
Canad. Math. Bull. Vol. 33 (4), 1990 

INTERPOLATION AND SPECTRA OF 
REGULAR LP-SPACE OPERATORS 

BY 

KAREN SAXE* 

ABSTRACT. We consider the Banach algebra consisting of linear op­
erators T which are defined on the simple functions and have bounded ex­
tensions Tp on LP for all values of/? G [1, oo]. We show that the 'integral' 
operators in this algebra form a right ideal, and that each Tp associated to 
an integral T is regular. When the underlying measure is finite or special 
discrete we show further that every Tp is regular for every T in the algebra. 
Algebraic techniques together with interpolation results are then used to get 
relationships between the spectrum and the order spectrum of the associated 
7Vs. 

If an operator T belongs to B(LP) for more than one value of p, and cr(Tp) denotes 
the spectrum of T in the Banach algebra B{LP), one can ask how a(Jp) varies with p. 
Typically, we are interested in the situation when p takes on all values in some closed 
subinterval [s, t] of [1, oo]. The well known example of Boyd (in [6]) shows that even 
for a reasonable operator T, the function/? —• cr(Tp) is a nonconstant function of p. 
Several authors have studied the function/? —» <J{TP). It is interesting to investigate the 
continuity properties of this function and bounds for its range in terms of the 'endpoint' 
spectra a(Ts) and a(Tt). Recent related work appears in [3], [8], [10] and [14]. 

In this paper we investigate the spectral theory of operators that are defined on every 
LP-space, 1 < p < oo. These operators form a Banach algebra which we denote by 
®i,oo- We introduce its subalgebra of 'integral' operators and show that this set is in 
fact a right ideal of ®i>0o- Many of these operators are regular operators (in the sense of 
Schaefer, see [13]). We show that each of the integral operators of $i,oois always regular 
and, when the underlying space has finite measure, that every operator of <B\tOQis regular. 
For these cases, we give conditions that imply equality of the (polynomially convex hull 
of the) spectrum and the (polynomially convex hull of the) order spectrum. The problem 
of characterizing classes of regular operators with equal spectrum and order spectrum 
and the more general study of the 'pure' order spectrum (the set of complex numbers 
belonging to the order spectrum but not the ordinary spectrum) are addressed in [1], [12] 
and [15]. 

1. The algebras (B^and Ĵ i,oo« Throughout this paper Q, will denote a measure 
space equipped with a positive, a -finite, measure \i. The measure p will be called 
special discrete if it is defined on the a -algebra of all subsets of £1 = { 1,2, • • •} and the 
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set {/x({ n} )}n°?j is bounded away from zero. The usual Lebesgue space on £1 will be 
denoted by LP. B{LP) will denote the Banach algebra of all bounded linear operators on 
LP with the usual operator norm. For fixed values of s and t,\ < s < t < oo, %,t will 
denote the algebra of all linear operators T: U n V —• U D Z/ that are continuous with 
respect to both the s-norm and the f-norm. The 'interpolation' algebra %,t is a Banach 
algebra which was introduced and first investigated in [3]. If T G %,t then it follows 
from the Riesz-Thorin Theorem that Thas a unique extension to an operator Tp G B(LP) 
for each value of p in [s, t]. If t = oo then T^ is not in general defined on all of L°° 
but is instead defined on Lg°, the closure of U D Lt with respect to the oo-norm. Notice 
that if the underlying measure ji is finite then Lg0 = L°° and if [i is special discrete then 
Loo „ 

0 — c0-
A kernel shall simply mean a measurable function k : Q x Q.—+ C. Two kernels are 

considered equal if they are equal almost everywhere. Let M(Q) denote the set of all 
measurable and almost everywhere finite functions on Q. Let X denote a subspace of 
M(Q) that is a Banach space. A bounded linear operator T on X is called integral if it is 
induced by a kernel k via the formula 

(1) Tf(x) = fQk(x,y)f(y) dp(y) 

for/ G X and almost all x G Q. T is called absolutely integral if the kernel \k\ (x,y) — 
| k(x, y)\ also defines a bounded linear operator on X. Recall that on a Banach lattice X a 
linear operator is called regular if it is a linear combination of positive operators. Every 
regular operator T G B{LP) has a modulus, \ T\, given by the formula 

| r | ( 0 = sup{|7fc| : ^ L ^ , |g| < / } 

for all real-valued / > 0 (this formula for the modulus actually works on any order 
complete Banach lattice). Background material on Banach lattices and operators with 
order preserving properties can be found in [13]. We will make immediate use of the 
following proposition. Surprisingly, it was not even proved on L2((0,1)) until 1971. For 
a proof and discussion see [7, page 63] or [13, page 295]. 

