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Abstract. The paper provides a combinatorial method to decide when the space of local systems
with nonvanishing ¢rst cohomology on the complement to an arrangement of lines in a complex
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¢cation of arrangements having such a component of positive dimension and a comparison
theorem for cohomology of Orlik^Solomon algebra and cohomology of local systems are given.
The methods are based onVinberg^Kac classi¢cation of generalized Cartan matrices and study
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1. Introduction

One of the central questions in the theory of hyperplane arrangements is the problem
of expressing topological invariants of the complements to arrangements in terms of
combinatorics. Probably the ¢rst nontrivial result in this direction is due to Arnold,
Brieskorn and Orlik-Solomon who calculated the cohomology algebra of the comp-
lement (referred below to as the Orlik^Solomon algebra) in terms of the intersection
lattice of an arrangement. The question to which extent the fundamental group of the
complement can be described in combinatorial terms turned out to be rather dif¢cult
(cf. [8], [15]). In this paper we shall show how certain invariants of the fundamental
group, namely its characteristic varieties containing the trivial character of the fun-
damental group, can be calculated from the intersection lattice. As for the most
questions about fundamental groups, due to Lefschetz type theorems, the study
of these invariants suf¢cient to carry out for arrangements of lines. The arrange-
ments for which these invariants are non trivial have an interesting combinatorial
structure namely they admit certain partition of the collection of lines into disjoint
groups. We show that such decompositions can be detected either combinatorially,
using methods going back to Vinberg and Kac and which were designed for the
classi¢cation of Kac^Moody algebras, or algebro-geometrically, using pencils of
planes curves whose singular members form the arrangement. Moreover, we were
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able in some cases to give classi¢cation of arrangements for which these invariants
are non trivial and it suggests that a complete classi¢cation may be a feasible task.

As we mentioned, the invariants of the fundamental group in question are the
characteristic varieties. For an arrangement with the complement M such a variety
belongs to the torus of characters of the fundamental group Hom�p1�M�;C��. More
precisely the characteristic variety of M is formed by those characters of p1�M�
for which the corresponding local system has non-vanishing cohomology in
dimension one. It follows from a theorem of Arapura [1] that these subvarieties
are unions of translated subtori and we are interested in subtori which contain
the trivial character (i.e. for which no translation is needed).

The starting point in our study is the connection between the following two kinds
of cohomology that has been known for some time. The ¢rst kind is the cohomology
H��A; a� of the Orlik^Solomon algebra A of an arrangement provided with the
differential of multiplication by an element a 2 A of degree 1. The second kind
is the cohomology H��M;L�a�� of the complement M of the arrangement with
the coef¢cients in the local system L�a� de¢ned by the differential 1-form correspond-
ing to a. According to [4,12] these cohomologies coincide if a is suf¢ciently generic,
more precisely if the residue of the differential form at certain intersections of
hyperplanes is not a positive integer. The problem of vanishing of the cohomology
of either kind also was studied in several papers (e.g., see [8, 9, 18]).

M. Falk in [5] looked at H1�A; a� from a different point of view. He de¢ned the
variety R1 of all the elements a 2 A1 with H1�A; a� 6� 0 and considered its
isomorphism class as an (full) invariant of A (its quadratic closure). In [9], the
characteristic varieties of algebraic curves were used for the case of arrangements
of lines in the projective plane. For this case, a new suf¢cient condition was obtained
for the isomorphism of the two kinds of cohomology above. (cf. also [3]). In par-
ticular, the conjecture of Falk that R1 is the union of linear subspaces of A1 was
proved there.

As for the relation between the two types of the cohomology we propose the
following problem (Problem 4.4).

For a ¢xed p describe a 2 A1 such that for those with dimHp�M;L�a�� 6� 0 one has

dimHp�M;L�a�� � sup
N2Zn

dimHp�A�; a�N�

where the identi¢cation A1 � Cn is given by the natural basis of A1 (in one-to-one
correspondence with the set of hyperplanes). The fact that the left hand side is
not smaller than the right hand side is a simple corollary of [4] (see Corollary 4.3).
We prove that for p � 1 and a 2 R1 the above relation holds for all but ¢nitely many
cosets (cf. Theorem 5.3)*.

