + 2)-arc. 

4. On complete arcs. Examples of ovals in non-Desarguesian planes have 
been given by D. R. Hughes (3) and by A. Wagner (11). It is the ovals which 
naturally lead to the study of &-arcs. The most important arcs are those which 
are complete. Since every point of the plane lies on a secant of a complete arc, 
such an arc is maximal in the sense that no other arc can contain it. Hence it is 
desirable to obtain necessary and sufficient conditions that an arc be complete. 
Such conditions seem in general to be elusive. 

For the smallest values of k, we have the following: 

(21 ) THEOREM. Let n be the order of a plane. Then 
(i) If n > 3, a 4:-arc is not complete. 

(ii) A 5-arc is never complete. 
(iii) If n > 10, a Q-arc is not complete. 
(iv) If n > IS, a 7-arc is not complete. 

Proof. Equations (8) give the following: 
(i) For a 4-arc, e0 = 3, e2 = 6(w — 2), and eA = {n — 2)(n — 3). 

(ii) For a 5-arc, ei = 15, e3 = 10(ra — 4), and e$ = n2 — 9n + 21. 
(iii) For a complete 6-arc, e0 = n2 — 14^ + 55, e2 = 3 (n — 4) (10 — n), and 

eA = 3(w - 4)(» - 5). 
(iv) For a complete 7-arc, a = n2 - 20w + 120, ez = -3(w 2 - 20n + 85), 

and eb = 3(rc2 - 13« + 43). 
The statements of the theorem follow from the fact that et > 0. 

I t is trivial to observe that every point on a tangent of a complete arc must 
lie on at least one secant. Hence for a complete arc, n < %(k — l)(k — 2). This 
inequality is equivalent to t < %(k — 2) (k — 3) and to (n + t) < (n — t)2. If 
n > 3 is a prime power then the equalities may be ignored. However this result 
is still meager. In fact for n > %(k — l)(k — 2) there must be at least t 
completion points, since there is one on every tangent by Theorem (6). An 
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improvement is due to M. See (7). A &-arc is complete if and only if ek = 0. See 
has proved the following inequalities: 

e* < n* - \{k + \){k - 2)n + \(k - \)(k - 2)[\k{k - 3) + 1], 
e* > n* - \(k + l)(k - 2)n + %(k - l)(k - 2)\ 

Some results on complete arcs have been obtained by B. Segre, M. See, L. 
Lunelli, and R. Cruciani in the case where the plane is Desarguesian; cf. (9, 
Chapter 17). Suppose a plane is Desarguesian of odd order n. Then 

n > 16/2 + t - 37, t 9* 1, 

implies that a &-arc is not complete and hence can be completed to a unique 
oval. Let Sn designate the Desarguesian plane of order n. There does not exist a 
complete 7-arc in Su. However, there do exist complete arcs of the following 
types: 6-arc in 57, 6-arc in 59, 7-arc in 59, 8-arc in 59, 10-arc in 5n, 12-arc in Sn, 
and 14-arc in Sn. Now suppose the plane is Desarguesian of even order n. There 
exist complete 6-arcs in 58 but no complete 7-arcs or 8-arcs in 58. If t = 1, 2, 3, 
or 4 then every &-arc is incomplete and can be expanded to an (n + 2)-arc 
except when t = 4 and n = 8. Let n = 2h, then for h = 1, 2, or 3, every 
(n + 2)-arc is a completed conic. However, for h = 4, 5 or h > 7, there exist 
{n + 2)-arcs which are not obtained by the completion of a conic. Finally, let x 
be the greatest integer in \{t — 1). Then n even and n ^ t2 — t — x, t 9^ 0, 
implies that a &-arc is not complete and is contained in one and only one 
(n + 2)-arc. 