PROPOSITION 1.1. Let K € B(LP) be defined by the formula 

Kf{x) - fQ k(x,y)f(y) d/x(y), / G tf, 

for some kernel k. Then K is regular if and only if\k\ induces a bounded linear operator 
on LP. In this case, the modulus ofK is given by 

\K\(f){x) = ja\k(x,y)\f<y)diL(y\ fell. 

Let Jli500denote the set of all kernels k such that 

(2) \\k\\ = max{ess supx / |&(x,y)| d/iiy), ess supy / |fc(*,;y)| d[i(x)} < oo. 
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With pointwise linear operations and multiplication given by 

(k *;)(*,y) = J k(x, z)j(z,y) d/JL(z)9 j , keA.1,00, 

j^ioois an algebra. Endowed with the norm in (2), it is a Banach algebra. From (2) 
it follows that each k G -#iî00 defines, via formula (1), a bounded operator Kp on LP 
forp= 1 and p = oo. For convenience we will sometimes use the notation Intp(k) 
in place of Kp. It now follows from the Riesz-Thorin Theorem that every k G J?i>00 

defines a bounded linear operator on LP for each value of p G [1, oo]. The following 
characterization of J?i)00shows that the converse is also true. We use the notation V to 
denote the adjoint of the operator T. 

PROPOSITION 1.2. #i>00 = {&:QxQ—>C measurable! k induces Kx G B(Ll) and 
^oo G B(L°°)} = {k : £1 x Q —• C measurable| k induces Kp G B(LP) for all p G 
[l,oo]}. 

Proo/ Let k be a kernel such that equation (1) defines K\ G B(Ll) and À^ G B(L°°). 
Since every operator in B(Ll ) or B(L°°) is regular ([13], Theorem IV. 1.5) it follows from 
Proposition 1.1 that K\ and K^ are absolutely integral. By Proposition 1.1, Intp(|fc|) G 
B(LP) for/? = 1 and/? = oo. Putting/ = 1 we have 

ess supxJ^\k(x,y)\ dfi(y) = \\lntoo(\ k\)(f )\\oo < oo. 

Now, put kf(x,y) = k(y,x). Then (Inti(fc))' G B(L°°) and (Inti (*:))' = I n t ^ ) on L°°. 
So, again with/ = 1, we have 

ess s u p ^ \k(y,x)\ dfi{y) = ess s u p x ^ \k'(x,y)\ d^x{y) 

= ||(lntoo(|^|))(0||cx)= ||(lnti(|fc|)),(0||oo< oo. 

These two calculations show that k G -#i,oo- • 
We now give a few examples of the elements of -#i>0o- If the underlying space Q 

is a unimodular locally compact group G and g G L!(G) then the kernel defined by 
k(x,y) = g(xy~l) satisfies (2) and hence 5\\^contains all L1-convolution operators 

Kpf(x) = (g */)(x) = jQg(xy-l)f(y) dfi(y)9 f G U. 

As another example, if \i is counting measure on the set £1 = {1,2, . . .} then -#i500 

contains the identity matrix and the unilateral shift matrix (in fact, we have fL\,00=
eB\,oo, 

see Theorem 1.4.). Both of these examples show that .#i>00may contain non-compact 
operators. 