*Added in Proof: In [19] an example of an arrangement for which the characteristic variety
has a one-dimensional component not containing the identity is given (it follows from 5.1 that
one-dimensional components never contain the identity). In particular, the above relation does
not hold for a 2 A1 with L�a� belonging to such a component excluding suggestion in a
preprint version of this paper.

338 ANATOLY LIBGOBER AND SERGEY YUZVINSKY

https://doi.org/10.1023/A:1001826010964 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001826010964


To address this problem it is natural to try to ¢nd out more about the components
of R1. In [5], a basic piece of data for describing a component was so called
neighborly partition of the set of hyperplane. Then the component was given by
a system of linear and quadratic equations. We suggest to start from a linear system.
Let us associate with every a 2 A1 such that

Pn
i�1 ai � 0 the set X � X�a� of all the

elements X of rank 2 of the intersection lattice of the arrangement such thatP
Hi�X ai � 0. Treating elements X as sets of hyperplanes intersecting at X we

can describe X by its incidence matrix J. Our main tool is the symmetric matrix
Q � JtJ ÿ E where E has all the entries 1. Since all the off-diagonal entries of
Q are either 0 or ^1 we can apply the Vinberg classi¢cation and its generalization
(see Theorem 2.2) to it. Since besides any 1-cocycle of A is in the null-space of
Q we obtain some new information about H1�A; a�. The main piece of it is that
dimH1�A; a� is de¢ned by X�a� (see 3.5). This implies that the set of irreducible
components of R1 is in a one-to-one correspondence with the set of null-spaces
of the matrices Q (a 2 A1) and distinct components intersect only at 0. In fact, a
component V coincides with the set of cocycles for any complex �A; a� with
a 2 V n f0g. Moreover, if a 2 R1 then the respective matrix Q should have at least
three irreducible components of af¢ne type (see Section 2 for de¢nition). This con-
dition turns out to be quite restrictive and allows us to classify certain classes of
lattices (matroids) with R1 6� 0 (see Section 6).

On the other hand, intersecting a projective hyperplane arrangement by a plane in
general position, i.e. using a Lefschetz type argument referred to above, we obtain an
arrangement of lines in P2. Blowing up P2 at the set X0 of points corresponding to X
gives a variety P0 that carries quite a lot of information about the initial arrangement.
For instance, we recover Q as the minus intersection form on P0. To each component
ofR1 having a positive dimension we can associate a pencil of curves, i.e. an algebraic
map of the complement of X0 onto the complement of a certain ¢nite subset of P1.
The structure of the matrix Q is closely related to the structure of this pencil.
The existence of the pencils imposes restrictions on the euler characteristic of P0

which in turn yields strong restrictions on the arrangement. We obtain the classi-
¢cation and nonexistence results mentioned above using a combination of combi-
natorial and topological points of view.

The layout of the paper is as follows. In Section 2, we study properties of
matrices Q using the Vinberg classi¢cation and generalizing it. In Section 3,
we use these properties to obtain information about H1�A; a�. In Section 4, we
discuss relations between Hp�A; a� and Hp�M;L�a�� and state the conjecture. In
Section 5, we generalize results from [1] and prove a result on the problem for
p � 1. Sections 6 considers from combinatorial and Section 7 from
algebro-geometric points of view examples and classi¢cation of some types of
Q both realizable and non-realizable by matroids and arrangements. In particular
we obtain complete classi¢cation of arrangements with positive dimensional R1

and with each line containing exactly three points, the arrangements with matrix
Q satisfying certain properties and bound on the number of lines in an arrangement
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with ¢xed r; k where r � dimR1 and k is the maximal number of vertices on each
line.