At this point we introduce some new incidence equations. Let T, 5, and R, 
respectively, be a tangent, secant, and exterior line of a &-arc K in a plane of 
order n. Let tt be the number of points off K on T which lie on exactly i tangents. 
Let Si be the number of points off K on 5 which lie on exactly i tangents. Let rt 

be the number of points off K on R which lie on exactly i tangents. Then coun­
ting incidences, the following are immediate: 

E h = n, S (* - 1)'« = M ~ 1). 
= 0 î=0 

(22) 

(23) 

(24) 

X) h = JeJ (J = 0, 1, . . . , * ) . 
11 
?ents 

k k 

23 St = n — 1, X) ist = Kk — 2)i 

a l l 
t angen t s 

k 

X) Sj = \{k - j)ej (j = 0, 1, . . . , k). 
al l 

îcants 
k k 

X rt = n + 1, X iri = tk, 
i = 0 

X rJ = h(n + t - j)ej (j = 0, 1, . . . , k). 
all 

exterior 
lines 
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The system (23) is equivalent to one given by B. Segre (9). Now the systems 
(22) and (24) as well as (8) and (23) should be considered in studying &-arcs. 
As a simple example of this, which will be of use in the proof of the next 
theorem, consider the case k = 6, t = 3, n = 7, e0 = 0, e2 = 45, e$ ~ 6, and all 
other ei = 0. I t is easy to check that these values satisfy (8). Also t2 = 5 and 
U — 2 satisfy (22), while s2 = 6 and sQ = 0 satisfy (23). Thus we have consis­
tency in (8), (22), and (23). However, (24) becomes r0 + r2 + r6 = 8 and 
r2 + 3r6 = 9. But since e0 = 0 = r0, the two equations are inconsistent (no 
non-negative integral solution). Thus it is (24) that demonstrates that the 
example given is impossible. 

(25) THEOREM. Let K be a k-arc in a plane of order n. If k ^ 4, k ^ n, and K is 
uniform of even index, then K is complete. 

Proof. Suppose K is not complete and uniform of even index. Then K is 
uniform of index 2r = k. It follows from (9) that 

e0 = | [ (2 - t)k2 + (5* - S)k + (6 - 40], e2 = ±tk(k - 1), 

and ek = t(t — 1) with all other et = 0. Thus t 9^ 0 and t ^ 1. Further, 
assume k T± 4L and k 7e n. Then k > 6 and t > 3. However, in order that 
e0 > 0, it is necessary to have k < (4* - 6)/(t - 2). But (4* - 6)/(* - 2) < 6, 
with equality if and only if t — 3. Thus 

6 < k < (±t - 6)/(* - 2) < 6. 

So k = 6 and t = 3, which in turn yields n = 7, e0 = 0, e2 = 45, and e6 = 0. 
However, it has been shown above that these values are impossible. The 
theorem follows. 

I t is easy to see that the values k = 4 and k = n must necessarily be excluded 
from the last theorem. By Theorem (21), for w > 3 a 4-arc is never complete 
and hence always uniform of index 4. For the case n = k, consider an w-arc 
which is a subset of an oval in a plane of even order. Then e0 = n — 1, 
e2 = n(n — 1), and ek = 2 with all other et = 0. Thus the ^-arc is not complete 
but is uniform of even index. 

Similarly there exist &-arcs which are not complete but are uniform of odd 
index for the extreme values of k. An oval in a plane of even order is uniform of 
odd index but never complete, by Theorem (11). For an 72-arc which is a subset 
of an oval in a plane of odd order we have e± = \n{n + 1), ez = \n(n — 1), 
and ek = 1 with all other et = 0, and hence the w-arc is not complete but is 
uniform of odd index. Likewise for an (n — l)-arc which is a subset of an oval in 
a plane of even order we have ei = 3(n — 1), e% = (n — 1) (n — 2), and ek = 3 
with all other et = 0, and hence the (n — l)-arc is uniform of odd index but is 
not complete. Also a 5-arc is necessarily uniform of odd index but is never 
complete by Theorem (21). Therefore the values & = n + l,k = n,k = n — 1, 
and k = 5 must necessarily be excluded from the following theorem. 

https://doi.org/10.4153/CJM-1967-030-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-030-2


ARCS IN A FINITE PROJECTIVE PLANE 387 

(26) THEOREM. Let K be a k-arc in a plane of order n. If 5 < k < n — 1 and K 
is uniform of odd index, then K is complete. 