LEMMA 1.3. If T cfli^then T is regular as a map on L1 D L°°. Furthermore, | T\ G 
®l,oo-

Proof We first show that T is regular. Since L1 D L°° is order complete, it suffices to 
show that the set Ef = { | Tg\ : g G L1 H L°°, |g| ^ / } is bounded above in L1 H L°° 
for each/ G (L1 D L°°)+ = {g G L1 n L°° : g > 0} . If we restrict our attention to 
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measurable functions then |g| ^ / G L1 Pi L°° automatically implies that g G L1 D L°°. 
F ix / G (L1 n L°°)+. Since 7 is continuous in the oo-norm on L1 Pi L°° there exists a 
constant M > 0 such that || Tg\\oo û Af Ĥ Hoo, g G L1 n L°°. Therefore, 

|T*|(*) - | r^w| ^ llr^lU ^ MIUIU ^ Mil/Hoc 

whenever | g| ^ / . The constant function M||/|| oo is in M(£2) and therefore £/• is bounded 
above in M(£1). Hence, the set £/• Ç M(£l) has a supremum in M(£l). Let /*/ denote this 
supremum. Clearly hf ^ M ||/||oo G L°° and hence fy G L°°. The function \T\\(f) G 
M(£2) and is an upper bound for Ef\ therefore hf ^ | Ti | if) G L1 and hence hf £ Ll. 
Now /z/ is an element of L1 D L°° and is an upper bound of Ef in L1 D L°°. This completes 
the proof that T is regular. Since l) D L°° is order complete, the modulus of T is given 
by 

\T\(f)= sup {17fc| : \g\£f}, / G d ' n n , 
ZJfU00 

Since this is the supremum in a sublattice of M(Q), \T\(f) ^ hf. Since hf e Ll D L°°, 
equality holds. The inequalities hf ^ M||/||oo and hf ^ |^i |(/) show that |T| is 
continuous in both the oo-norm and the 1-norm. Hence, | T\ G$i,oo- • 

In the proof of Lemma 1.3 we saw that \T\(f)û \TX\ (/"), for al l / G (L1 n L°°)+. The 
other inequality also holds, 

1̂ 1(0 = sup{|rig| : geL\ \g\ ûf}=suP{\Tg\ i g e ^ n r , \g\ £/} 

^ sup {|7g| : g ELlnL°°, \g\ £f} = \T\(f) f G (L1 H L°°)+. 

Therefore, | T| is the restriction of | Tx | to L1 H L°°. 
The algebra -#i,<x>is identified with a subalgebra of S i l v i a k »—• A'. We adopt the 

notation of Barnes (see [3]) and write T for an element of %ft and TStt if we wish to 
consider it as an element of B(LS D V). 

The next result, which is key to much of our spectral theory, is a consequence of a 
beautiful theorem of Schachermeyer ([11], Theorem 6.2). 

THEOREM 1.4. The algebra Slhoois a right ideal ofBi^. 

Proof. Let K denote the element of $i>00associated with the kernel k EA\j00. Let 
T G$i,oobe arbitrary. It follows from Schachermeyer's result that the operator #107^ G 
B(Ll) is absolutely integral. Therefore, there exists a kernel j such that 

(tfi o Ti)(f)(x) = JQj(x,y)f(y) d/x(y), / G L1, 

and IJI induces an operator in B(Ll). By the remarks following Lemma 1.3, K\fOQ o TitOQ 

is regular and |K\f00 o T\i0Q\(f) = \K\oT\\(/*), / G L1 D L°°. From Proposition 1.1 it 
follows that 

|*i o Ti\(f)(x) =\(Ko r ) i | ( 0W - JQ \Kx,y)\f(y) dpiy), f G L1 H L°°. 
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In particular, the operator in B(Ll D L°°) that |y| induces is continuous in the oo-norm. 
Therefore, there exists a constant M > 0 such that 

ess suPjc{ | JQ \Xx,y)\f(y) dfi(y)\ } ^ M\\f\U f G Lx H L°°. 

Write Q = U ^ Q , , such that /x(Q„) < oo and Qi Ç Q2 Ç • • • Ç Q and let x* G 
L1 D L°° be the characteristic function of Qn, ft = 1,2, Then 

ess sup^ ̂  |y(x, j ) | XnOO ^ ( j ) = M> n = 1,2,.... 

By the Lebesgue Monotone Convergence Theorem, 

(t ) e s s S UP* j a U(*> y) I dv (y) = M-

By definition of j , lnti(\j\) G B(Ll). Therefore, Intoo(|/|) = (Inti(|y|)y G B(L°°). Put 
/ = 1. Then/ G L°° and so (Intoo(|/| ))(/") G L°°. Therefore, 

(}) e s ssup ,^ |7(j,x)| d/i(y) - IKlntood/D^Hoo < oo. 