2. Matrices of Collections of Subsets

In this section, I is a ¢nite set and X is a non-empty collection of its subsets such that
each two elements of X have at most one common element. We will always assume
that both I and X are linearly ordered. Let J � J�X� be the incidence matrix of
X , i.e. the jXj � jI j-matrix with entries aX ;i � 1 if i 2 X and aX ;i � 0 otherwise. Also
let E be the jI j � jI j-matrix whose every entry is 1. Our goal in this section is to
analyze the matrix

Q � Q�X� � JtJ ÿ E:

For each real matrix R denote by V �R� the null space of R (consisting of real column
vectors). Notice that V �E� � fu 2 RI jPi2I ui � 0g. Then for any subspace V � RI

put V� � V \ V �E�. The following observation is immediate.

LEMMA 2.1. V �Q�� � V �J��.
Clearly Q is symmetric and its every entry off the diagonal is either -1 or 0. The
decomposition of Q in the direct sum of its indecomposable principle submatrices
de¢nes a partition P of I . This partition can be de¢ned in terms of X as follows.
Let G be the graph on I whose edges are the pairs i; j that are not in any
X 2 X . Then P is the partition of G into its connected components.

We have Q � �K2PQK where each QK is an integer matrix satisfying the same
conditions as Q and besides being indecomposable. Thus one can apply the Vinberg
classi¢cation (e.g., see [7], pp. 48^49) to QK .

Let us recall Vinberg's result. Suppose R � �aij� is a m�m real indecomposable
matrix with two extra properties: (a) aij W 0 for i and (b) aij � 0 implies aji � 0.
We call a real column vector ut � �u1; . . . ; um� positive and write u > 0 if all
ui > 0 (u < 0 if ÿu > 0).

Then one and only one of the following three possibilities holds for R:

(i) R is of ¢nite type, i.e., it is positive de¢nite (equivalently for every u > 0 we have
Ru > 0);

(ii) R is of a¤ne type, i.e., it is positive semide¢nite of rank mÿ 1 and its null space is
spanned by a positive vector;

(iii) R is of inde¢nite type, i.e., there exists a positive vector u such that Ru < 0.

Applying that classi¢cation to QK we will call it simply ¢nite, af¢ne or inde¢nite if
it is of the respective type.

The following remark will be useful. SupposeX does not cover I . Then at least one
row of Q consists of ^1 whence Q is irreducible and inde¢nite. If X covers I then all
diagonal elements of Q are non-negative.
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Now we can prove the main result of the section.

PROPOSITION 2.2. For matrix Q�X� there are precisely two possibilities:

(i) For every K 2 P, QK is ¢nite or a¤ne;
(ii) For a unique K0 2 P, QK0 is inde¢nite and QK is ¢nite for every other K 2 P.

Proof. It suf¢ces to show that there cannot be distinct K1;K2 2 P such that
Q1 � QK1 is inde¢nite and Q2 � QK2 is either inde¢nite or af¢ne. Suppose to the
contrary that Qi (i � 1; 2) are such. Then there exist column vectors ui > 0 in
IRKi such that Q1u1 < 0 and Q2u2 < 0 or Q2u2 � 0. We can also assume thatP

j2K1
�u1�j �

P
j2K2
�u2�j . De¢ne u 2 IRI by uj � �u1�j if j 2 K1, uj � ÿ�u2�j if

j 2 K2 and uj � 0 if j 2 I n �K1 [ K2�. Notice that
P

j2I uj � 0 whence Eu � 0. Then
we have using � ; � for the standard dot product

0W �Ju; Ju� � �Qu; u� � �Eu; u�
� �Q1u1; u1� � �Q2u2; u2�W �Q1u1; u1� < 0

which is a contradiction. &

DEFINITION 2.3. The collection X is called either af¢ne or inde¢nite if respectively
possibility (i) or (ii) from Proposition 2.2 realizes for Q�X�. In the former case, we
denote by P1�X� the set of elements K 2 P�X� such that QK is af¢ne. In the latter
case, K0 2 P�X� is always the unique element such that QK0 is inde¢nite.