Proof. Suppose K is not complete and uniform of odd index. Then K is 
uniform of index k = 2r + 1. It follows from (10) that 

ei = è*[(3 - t)k + (5/ - 9)], ez = J(/ - l)k(k - 1), ek = t2 - 3/ + 3, 

with all other et = 0. Assume 5 < k < n — l o r equivalently n — 3 > / > 3. 
ei > 0 implies that k < (5/ — 9)/(/ — 3). For/ > 6, we have 

7 < & < (5/ - 9)/(* - 3) < 7, 

which is impossible. Thus 4 < t < 6. 
If/ = 4, then 2^i = kill - k), and so k < 11. lit = 5, then ^ = k(S - k), 

and so k = 7. If t = 6, then 2^i = 3&(7 — ^) , and so k = 7. Thus there are five 
cases to consider: 

Case t * w ei 

(i) 4 7 9 14 
(ii) 4 9 11 9 

(hi) 4 11 13 0 
(iv) 5 7 10 7 
(v) 6 7 11 0 

We shall show that the values are inconsistent with (22) in each case. 

Case (i). The first two equations of (22) becomes 

h + h + t, = 9, h + 3/7 = 12. 

For a given tangent, there are only three possibilities: 

h = 5, h = 0, h = 4; 

t\ = 3 , 3̂ = 3 , 7̂ = 3 ; 

h = 1, *3 = 6, /7 = 2. 

Suppose there exist x, y, and s of these, respectively. Then x + y + 2 = 28 and 
by the third equation of (22) for j = 1, 5x + 3^ + z = 14. But these two 
equations are not solvable in non-negative integers. Case (i) is impossible. 

Case (ii). The first two equations of (22) become 

h + h + h = 11, h + 4/9 = 16. 

For a given tangent, there are only three possibilities: 

h = 7, h = 0, /9 = 4; 
/1 = 4, /3 = 4, /9 = 3; 
/1 = 1, tz = 8, /9 = 2. 

Suppose there are x, 3/, and s of these, respectively. Then x + 3/ + z = 36 and 
by the third equation of (22) for j = 1, 7x + 4y + 2 = 9. It follows that Case 
(ii) is impossible. 
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Case (iii). Since e\ = 0, then h = 0. But then the first two equations of (22) 
are £3 + tn — 13 and U + 5£n = 20. It follows that Case (iii) is impossible. 

Case (iv). The first two equations of (22) become 

h + 3̂ + h = 10, h + 3/7 = 15. 

For a given tangent, there are only three possibilities: 

h = 5, /3 = 0, t7 = 5; 

h = 3, h = 3, J7 = 4; 

h = 1, *3 = 6, 7̂ = 3. 

Suppose there are x, 3/, and z of these, respectively. Then x + 3/ + 2 = 35 and 
by the third equation of (22) for j = 1, 5x + 3 j + z = 7. It follows that 
Case (iv) is impossible. 

Case (v). Since <?i = 0, then ti = 0. But then the first two equations of (22) 
become /3 + U = 11 and /3 + 3/7 = 18. I t follows that Case (v) is impossible. 
This completes the proof of Theorem (26). 

5. w-arcs. It is known (9), that every n-arc in a finite Desarguesian plane 
has a completion point, i.e., is contained in an oval. In this section we investigate 
the necessary and sufficient conditions that an w-arc be a subset of an oval when 
the plane is not necessarily Desarguesian and conclude with examples of w-arcs 
which, indeed, are not contained in any oval. 

First, formulas (9) and (10) are restated for the case k = n, t = 2 in such a 
way that e0, £i> £2, £3, and en are given in terms of the remaining et. 

