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Introduction

The contravariant functor F from the category of Riemann surfaces
and analytic mappings to the category of complex algebras and homomor-
phisms which takes each surface Q to the algebra of analytic functions on Q
does not have an adjoint on the right; but it nearly does. To each algebra
A there is associated a surface Z^A) and a homomorphism aA from A into
FZ^A), indeed onto an algebra of functions not all of which are constant
on any component of Z^A), such that every such non-trivial representation
A -*• F(Q) is induced by a unique analytic mapping Q -> Z^A).

An actual adjunction arises if ZX(A) is united with a discrete set
Z0(A) of all homomorphisms of A into the complex field. Though Zx is
not functorial, Z1 = Zx u ZQ is, from algebras to at most one-dimensional
analytic manifolds and open analytic mappings. Its adjoint on the right
still takes each manifold to the algebra of all analytic functions on it,
so may still be called F.

For these manifolds and mappings, the algebra of meromorphic
functions is also functorial, and that functor has an adjoint too. The
existence of the adjoints is a routine inference from the basic result, that
the category of manifolds is complete.

The natural extension to at most w-dimensional complex analytic
manifolds would involve those analytic mappings such that the image of
every non-empty open set has an interior point. The completeness and
adjointness questions are open for these categories. There is a standard
completion procedure which seems best, if any is needed. Consider the real
analytic manifolds. No precise analogue of Zx exists; the algebra of even real
analytic functions on a line has no best representation. Rather, the best
representation is on a closed half-line. In fact completeness and the adjoints
carry over to real analytic at most 1-dimensional manifolds with boundary,
with mappings as indicated above. Here too the questions are open in
higher dimensions. However, the left regular completion of any of these
categories is at worst a category of manifolds with nowhere dense sets of
singularities. The proof will be omitted, though the left regular completion
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is described. The point is that this presents a less abstract problem than
completeness: what sort of singularities? In complex dimension 1, none;
in real dimension 1, boundaries.

The complex algebra oA(A) need not separate points on E^A), but
the ordered pairs of distinct points which it does not separate form a closed
discrete set in U1(A)xZ1(A). The ordinary Riemann surface Q of a function
/ and the covering mapping from Q into the plane appear in a natural way
when Z1 is applied to the algebras generated by the identity function i
on the plane, and by i and / together.

I am indebted to J. W. Gray, J. R. Isbell, and A. J. Lohwater for
several helpful comments.

1. Completeness

Here, a complex (real) n-manifold will be a Hausdorff space M provided
with a family of homeomorphisms from open sets of complex (real) ^-spaces,
0 f£ k sS n, to open sets of M, covering M and overlapping analytically.
A morphism of manifolds is an analytic mapping such that the image of
every non-empty open set has an interior point.

The purposes of the following discussion are to reduce the completeness
question to a question of quotients (readily solved for complex 1-manifolds
since images of small open sets are open in the quotient) and to reduce it
to a question of products, which seems better for real manifolds with bound-
ary and will be a remaining question in the complex case if the category of
genuine complex w-manifolds is incomplete. I do not know a clearly best
definition of a real manifold with boundary. The 1-dimensional real case
will be fitted in by simple ad hoc arguments at the end (not all given;
it is an easy exercise to prove completeness of that category).

The category C(Mn) of complex (real) w-manifolds is a category of
algebras in an almost classical sense. For ground set of M one must not
take the set of points of M, but the set M' of morphisms from the open
unit ball of (scalar) w-space to M. Then they are classical algebras. M' has
infinitely many operations, all of which are unary, indexed by the morphisms
e from the standard ball B into itself; for / : B -> M in M', e(f) is the
composite fe : B -> M. Routine work (of some length) shows that if
h :M'->N' is a homomorphism, then every value h(f) is hff for some
partially defined function hf, and that these hf are consistent and make up
a morphism "h : M ->N. Since every morphism fi induces a homomorphism
h, we have a full faithful representation of manifolds by algebras.

We use the terminology of Isbell [1] generally, since we want a result
and some notions from that paper. In that terminology, we have just noted
that the ball B is left adequate in the category of w-manifolds. We shall
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not need all the degrees of completeness from [1]. We simply call a category
left complete if every small diagram has an inverse limit, right complete if
the dual holds, complete if it is left and right complete. It is well known
that a category is right complete if every family of objects has a coproduct
and every coterminal pair of morphisms has a coequalizer.