COROLLARY 2.4. Put V � V �X� � V �Q�X��.
(i) IfX is a¤ne then dimV � jP1�X�j and there is a basis of V consisting of vectors uK

(K 2 P1�X��such that the restriction of uK to K is positive and its restriction to the
other elements of P�X� is 0. In particular, dimV� � jP1�X�j ÿ 1.

(ii) If X is inde¢nite then all the vectors from V are 0 on every K 2 P�X�n{K0}.

In the latter case of Corollary 2.4, P�X� does not de¢ne dimV .
We will also use the following observation.

PROPOSITION 2.5. IfX is af¢ne then for every X 2 X we have X \ K 6� ; either for
all K 2 P1�X� or for none of them.

Proof. Suppose to the contrary that there exists X 2 X and K 0 2 P1�X� such that
X \ K 0 � ; but X \ K 6� ; for K 2 �P � P1�X� with a non-empty �P.

First notice that j �Pj > 1. Indeed if �P �{K} then for any u 2 IRI such thatP
i2X ui � 0 its restriction to K would be 0. But there exists v 2 V �X�� non-zero

on K and K 0 which contradicts Lemma 2.1. Thus there exist distinct K1;K2 2 �P.
Now compare V � V �X�� and V 0 � V �X 0�� where X0 � Xn{X}. On one hand,

since one equation is deleted we have V � V 0. On the other hand, P�X 0� can be
obtained from P�X� by gluing together the elements intersecting with X . Since
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K 0 is untouched, Q0K is unchanged whence X0 is af¢ne. Since K1 and K2 get glued
jP1�X0�j < jP1�X�j whence by Corollary 2.4 dimV 0 < dimV . The contradiction
completes the proof. &

3. H1�A; a�
In this section,A �{H1; . . . ;Hn} is a linear arrangement of hyperplanes in a space of
dimension ` over an arbitrary ¢eld and L is its intersection lattice. By L�k� we denote
the subset of L of all elements of rank (i.e., codimension) k. Every X 2 L de¢nes the
subarrangementAX �{H 2 AjH � X}. We will treat elementsX 2 L also as subsets
of �n �{1; . . . ; n} putting i 2 X if Hi 2 AX . In this sense, we put
L0�2� �{X 2 L�2�jjX j > 2}. Notice that L0�2� is the set of all X 2 L�2� with
indecomposable AX . For every two distinct i; j 2 �n there exists a unique
Xij 2 L�2� such that i; j 2 Xij.

Now let us ¢x a ¢eld F of characteristic 0 and recall the de¢nition of the
Orlik^Solomon algebra A � A�A� (depending on L and F only). Let E be the graded
exterior algebra over F with generators e1; . . . ; en. De¢ne the linear map
@ : Ep ! Epÿ1 by

@�ei1 � � � eip� �
Xp
j�1
�ÿ1�jÿ1ei1 � � � êij � � � eip :

Then A is the factor algebra of E by the homogeneous ideal generated by @�ei1 � � � eip �
for all dependent sets {Hi1 ; . . . ;Hip}. The grading on E induces a grading A � �pAp

on A. We keep the notation e1; . . . ; en for the images of ei in A. Notice that these
elements form a basis of A1 that allows us to identify A1 with Fn. As in the previous
section, we put A�1 �{a 2 A1j

Pn
i�1 ai � 0} and U� � U \ A�1 for every subset U

of A1. For every a 2 A1 the multiplication by a de¢nes the differential of degree
1 on A. The respective cohomology is denoted by H��A; a�.

The ultimate goal of this section is to study H1�A; a� as a function of a and the set
R1 �{a 2 A1jH1�A; a� 6� 0} (cf. [5]). For that we put

Z�a� � fx 2 A1jax � 0g
and notice that H1�A; a� � Z�a�=Fa.
The following three lemmas are spread through the literature (e.g. see [3, 5, 9, 18])

and straightforward.