The inequalities (f) and (J) imply that y G-#i,oo- We have shown that K o T E$ij00is 
integral with kernel in -#i500; this completes the proof. • 

2. Order spectral theory of //-interpolation operators. The first theorem of this 
section is, in its present form, due to Barnes ([3], Theorem 5.1). Similar results appear in 
[10] and [14]. Recall that the polynomial convex hull of a compact set F Ç C, denoted 
by r , is defined to be the complement of the (unique) unbounded connected component 
of r in C. A hole of T is a bounded component of its complement. 

THEOREM 2.1. Assume that T G (Bsj and let o-(T) denote the spectrum ofT in the 
Banach algebra (Bsj. Then 

a(T) = a(Ts)U(T(Tt)\J(T(T5j). 

Furthermore, 
d(a(T))Ça(Ts)Ua(Tt)Çci(T) 

and hence 
[d(T)r = [ci(Ts)Ua(Tt)]\ 

If t — oo, cr(Tt) means cr (Too |LQ°). 

If p G [sJ], we can view *BStt as a subalgebra of B(LP). Hence, cr(Tp) Ç a{T) and 
Theorem 2.1 tells us that CT(TP) is always contained in the polynomial convex hull of 
a(Ts) U (j(Tt). This has been noted by other authors as well as by Barnes. Barnes's 
statement of this result has an advantage in that it makes an attempt to describe the 
holes of a(Ts)U cr(Tt) that are needed. It says that the missing holes are contained in the 
spectrum of another operator, namely Tst. At this time our understanding of the operator 
Tst on the Banach space U Pi V and its spectrum is not satisfactory. 
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COROLLARY 2.2. Assume that k ^Ax^and let a(k) denote the spectrum of k in the 
Banach algebra -#i,oo- Then 

Furthermore, 

and hence 

a(k) = a(Ki)U aiKoolL^U a(KltOQ). 

d(a(k)) Ç a(Kx)U a(Koo\l^) C a(k) 

Proof. With k £-#i,ooWe associate the element K E$i,oo- So a(K) denotes the spectrum 
in $iî0O while <j(k) denotes the spectrum of the same element when viewed in A\j00. Since 
.#1,00is a subalgebra of #1,00, we have a(K) Ç a(k). To see the other inclusion assume 
that A £ <J(K). Then there exists an element S e#i500such that (A -K)S = I = S(X -K) 
and hence / - XS - KS = 0 and / - XS - SK = 0. Note that K and S commute. If 
-#1,00=^1,00then the result is obvious from the preceeding theorem. If they are not equal 
then -#i,oois a proper right ideal (Theorem 1.4) and so A ^ 0. Therefore, 

-K-KS- (TK)KS = 0 and so KS = (-K)KS - -K, 
A A A À 

which shows that KS is in -#i500and is a quasi-inverse for jK. Thus a(K) = a(k) and 
the result now follows immediately from Theorem 2.1. • 

In the rest of this section it is our aim to study the relationship between the order 
spectrum and ordinary spectrum of these interpolation operators when they turn out to 
be regular. The notion of studying regular LP -space operators in connection with inter­
polation theory is motivated by the fact that every bounded linear operator on either 
L1 or L°° is regular (see [13] for a proof of this) while this is not necessarily true for 
p G (l,oo). Hence, the idea is that those //-space operators which extend to L1 and 
L°° operators will share some of the regularity conditions enjoyed by the elements of 
B(Ll) and B(L°°). Theorem 1.4 is an example of this phenomenon; Schachermeyer's 
result ([11], Theorem 6.2) shows that the 'integral' operators form a right ideal in the 
algebra of regular operators of U. Since every bounded linear operator on either L1 or 
L°° is regular, his result implies that the 'integral' operators form a right ideal of B(Ll) 
or B(L°°). In the same paper, he gives examples which show that they do not form a 
right ideal of B(L2). Previous work on interpolation of regular operators appears in [15]. 