For an w-arc in a plane of even order n : 

-1 i0i-2) 

e0 = n - 1 + - E 0' ~ 1)(» ~ 27>2y, 
TO j=2 

^ | (n-2) 

(27) e2 = »(» - 1) - 0 E i (» - 2 i ) ^ f 

For an w-arc in a plane of odd order n: 

-1 £(w-3) 

6x = Jn(» + 1) + " r E 0" - 1)(» - 2/ - 1 K + I , 
W — 1 J = 2 

(28) e3 = \n(n - 1) - — ^ ' £ j(n - 2j - l)e2,+1, 

^ è(w-3) 

e» = 1 - ( W - 1 ) ( W _ 3 ) £ i ( i - 1 ) C W 
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(29) LEMMA. Let N be an n-arc in a plane of even order n. Then: 
(i) Every secant contains at least one interior point. 

(ii) Every point off N lies on at least one exterior line. 
(iii) Every point off N on a tangent is an exterior point. 
(iv) Every tangent contains at least one extra exterior point. 
(v) Ifxis the number of ordinary exterior points on a tangent, then \n < x < n. 

Proof, (i) follows from Theorem (3) with t = 2. (ii) and (iii) are trivial. 
If each of the n points off TV on a tangent were an ordinary exterior point, then 

(2 — l)n = 2 {n — 1) = the number of tangents intersecting a given tangent 
off N. The equality is impossible for n > 2. (iv) follows. 

Suppose a tangent has x ordinary exterior points. By (iv), x < n. Also if a 
point lies on more than two tangents, then it lies on at least four. Thus 

(2 - l)x + (4 - \){n - x) < 2(n - 1) 

orx > \(n + 2), proving (v). 

(30) THEOREM. / / N is an n-arc in a plane of even order n, then the following 
statements are equivalent: 

(a) N is a subset of an oval. 
(b) N is a subset of a unique (n + 2)-arc. 
(c) N is uniform of index n. 
(d) There exists a point on n tangents. 
(e) There exists a point off N on at most one exterior line. 
(f ) There exist at most two extra exterior points. 
(g) Every tangent contains at most one extra exterior point. 
(h) There exists a tangent with at most one extra exterior point. 
(i) Every secant contains at most one interior point. 
(j) Every secant contains at least n — 2 exterior points. 
(k) No secant contains an extra exterior point. 
(1) There exist n — 1 collinear interior points. 
(m) There exist exactly (at most) n — 1 interior points. 
(n) There exist exactly (at least) n2 — n + 2 exterior points. 
(o) There exist exactly (at least) n(n — 1) ordinary exterior points. 

Proof. By Theorem (11), all the tangents to an oval in a plane of even order 
are concurrent. By (27), en < 2. If en ^ 2, then en = 0. So (a) implies en = 2. 
I t is easy to check that (a) implies all the remaining properties listed in the 
theorem. It will now be shown that each of the properties implies (a). 

That each of (b), (c), and (d) implies (a) is trivial. That (e) implies (d) 
follows easily. For if a point lies on only one exterior line, then the remaining n 
lines through this point must each intersect the w-arc in exactly one point. 

(f) implies (g): By Lemma (29), every tangent contains at least one extra 
exterior point. Let P be a point of N. Let L± and L2 be the tangents at P . Let E± 
and E2 be extra exterior points on Li and L2 respectively. Suppose E\ and E2 

are the only extra exterior points of N. (That E\ = E2 is impossible.) Then 
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every tangent of N contains at most one extra exterior point, for suppose a 
tangent at Q on N contained both Ei and E2. Then the other tangent at Q 
contains no extra exterior point, which is impossible. 

(g) implies (h) trivially. 
(h) implies (d) : Suppose a tangent has just one extra exterior point, say, on y 

tangents. There is at least one by the lemma. Then the remaining points on the 
tangent which are off N are ordinary exterior points. Counting the tangents 
intersecting this tangent off N, we have 

(2 - 1) (n - 1) + (y - 1)(1) = 2(w - 1) or y = n. 