LEMMA 3.1. Let rankL � 2 and a �Pn
i�1 aiei 2 A1. Then x �Pn

i�1 xiei 2 Z�a� if
and only if

ai
Xn
j�1

xj �
Xn
j�1

aj

 !
xi; for every i � 1; . . . ; n:

Therefore
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(i) if a 6� 0 and
Pn

i�1 ai � 0 then Z�a� can be described by the equation

Xn
i�1

xi � 0;

(ii) if
Pn

i�1 ai 6� 0 then Z�a� � Fa;
(iii) if a � 0 then Z�a� � A1.

If n � 2 then the conclusion in case (i) coincides with that in case (ii).
For every x �Pn

i�1 xiei 2 A1 and every X 2 L we put x�X � �Pi2X xiei.

LEMMA 3.2. Let A be arbitrary and a 2 A1. Then x 2 Z�a� if and only if
x�X � 2 Z�a�X �� � A1�AX � for every X 2 L�2�.

Combining the two previous lemmas we obtain the following.

LEMMA 3.3.Using the notation of Lemma 3.2, Z�a� can be described by the following
system:

for every X 2 L0�2� such that a �X � 6� 0 and
P

i2X ai � 0,X
i2X

xi � 0; �3:1�

for every other X 2 L�2� and every pair i < j from X,

aixj ÿ ajxi � 0: �3:2�

It is known that if a 2 A1 n A�1 then H��A; a� � 0 ([18]). Therefore we restrict our
considerations to a 2 A�1. Since the algebra A is skew commutative, b 2 Z�a� if
and only if a 2 Z�b�. Thus Z�a�� � Z�a� for every a 2 A�1n{0}.

Now we introduce the main objects of the section. For any a 2 A�1 de¢ne the subset
of L0�2� via

X�a� � fX 2 L0�2�j
X
i2X

ai � 0; a�X � 6� 0g

and the subset of �n via

I�a� �
[

X2X�a�
X n fjjaj � 0;Xij=2X�a� for some i with ai 6� 0g:

Notice that if A is a line arrangement then X�a� is a set of points and I�a� is the
subarrangement of some lines passing through any of the points from X .

The following theorem is the main result of this section. In it we apply the notation
from Section 2 to the collection (in fact, covering)X�a� on I�a�. In particularV �X�a��
denotes the subspace of A1 of all elements that are 0 outside of I�a� and whose
restrictions to I�a� lie in the null space of Q � Q�X�a��.
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THEOREM 3.4. Let a 2 A�1n{0}. If I�a� � ; or X�a� on I�a� is inde¢nite then a 62 R1.
If this collection is af¢ne then Z�a� � V �X�a���, in particular dimZ�a� �
jP1�X�a��j ÿ 1.

Proof. Let us keep in mind that for every j 2 �n n I�a� either aj � 0 or for some i 2 �n
we have Xij 62 X�a� whence (3.2) holds for every x 2 Z�a�. Thus if there exists
j 2 �n n I�a� such that aj 6� 0 then dimZ�a� � 1 and a 62 R1. In particular this covers
the case where I�a� � ;.

From now on we can assume that I�a� 6� ; and aj � 0 for every j 62 I�a�. For every
j 62 I�a�, there exists i with ai 6� 0 and X ij=2X�a� whence for every x 2 Z�a�, the
equalities (3.2) imply xj � 0. Thus x can be non- zero only on I�a� and we can identify
x with its restriction to I�a�. By de¢nition of X�a� and Lemma 3.3, (3.1) holds for
every X 2 X�a� whence J�X�a��x � 0. Since besides

Pn
i�1 xi � 0 we have

Q�X�a��x � 0, i.e., x 2 V �X�a���. Thus Z�a� � V �X�a���.
Now suppose that X is inde¢nite and x 2 Z�a�. Since x 2 V �X�a��we conclude that

x is 0 on each K 2 P � P�X�a�� such that K 6� K0. Let us study the coordinates of x
on K0. If i; j 2 K0 are such that Xij 62 X�a� and either ai � aj � 0 or aiaj 6� 0 then
(3.2) holds. Since K0 is an element of P and a 6� 0, (3.2) holds for every i; j 2 K0

and x � ca on K0 for some c 2 F . Summing up we see that x � ca whence
dimZ�a� � 1, i.e., a 62 R1.