The algebra of all regular operators on LP will be denoted by Br{LP). The norm of 
a regular operator in this algebra is defined to be the operator norm of its modulus. It 
is a Banach algebra that is continuously embedded as a subalgebra of B(LP). Let GQ(T) 
denote the spectrum of a regular operator T in the Banach algebra Br(LP). Then clearly 
ao(T) always contains a(T) and, because the embedding is continuous, the two sets are 
equal whenever GÇ>(T) is totally disconnected (this fact was first proved in [12]). If a(T) 
is known to be totally disconnected then the same conclusion cannot be drawn; for an 
example of a positive compact operator with uncountable order spectrum see [2]. It is 
desirable to have information about the relationship between the two spectra when they 
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are 'fatter' sets and to have conditions on the ordinary spectrum that imply equality of 
the two spectra. The 'interpolation' approach adopted here gives results in this direction. 
These results constitute the remainder of this section. 

We know that we can view ^i>00as a subalgebra of B(LP) for each p, 1 < p < oo. 
Since we can decompose any k E.#if00as a linear combination of four positive, real 
valued functions on (] x (], J3i500can actually be viewed as a subalgebra of the smaller 
algebra Br(LP). Therefore, for each k G-#i,oo, or(Kp) Ç a0(Kp) C a(k) for/?, 1 < p < oo. 
Thus, 

(3) U °(Zp)Q U cT0(Kp)Ca(k) 
pe[i,oo) pe[i,oo] 

for each/: E-#i,oo-

COROLLARY 2.3. Assume that k £-#i,oo- Then 

(J a(Kp)= (J ao(Kp) = a(k) = (T(Kl)Ua(K00) 
pE[\,oo] pE[l,oo] 

whenever one of the following conditions is satisfied: 
(a) ji is finite, or 
(b) [i is special discrete andKOQ(_lOQ(\i)) Ç co(/i). 

Proof The only thing that remains to be seen is that O-(KOQ) = cr (^oo|^o°) when /z is 
special discrete and ^ ( ^ ( / i ) ) Ç co(/i). This follows from [5], Theorem 4. • 

Boyd's example ([6]) gives a kernel k (necessarily not in -#i>(X>) defining a bounded 
linear operator Kp on each Z/((0oo)), 1 < p < oo, such that cr(Kp) g a(Ks) U a(Kt), 
1 < s < p < t < oo. We do not know of a kernel in .#1,00(M necessarily infinite) with 
this property. 

It is perhaps worth pointing out that the conditions on \x required in Corollary 2.3 are 
exactly the conditions under which the Lebesgue spaces form a chain; if /i is finite then 
L°° Ç • • • Ç L2 Ç L1 and if /x is special discrete then £1 Ç £2 Ç • • • Ç c0 Ç I00. 

COROLLARY 2.4. Assume that k eSl\i00. Then 

[ U a(Kp)U{0}V=[ U ^o(^)U{0}]^ 
/?G[l,oo] pG[l,oo] 

whenever KooiL00) Ç Lg°. 

/Voo/ Corollary 2.2 and [5], Theorem 4. • 
When KUL00) Ç Lg°, aiK^) and a(Xoo|Lg°) can only differ by { 0} (see [5]). This 

accounts for the hypothesis K^L00) Ç LQ° and for the extra { 0} in the conclusion of 
the preceeding corollary (and for them in the sequel). If K^L00) is not contained in Lg°, 
the results of this section hold with aiK^l Lg°) in place of a(K^). 

COROLLARY 2.5. Assume that k e^ii^and that K^L00) Ç Lg° (note that this is 
not a restriction on k ÇiAx^when ji is finite). If a(K\) and a(KQQ) are both totally 
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disconnected then CT(K\) = cr(Kp) = ao(Kp)for all p, 1 ^ p ^ oo. In particular, ifK\ 
and Kœ are compact, these equalities hold. 

Proof. From Corollary 2.2 it follows that o{k) is totally disconnected whenever a(Ki) 
and a(Koo) are both totally disconnected. Since ao(Kp) C cr(k) for all/?, 1 ^ p ^ oo, 
oo(£/?) is also totally disconnected for all/7, 1 ^ /? â oo. Now a ( ^ ) = GQ(KP) for 
all/?, 1 ^ / 7 ^ oo, follows from Schaefer's result. That this totally disconnected set is 
independent of p follows from the fact that for any 1 ^ s ^ t ^ oo, V is continuously 
embedded in U (or see [1], Proposition 2.2). • 

COROLLARY 2.6. Assume that k £Jiit00and that a(Kp) is independent ofp, 1 ^ p ^ 
oo. 

faj 7f/x is finite or special discrete then a(Kp) — o~o(Kp), 1 ^ /? ^ oo. 
(b) lf\i is arbitrary and K^L00) Ç Lg° then a(Kp) C a0(/^) Ç [a(Kp)] ", 1 ^ p S 
oo. 