Note that C" (and 8$n, and any reasonable category of real analytic
manifolds with boundary) certainly has coproducts, which are simply
disjoint unions. It also has equalizers, which are open-closed subsets. Two
morphisms not agreeing on any open subset have an empty equalizer,
since they cannot have the same composition with any (nearly open)
morphisms; and where they do agree on an open set, they agree on a whole
component.

LEMMA. For each n, the following statements are all true or all false.

(i) C" is complete.

(ii) C" is left complete.

(iii) Every coinitial family of morphisms fa\ M —> Na of Cn factors
across a surjective morphism g : M -> Q such that for coterminal morphisms
h, k : L -> M, if fah = fak for all a then gh = gk.

(iv) C" is right complete.

PROOF. Statement (i) contains (ii). From (ii) an immediate step
towards (iii) yields a factorization across a non-surjective morphism
g0 : M -> P, where P is a product of all Na and g0 satisfies the concluding
condition of (iii). For every point /3 of P not ingo(M), g0 gives us a morphism
f'fi : M -> P— {/}}. Going into a product again, the image is open and closed,
hence a submanifold. To deduce (iv) from (iii) we must find a coequalizer
of arbitrary h, k : L -> M'. If {/a} consists of all morphisms M - • Na in C"
such that fah = fak and the set of points of Na is a subset of M, the g given
by (iii) is a coequalizer. Finally, (iv) implies (i) because the category has
a left adequate object [1; 4.7].

THEOREM 1. C1 is complete.

PROOF. TO verify (iii) for morphisms fa : M ->2Va, construct the dis-
crete part of Q from the components of M on which all /„ are constant in
the obvious way. On the rest of M, Mlt form a quotient space by the
equivalence relation consisting of all pairs (h(0), k(0)) for h, k in M' such
that fah = fak for all <x. Since the /„ are open mappings, the projection to
the quotient space is an open mapping n : M -> Q. Near any point x of
Mx, some of the fa are non-constant mappings locally like z" at 0 for various
n, and n is like zm where m is a minimum over analytic functions of finitely
many /„. (This is precise in terms of a schlicht mapping B ->• Mx taking
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0 to x.) Hence Q is at least a non-Hausdorff manifold. But the fa induce
analytic mappings / a : Q -> Na such that near any point x of Q, finitely
many fa define a schlicht mapping. If xx> x2 had no disjoint neighborhood,
we should have for any xt e J T " 1 ^ ) two mappings h, k in M', A(0) = x1,
h like zm*, k(0) = x2, k like zm\ such that all fah = fxnh and fak would
agree on a non-empty open set, and so everywhere.

As for the real analytic 1-manifolds with boundary, the completeness
of the category is easily checked. It reduces to left completeness and thus
to products in several ways, of which we want the following. First, these
manifolds are perfectly good algebras of the same species as the algebras
described above for 9P-. Morphisms B -> M are necessarily two-to-one near
a boundary point. Near any boundary point, such morphisms exist. Now
9tx is a full subcategory of a variety of algebras, containing the free algebras.
The left regular completion of such a category is simply its closure under
inverse limits in the algebras [1] (and is left and right complete). Every
real analytic 1-manifold with boundary, M, can be embedded in a manifold
without boundary, N; and M is an open-closed set in the product of all
N-{X},XBN~M.

2. Representation

It happens that the universal representation IP (A) can be constructed
without difficulty for a mere ring A. It can equally well be constructed
for a set A, (more easily, or) by the same proof, since the forgetful functors
algebra -> ring -> set have adjoints. We use the term algebra for an algebra
over the integers (i.e., a ring) or a complex algebra. It happens also, and
this is more interesting, that a universal representation by meromorphic
functions can be constructed in almost exactly the same way.

THEOREM 2. For every algebra A there exist a complex 1-manifold IP-(A)
[resp. M1(A)) and a homomorphism a from A into the algebra of all analytic
(meromorphic) complex-valued functions on IP-(A) (M1(A)) such that every
such representation r of A by functions on a 1-manifold T has the form
r{a) = cp o a(a) for a unique morphism cp : T -*- IP-(A) (95 : T —> M1(A)).