Now suppose X � X�a� is af¢ne and x 2 V �X��, i.e., Q�X�x � 0 and Ex � 0. By
Lemma 2.1 we have J�X�x � 0, i.e., (3.1) holds for X 2 X . Moreover for every
i; j 2 I�a� such that Xij 62 X we have i; j 2 K for some K 2 P. If QK is ¢nite then
xi � xj � 0 and (3.2) holds tautologically. If QK is af¢ne then the kernel of QK

is one-dimensional and (3.2) holds again. By Lemma 3.3 x 2 Z�a� that completes
the proof. &

COROLLARY 3.5. For every a 2 A�1Y ; a 6� 0; the dimension of Z�a� is de¢ned by
X�a�. If the collection X�a� is af¢ne (in particular if a 2 R1) then the space Z�a� itself
is de¢ned by X�a�. Moreover for every b 2 Z�a�n{0} we have Z�b� � Z�a�.

Proof. Only the last statement needs a proof. Let b 2 Z�a� � V �X�a��� and b 6� 0.
Then there exists K 2 P1�X�a�� such that bi 6� 0 for every i 2 K . Take X 2 X�a�.
We have

P
i2X bi � 0. Besides by Proposition 2.5, since a 6� 0 we have

X \ K 6� ; whence b�X � 6� 0. This implies that X 2 X�b� and X�a� � X�b�. By sym-
metry X�a� � X�b� and the result follows. &

COROLLARY 3.6 (cf. [9,3]). All the irreducible components of R1 are linear.
Proof. Due to Theorem 3.4, R1 is the union of ¢nite number of linear spaces. The

result follows. &

The previous corollary leaves open the question what the linear components of R1

are. The answer turns out to be simple.
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COROLLARY 3.7. For every a 2 R1n{0}, the space Z�a� � V �X�a��� is a maximal
linear space in R1 whence an irreducible component of R1.

Proof. Theorem 3.4 and Corollary 3.5 imply that

R1 �
[

a2R1nf0g
Z�a�

and each two distinct Z�a� and Z�b� intersect only at 0. Since there is only ¢nite
number of these spaces and jF j � 1, each one of them is a maximal linear subspace
in R1. &

COROLLARY 3.8.The pairwise intersection of the irreducible components of R1 is 0.

Corollary 3.7 gives a description of the irreducible components of R1 in terms of
elements of A�1. One can give a description by properties of subsets of L0�2�. For
every X � L0�2� put I�X� � [X2XX and as above denote by V �X�� the subspace
of A�1 corresponding to X on I�X�.

THEOREM 3.9. Let X � L0�2� satisfy the following conditions. (i) It is af¢ne on
I � I�X�, (ii) jP1�X�jX 3 and (iii) no X 2 X lies in

S
K2PnP1

K. Then V �X� is
an irreducible component of R1. The map X7!V �X� de¢nes a one-to-one correspon-
dence of the set of collections satisfying conditions (i)^(iii) with the set of irreducible
components of R1.

Proof. Suppose X satis¢es the conditions (i)^(iii). Put V � V �X�� and ¢x
a 2 Vn{0}. If X 2 X then

P
i2X ai � 0. Besides since a 6� 0 and X satis¢es (iii), Prop-

osition 2.5 implies that a�X � 6� 0. Thus X 2 X�a� and X � X�a�.
On the other hand, let X 2 X�a�. Since a�X � 6� 0 there exists K 2 P1�X� such that

X \ K 6� ;. Since
P

i2X\I ai � 0 and a�K� > 0 or a�K� < 0 there exist distinct
K1;K2 2 P1�X� intersecting with X . This means that X � Xij for some i 2 K1

and j 2 K2. Since by de¢nition ofP�X�we have Xij 2 X it follows that X 2 X whence
X�a� � X .