Proo/ These results are immediate from Corollaries 2.3 and 2.4. • 
We recall that -#if0o=®i,oowhenever the underlying measure is special discrete. Hence, 

the results above, with hypothesis '// is special discrete', are true for every interpolation 
operator T E$i,oo- In the next section we show that the results of this section are also true 
for every T G $1,00whenever the underlying measure is finite. For non-special discrete 
measures we do not know whether the results of this section remain valid. In particular, 
we do not know if there exists a measure and a T G$i,ooSuch that Tp is not regular for 
some p > 1. If this can happen then theorem 3.2 implies the existence of a non-regular 
bounded operator of LQ°. 

3. Interpolation of regular operators and the finite measure case.. In this section 
we show that all of $i500actually sits inside of Br(Lp) when the underlying space has 
finite measure. The main theorem of this section, Theorem 3.2, is a much more general 
result. It states that the interpolation of regular operators is again regular. The first lemma 
is a generalization of Lemma 1.3. 

LEMMA 3.1. If T G %,u 1 < s < t < oo, has regular extensions Ts G Br(U) 
and Tt G Br(V) then T is regular. Furthermore, \ T\ maps U Pi V into U Pi V and is 
continuous in both the s-norm and the t-norm and hence \ T\ G (Bsj• 

Proof It suffices to show that T is regular as a map on U Pi V and that its modulus 
satisfies | T\ if) = | Ts | (f) = | Tt \ (f), for all/ G (Un L')+. Since Z/Pi V is order complete, 
T will be regular if for each/ G (Ls Pi L')+, the set Ef = { | Tg\ : gELsnL\ \g\ ^ / } 
is bounded above in U H V. If we restrict our attention to measurable functions then 
\g\ ^ / G U H V automatically implies that g G U H V. F ix/ G (U Pi L%. Since 
Ef Ç M(Q) is bounded above by | Ts\ if) G M(Q), hf = sup(£/) exists in M(Q). Since 
|^s|(/) £ M(Q) is an upper bound, hf ^ |7^|(f) G Z/ and hence hf e Ls. The same 
argument shows that /*/ G V. This completes the proof that T G B(Z/ Pi Z/) is regular. 
Since hf G U H Z/, A/ = | T| (/) and therefore | T| (/) ^ | r, | (/). Conversely, 

|r,|(f) = suP{|r5g| : geif, \g\ £/}=suP{|7fc| : geifnV, \g\ £/} 

^ sup{|7g| : g£LsnL\ \g\ ^f}=\T\(f). 
una 
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Therefore, \T\(f) = \Ts\(f). Similarly, \T\(f) = \Tt\(f). Since/ G (Un U)+ was 
arbitrary, the proof is complete. • 

THEOREM 3.2. IfTe %,u 1 < s < t < oo, has regular extensions Ts G Br(Ls) and 
Tt G Br(V) then Tp is regular for each s ^ p ^ t and \ T\p — \TP\. 

Proof. By Lemma 3.1, T is regular with modulus | T\ G %,t. We prove the result when 
the underlying field is R. The proof can be extended to the complexification in the usual 
way. Since T is regular, there exists positive operators T\ and T2 in B(U D V) such that 
T=Ti-T2. For/ G (Ls H L')+, 7 y ^ | T\ (f) and therefore 

|| r,/!!, ^ || I r| (0| | ,^ || I r|||-11/11,. 