PROOF. The conclusion simply evaluates at A an adjoint and adjunction
(on the right) to the algebra-of-analytic-functions functor (resp. mero-
morphic) F; F(M) is the algebra of all such functions on M, and for
/ :M -> M', F(f) takes F(M') to F(M) by composition with /. A dual of
Proposition 7.1 of [2] assures that these must exist, since C1 is complete
and has a left adequate object, provided F takes coproduct manifolds to
product algebras and coequalizers to equalizers. The former condition is
evident, and the latter would be also if we had algebras of morphisms of
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C1. But in effect, we do. Analytic mappings from M to a plane 77 (or sphere)
correspond one-to-one with morphisms to 77 (or a sphere) with a discrete
copy of 77 adjoined, since just the components of constancy must go into the
discrete part. As the (products and) equalizers are the same in algebras as
in sets, the theorem follows.

The same theorem and proof hold for real 1-manifolds with boundary.
For the next proposition, some remarks. A monomorpkism in a category

is a morphism / such that the relation fh = fk implies h = k. A mono-
morphism of C1 must be locally schlicht; for the other local possibilities,
constancy and zn, are evidently not monomorphic. Note that the uniqueness
in Theorem 2 secures that all the functions a (a) suffice to define a mono-
morphism from ZX(A) to a product of planes or spheres, thus a locally
schlicht mapping.

PROPOSITION. The set of all ordered pairs of distinct points of Z1(A) not
separated by functions a {a) is closed and discrete.

PROOF. The set of ordered pairs of points not separated by any a(a) is
obviously closed; and for a diagonal point {p, p), the functions a (a) separate
distinct points near p. If no a(a) separates p from q, p isolated in Z1(A),
the functions a (a) separate points near q from q and therefore from p.
Suppose p and q are non-isolated points and the functions a (a) fail to
separate points pn arbitrarily near p from points qn arbitrarily near q.
A schlicht map <p : U -» V of a neighborhood of p upon a neighborhood of q
can be constructed by means of analytic functions of functions a (a).
Necessarily <p(pn) = qn and cp{p) = q. Then the embeddings i :U C ZX{A)
and <p : U ->• Z1(A) have the property that for all a {a), a(a)i and a (a) <p
agree on all pn and thus coincide. By universality, i = cp, p = q.

PROPOSITION. / / B is an algebra of analytic functions on ZX{A) containing
a {A), this representation of B induces an open-closed embedding of EX{A) in

PROOF. Obviously it induces an embedding. For a connected open set
U in IP-(B) meeting I?-(A), the representation of A C B on U must be
induced by a unique morphism U-^ Z1{A). This is true also for
V = U n Z1{A); so the morphism fixes every point of V, hence every point
of U, andUCZ^A).

These propositions evidently hold in the real and meromorphic cases
too.

Obviously specializing to connected Riemann surfaces would complicate
universality statements, but it would not destroy them. For instance, the
complex plane 77 is the 1-dimensional part Zx {A) of Z1 (A) HA is the algebra
of complex polynomials. If / is an analytic function on an open set U CII,
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the algebra B generated by A and / is represented on U, inducing an em-
bedding U C S1{B). The same holds for the classical Riemann surface Q
of /. Q C ^{B) is a whole component, for if there were more it could be
constructed by the classical procedure. The algebra embedding AC B
induces the representation of A by polynomials 'on the plane under Q',
and thus induces the classical mapping Q -> 77. There is no substantial
change in the argument for M1.

The construction of Riemann surfaces from algebras began with the
work of L. Bers, extended by W. Rudin to show that any Riemann surface
Q without compact components is reconstructible from its algebra F(Q).
(Similar results for meromorphic functions are due to H. Royden and M.
Heins.) I. Richards has given a generalization [3] which is easily generalized
further to arbitrary algebras, to yield the interior of the subset of ^(A)
consisting of those points p such that the ideal {a e A : a(a)(p) = 0} is
principal. Richards showed that for A = F(Q) this is just Q. His lemmas
show, for any A, that functions a (a) separate any two distinct points one
of which is such a 'principal' point p. The question is open whether 21F(Q)
can have non-principal points.

Added in proof. For connected Q, it cannot, by Royden's Theorem 1
(Trans. Amer. Math. Soc. 83 (1956), 272). Hence it cannot, unless the
cardinal number of Q is measurable.
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