Now Theorem 3.4 implies that V � V �X�a��� � Z�a�. By condition (ii)
dimZ�a�X 2 whence a 2 R1. Then Corollary 3.7 implies that V �X� is an irreducible
component of R1.

Conversely letV be an irreducible component ofR1 and a 2 Vn{0}. By Corollaries
3.7 and 3.8, V � V �X�a���. Clearly X�a� satis¢es the conditions (i)^(iii) above. Since
X�a�7!V , the map is surjective.

Finally suppose thatV � V �X1� � V �X 2�whereX i (i � 1; 2) satisfy the conditions
(i)^(iii). Choose a non-zero a 2 V . By the ¢rst part of the proof, X 1 � X�a� � X 2

whence the above map is injective. This completes the proof. &

Remark 3.10. Let us compare the description of the irreducible components of R1

from Theorem 3.9 and that from [5]. Fix an X as in the above theorem and consider
the submatroid of L on I 0 � SK2P1�X� K . Then it is easy to see that the partition
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p generated byP1�X� on I 0 is neighborly (using the terminology from [5], p.144) and
the set of all polychrome £ats of rank 2 coincides with X (moreover every
polychrome X intersects every element of p). Thus Lp from [5] coincides with
V �X� which implies Lp � Vp (cf. [5], Remark 3.15).

4. H��A�; a� and Cohomology of Local Systems

For the rest of the paper we consider only complex arrangements and F � C. Let
A �{H1; . . . ;Hn} be an arrangement in C` and A its Orlik^Solomon algebra.
According to the Orlik^Solomon theorem [13], A is isomorphic to the algebra of
closed differential forms on the complement M0 of A generated by the forms
oi � dai=ai where ai is any linear functional on C` with kernelHi. The isomorphism
is given by ei 7!oi. Due to the Brieskorn theorem [2] this algebra of forms is
isomorphic to H��M0;C) under the de Rham homomorphism. If we projectivize
A and denote by M its complement in PC`ÿ1 then H��M;C� is isomorphic to
the subalgebra A� of A generated by A�1.

Denote the form on M corresponding to a 2 A�1 by o�a�. Since o�a� is closed and
o�a� ^ o�a� � 0 it de¢nes a local system on M that we denote by L�a�. More
explicitly L�a� is associated with the one-dimensional representation of p1�M� send-
ing its generator corresponding to Hk to exp�2piak�.

We will need the following theorem.

THEOREM (STV) [12]. Suppose that a 2 A�1 and for all X 2 L such that AX is
indecomposable, the sum

P
i2X ai is not a positive integer. Then

Hp�M;L�a�� � Hp�A�; a�

for every p.

Let us record a simple observation important for the rest of this section.

LEMMA 4.1. For every a 2 A�1

(i) H��A�; a� � H��A; la� for every l 2 C�;
(ii) H��M;L�a�� � H��M;L�a�N�� for every N � �Ni� 2 ZZn such that

Pn
i�1 Ni � 0.

The main result of this section is as follows.

PROPOSITION 4.2. For every a 2 A�1 and every p

dimHp�M;L�a��X dimHp�A�; a�:

Proof. Let a 2 A�1. Fix a real positive number e such that for every X 2 L and
0 < t < e the number �1ÿ t�Pi2X ai is not a positive integer. Then by Theorem
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(STV) and Lemma 4.1(i) we have for every p

Hp�M;L��1ÿ t�a� � Hp�A�; �1ÿ t�a� � Hp�A�; a�:
Using the upper semicontinuity of the dimension of cohomlogy for t! 0 we obtain
the result. &

COROLLARY 4.3. For every a 2 A�1, N 2 ZZn and p

dimHp�M;L�a��X dimHp�A�; a�N�:

Corollary 4.3 and examples justify the following problem.