(i) implies (j) trivially. 
(j) implies (k) : A secant is intersected off N by 2 (n — 2) tangents. Hence if a 

secant has at least n — 2 exterior points, it has exactly n — 2 ordinary exterior 
points and one interior point. Therefore (j) implies no extra exterior point lies 
on a secant. 

(k) implies (d): Suppose no secant has an extra exterior point. But there 
exist extra exterior points by Lemma (29). Therefore there exists an extra 
exterior point which does not lie on a secant and hence must lie on n tangents. 

(1) implies (d) : Suppose L is a line with n — 1 interior points. The remaining 
two points on L are either both on N or both off N as L cannot be a tangent. 
Suppose, first, both are points of N. Then L is a secant. Counting secants, we 
have 

1 + 2(w - 2) + (n - 1 ) ( | » - 1) = \n(n - 1) + (n - 2), 

which is impossible if n > 2 as the total number of secants is \n{n — 1). Hence 
L is an exterior line. Through the n — 1 interior points of L pass (n — 1) (%n) 
secants. But this accounts for all the secants. The remaining two points on L do 
not lie on any secants. Since these points are off N, they must each lie on n 
tangents. 

Each of (m), (n), and (o) implies (c) since (27) gives 

e0 > n — 1, e2 + en < n(n — 1) + 2, and e2 < n(n — 1) 

with equalities if and only if e\ = 0 for 2 < i < n. This completes the proof of 
the theorem. 

(31) THEOREM. A complete n-arc in a plane of order n contains an (n — \)-arc 
with exactly one completion point. 

Proof. Since en-2 is the number of points on only one secant of an ^-arc, it is 
sufficient to have n > 2^_2 . We may assume that n > 8, as otherwise the plane 
is Desarguesian. Let k = n, t = 2, and en = 0 in the third equation of (27) : 

2n 4 ^vV° 

«-* = 7 = 1 ~ (»-2)(»-4) £ j(j - l)e* < 4-
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Let k = n, t = 2, and en = 0 in the third equation of (28) : 

n — 1 4 'v^ 5 ) 

«-« = 7^5 ~ (»-3)(»--5) S J'°' ' 1Wfl < 2-
Therefore, whether « is even or odd, 4 > £re_2. Hence n > 8 > 2<?n_2, and the 
theorem follows. 

(32) T H E O R E M . If N is an n-arc in a plane of odd order n, then the following 
statements are equivalent: 

(a) N can be (uniquely) completed to form an oval. 
(b) N is uniform of index n. 
(c) There exist exactly (at most) \n(n + 1) interior points. 
(d) There exist exactly (at least) \n(n — 1) ordinary exterior points. 
(e) There exists a point on n tangents. 
(f ) There exists a point off A on at most one exterior line. 
(g) There exist n collinear interior points. 
(h) No secant contains an extra exterior point. 
(i) Every secant contains exactly \(n — 3J ordinary exterior points. 
(j) Every secant contains exactly \(n + 1) interior points. 
(k) Every exterior line except one has exactly \(n + 3) interior points. 
(1) Every exterior line except one has exactly \(n — 1) ordinary exterior points. 
(m) At each point of N, one tangent contains exactly one interior point and the 

other tangent contains exactly \(n — 1) interior points. 
(n) At each point of N, one tangent contains one interior point and n — 1 

ordinary exterior points while the other tangent contains one extra exterior point, 
\(n — 1) ordinary exterior points, and \(n + 1) interior points. 

Proof. I t is easy to check t ha t (a) implies each of the remaining properties 

listed in the theorem. I t will now be shown tha t each of the properties implies 

(a). 
I t follows from the definitions, Theorem (16), and equations (28) t ha t each 

of the properties (b), (c), (d), (e ) ,and (f) implies (a) . 
(g) implies (e) : Suppose there exist n collinear interior points on line L. None 

of these points lies on N, and each lies on exactly one tangent . T h e remaining 
point, P , on L cannot be a point on N as then L would be a tangent which is not 
intersected off N by any other tangent . Hence L is an exterior line. T h u s L is 
intersected by 2n tangents , and the point P lies on n = 2n — n tangents . 