Hence, T\ is continuous in the s-norm on (U D Z/)+ and hence on Ls H V. Similarly, T\ 
is continuous in the /-norm on Z/ Pi Z/. The same argument shows that T2 has the same 
properties. This shows that T\ and T2 are in (BSJ. Therefore they have extensions (T\)p 

and (T2)p in B(LP) for p, s ^ p S t. Since these extensions act positively on a dense 
subset of (LP)+ and are continuous in the p-novm, they are positive on LP. Further, for 
/ G Ls n Z/, (T\)p(f) — (T2)p(f) = T]/ — r ^ = 7/ = 7y. By uniqueness of extensions, 
(ri)^ — (72)^ = Tp on Lp. In particular, Tp is the difference of two positive operators 
and so Tp G Br(If). • 

Now, if T GîBi,oothen T has extensions to T\ on L1 and to T^ on L^°. The operator Ti 
is always regular. In addition, if \x is finite, then LQ° = L°° and hence T^ is also regular. 
By the last theorem, each induced operator Tp is regular and so we may view $i,ooas a 
subalgebra of Br(LP), 1 ^ p ^ 00, when /x is finite. The conclusions of Corollary 2.3, 
2.4, 2.5 and 2.6(a) thus hold for all T G$i,oo(not just the ones associated to k G-#i,oo) 
when /i is finite. In the case that /i(£2) = 00 we do not know if the same thing is true. 
It would be interesting to construct an operator (or to know that such an operator does 
not exist) which is bounded but not regular for some value of 1 < p < 00 which is 
1-continuous and oo-continuous. 

4. Application to integral operators on continuous function spaces.. The pur­
pose of this section is to apply some of our results to a problem of Jorgens. 

Assume now that our underlying measure space £1 is a locally compact and a -compact 
topological space. The terminology of this section is all taken from [9], section 12, al­
though some of the notation is changed. We begin with a few definitions. 

We let C(Q) denote the set of bounded, continuous functions £1 —» C with the supre-
mum norm || • H^. A sequence {fn}^Z\ Q C(£l) is said to converge locally if it is 
bounded in C(Q) and there exists a n / G C(Q) such that/n(;c) —* f(x) for all x G Q. 

This convergence will be denoted by/ n—•/. An operator T mapping C(Q) into itself 
loc loc 

is said to be locally continuous if Tfn—>Tf whenever/„ f and locally compact if 
every bounded sequence {fn}£Z\ Q C(Q) contains a subsequence {fnk}^\ such that 
{ Tfnk}f^i converges uniformly on compact sets. 

Put Ci = C(Q)H Ll(Q). Endowed with the norm ||/|| = max{ H/H^, | |/ | |i} C\ is a 
Banach space, and {C(£2), C\) is a dual system with respect to the form 

(/, g) = Jf(x)g(x) dfi(x)9 f G C(«), gECu 
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Given a T G Z?(C(£2)) it is not necessarily the case that T has an adjoint with respect 
to this form. That is, there may or may not exist an operator T' E B(C(£l)) such that 
T'{CX) Ç Cx and ( Tf, g) = (/, T'g) for all/ E C(Q), g E Ci. We define <D = ©(Q, /x) 
to be the set of all r E #(C(Q)) such that r(Ci) Ç C\ and there exists an adjoint V E 
5(C(Q)) of T with r'(Ci) Ç Cx. Endowed with the norm 111 T |11 = max{ || T\\, || 7* ||} 
2) is a Banach algebra (here || • || denotes the operator norm in B(C(Q))). 

Put 

L = L(Q) = {T eCD: T and 7' are locally compact}. 

This is a closed subalgebra of (D ([9], Theorem 12.5). Put k\(x) = k(x, •) and ^ W = 
/:(-,JC). If T E L then there exists a measurable function ^ : Q x i ] - > C such that k\ 
and &2 are continuous and bounded from Q into L1 with 

r / W = ^ k(x,y)f(y) dfi(y) and r'/(x) = JQ k(y,x)f(y) dfi(y) 

for all x E £2, / E C(Q) ([9], Theorem 12.5). The restriction that k\ is bounded from £1 
into L1 means that 

esssupx / |fc(jc,;y)| d[i(y) < oo. 

The restriction on &2 is the same, hence 

esssupj / |fc(y,jc)| d/i(y) < oo. 

Therefore, if T E L it follows that T = lnt(k) for some kernel k £ 2L = J%.\f00.We now 
have the following characterization of L: 

THEOREM 4.1. L = {k E J l : &i and &2 are continuous maps from Q into L1}. 