(h) implies (e): Since t = 2, N has a t least one extra exterior point. If no 
secant contains an extra exterior point, then an extra exterior point lies on n 
tangents and one exterior line. 

(i) implies (j): Suppose a secant contains exactly \{n — 3) ordinary exterior 
points. Since the remaining \{n + 1) points on the secant off N each lie on a t 
least one tangent , we have accounted for 

( 3 ) K « - 3) + ( l ) i ( « + 1) = 2(n - 2) 
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tangents intersecting the secant off N. So none of the \{n + 1) points lies on 
more than one tangent . 

(j) implies (h) : Suppose a secant has exactly \(n + 1) interior points. Each 
of the remaining \{n — 3) points off N on the secant lies on a t least three 
tangents . Then none can lie on more than three tangents either. T h u s no point 
off TV on a secant lies on more than three tangents . 

(k) implies (1): This follows from the type of a rgument as used to show (i) 
implies (j), using the ident i ty 

( l ) è ( n + 3 ) + ( 3 ) | ( « - 1) = 2w. 

(1) implies (d) : Suppose every exterior line contains exactly \{n — 1) 
ordinary exterior points with the exception of one exterior line which contains v 
ordinary exterior points. Each ordinary exterior point lies on \ (n — 1) of the 
\n{n — 1) + 1 exterior lines. T h u s 

»+[* (* - ! ) ] [*» (« - ! ) ] _ _^L_ , w „ _1)_e 

By (28), e3 < \n{n — 1). Hencev = Oand ez = \n{n — 1). 
(m) implies (c) : T w o tangents do not intersect a t an interior point . We have 

n interior points from the n tangents which contain one interior point each and 
nih(n — 1)) interior points from the n tangents which contain \{n — 1) 
interior points each. Hence. 

ei = n + n(\{n — 1)) = \n{n + 1). 

(n) implies (m) trivially. 
This completes the proof of Theorem (32). 

For some examples of complete arcs we re turn to the Hughes plane of order 
n = 9, where the notat ion is t h a t used in the proof of Theorem (18). 

Let Ni and N2 be the following 9-arcs: 

Nt = M i , B0, C9, D8, D9, E2, F2, G5, G8}, 

N2 = {A1} Bo, D8, E2, F2} Fly G6, G7, G8}. 

Ni and N2 are complete n-arcs. They are not equivalent under collineations of 
the plane; cf. (12). T h e values of the et for both arcs are: e\ = 48, e-i = 28, 
^5 = 6, and e7 = 0. T h u s both arcs are uniform of index 5. 

In the same plane, let 

K1 = {A1, B0l Bh B2, C9, D8, D9, E2}, 

K2 = {AuBofBl9C99Ds9D9tE2fG8}9 

Kz = {Ai, Bo, D8, E2, F2, Fut G$, G8}, 

Ki = {Ai, AQ, B0, CQ, D8, D9} E2}, 

Kb = {Ai, B0, CQ, D8, DQ, E2} GH}. 
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US = {A i, Bo, C9, Z)8, -^9, £2}, then S is a 6-arc which is not complete. A 6 added 
to 5 gives i£4, and Gn added to S gives i£5. ^ 4 and K5 are two complete 7-arcs 
with 6 points in common. Bi and B2 added to S gives Ki, while B\ and B% added 
to 5 gives K2. Ki and K2 are two complete 8-arcs with 7 points in common. 
F2, G5, and Gs added to S gives the complete w-arc iVi. 

The complete 7-arc K4 has six points in common with each of the complete 
arcs Vi, Ni, K2, and K5j which are, respectively, a 10-arc, a 9-arc, an 8-arc, and 
a 7-arc. 

The complete 8-arc i£3 has 7 points in common with each of the 9-arcs Ni and 
N2. 
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