Proof. The discussion above shows that 

L Ç {k E .# : &i and £2 are continuous maps from Q. into L1}. 

The other inclusion is part of [9], Theorem 12.2. • 
From this theorem, we see that each element of L may be thought of as a kernel k E A 

with its associated operators Kp E B(LP), 1 < p < 00. Jôrgens gives several examples 
of kernels in L such that 

U <r(Kp) = av(k), 
p€[\,oo] 

yet cr(Kp) vary with p. It is always true that the inclusion U/?G[I,OO] or(Kp) Ç G<£)(k) holds; 
Jôrgens asks whether the equality always holds. At this stage, we know that (Jt{k) con­
tains both (J<£)(k) and (T&(k) since L may be viewed as a subalgebra of either (D or A. In 
fact, all three of these spectra are equal. We prove that cr£(k) = a^(k) and then give a 
partial answer to Jôrgens' question. 
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LEMMA 4.2. There exists a right ideal Ly ofA and a left ideal £4 of A such that 
L = LrC\ £4. Hence, (J£(k) = a^{k)for each k G L. 

Proof Consider the subspaces Lr = { k G A : k\ is continuous} and L\ = { k G A : 
k2 is continuous} of A Choose k G Lr, j G A, e > 0 and consider x G £1 Then, since 
&i is continuous, there exists a neighborhood Uofx such that 

^|fc(w,y)-£(>,y)| dri(y) = \\kx(u) - kx{x)\\x < j^r 

whenever u G U. Therefore, for u G U, 

||(^*7)i(")-(^*7)iW||i = Ja\(k*Mu,y)-(k*Mx9y)\ dp(y) 

= Ja\ JnW
M»^)/fe)0 -*(^»z)/(z.J)l dfi(z)I d/x(y) 

^ ^ |*(K,Z) - *(*,z)| [JQ \j(z,y)\ dn(y)] dfi(z) 

^ \\j\\'fQ\k(u,z)-k(x,z)\ dfJL(z)<€. 

Therefore, (k *j)\ is continuous and hence k *j G Lr. This shows that Lr is a right ideal 
of A. Similarly, £4 is a left ideal of A. We have now shown that L is the intersection of 
a right ideal and a left ideal. To complete the proof suppose that À ^ 0 is not in ajz(k). 
Then there exists j G A such that 

—k +j - —k *j = 0 = — & +7 - —/' * k. 
X J X J X J XJ 

Since k G X Ç £,, j = Ijfe * j - ±fc G A- Since k £ L Ç Lh j = ~j *k- jk e £4. 
Thus y G L and hence À is not contained in (j£(k). This shows one inclusion; the other 
is obvious. • 

Since L is a subalgebra of ©, <J<£>(k) Ç cr£(fc) holds for all k E L. It follows from 
([9], 12.8) that 

(4) U <r(KP)Q°<D(k)Ç(TL(k) = (Tsl(k)9 keL. 
pe[i,oo] 

THEOREM 4.3. A^wrae* that keL. Then 

U <7(tf„) = (72>(t) - a(tf,) U aO^oo) 
p€[l,oo] 

whenever one of the following conditions is satisfied: 
(a) \x is finite, or 
(b) [i is special discrete and ^0O(£°c\\i)) Ç CQ(/X). 

Proof Corollary 2.3 and (4). 
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THEOREM 4.4. Assume that k £ L. IfK^iL00) Ç Lg° then 

[ a # ) U { 0 } ] ^ [ a f f i ) U a ( y u { 0 } ] ' = [ U <r(Kp)U {0}]\ 
/?G[l,oo] 

Proof. By Corollary 2.2 and (3) we have that 

[**(*)U {0}V = [*(*,) U <7(tfoo|£o°)U {0} ]* 
= [<r(*i)u *(*«>)u{o}rç[ U ^ ) u { o } r 

p€[l,oo] 

Ç [ ^ ( t ) u { o } ] A , 

and so all are equal. The result now follows from (4). • 
The following is a direct consequence of Theorem 4.4. 

COROLLARY 4.5. Assume that k e L. IfR^iL00) C Lg° and CJ{K\)U a(Koo) ispoly-
nomially convex then Upe[i,oo] &(KP) U { 0} = (J<£){k) U { 0}. 
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