Problem 4.4. For every p and almost all a 2 A�1 among those with Hp�M;L�a�� 6� 0 one
has

dimHp�M;L�a�� � sup
N2ZZn

dimHp�A�; a�N�:

A partial answer to this problem will be proved for p � 1 in the next section.

5. Characteristic Varieties

Our ¢rst goal in this section is to give a more precise statement of the Proposition 1.7
from [1]. Since we work here in more generality than in the previous sections we start
by ¢xing notation.

Let M be an arbitrary quasiprojective variety. We identify the torus
H1�M;C�� � Hom�p1�M�;C�� with the set of all (rank one) local systems on M.
We also call H1�M;C�� the torus of characters Char�p1�M�� of p1�M�. Let
Sk�M� � Char�p1�M�� be the subset consisting of those local systems L for which
dimH1�M;L�X k. Then Sk�M� is an algebraic subvariety of Char�p1�M��. We want
to study the structure of irreducible components of Sk�M� of positive dimension.
Such a component belongs to a component of S1�M�. The latter de¢nes a map
f : M ! C to a smooth curve C and has a form rf ��H1�C;C��� for some torsion
point r in Char�p1�M��. We assume that C isn't compact (which is always the case
if M is a complement to an arrangement, cf. 5.2), i.e. p1�C� is a free group with,
say, n generators. We shall denote such a group below as Fn. Notice that for a local
system L on C we have dimH1�C;L� � nÿ 1 if L is not trivial and for the trivial
local system dimH1�C;L� is n (indeed Fn has cohomological dimension equal to
1, the euler characteristic is independent of a local system and is equal to 1ÿ n
and dimH0�C;L� is 1 or zero depending on whether the system is trivial or not).

THEOREM 5.1. Let V be a component of Sk�M� containing the identity character.
Then there is a ¢nite set of local systems E � V (possibly empty) and an integer
s such that for any local system L in V n E we have dimH1�M;L� � s (i.e.
max{kjV � Sk�M�}� s). For such a component and the corresponding map
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f : M ! C such that V � f ��H1�C;C��� the number of generators of the fundamental
group of C is s� 1.

Proof. By theorem 1.6 in [1] any local system in V has form f ��L� for an appro-
priate local system on C. The main step in the argument is the following statement
implicitly, as D. Arapura pointed out, contained in [1]. For all but ¢nitely many
local systems in V we have

H1�M; f ��L�� � H1�C;L�: �5:1�
Using that C has cohomological dimension 1, the projection formula
Rqf��f ��L�� � Rqf�C
 L and the Leray spectral sequence

Ep;q
2 � Hp�C;Rqf��f ��L����)Hp�q�M; f ��L��

we see that (5.1) is a corollary of the vanishing of H0�C;R1f��C� 
 L� for all but
¢nitely many local systems L on C. As it is shown in [1], if U is the subset of C
over which f is a locally trivial ¢bration, then

H0�C;Rqf�C
 L� � H0�U;Rqf�C
 L�:

Let gi (i � 1; :::; s) be a system of generators of p1�U� and li; i � 1; :::; s (resp.
mi;j; i � 1; ::; s; j � 1; . . . ; rkR1f�C) the eigenvalues of the action of gi on L (resp.
on R1f�C). Then H0�U;Rqf�C
 L� � 0 unless for each i there is j such that
li � mi;j � 1. Hence (5.1) is valid for all but at most dim�Rqf�C� � s local systems.&

Now let A be an arrangement of n lines in PC2, M � PC2 nSH2AH and
A� � H��M;C� the subalgebra of the Orlik^Solomon algebra generated by A�1.
We have the following extension of results of [9] to the case of general arrangements
(not necessarily containing a line transversal to the rest of the lines of the
arrangement) (cf. also [3]).

THEOREM 5.2. Let Vk � A�1 be an irreducible component of the variety of those
a 2 A�1 for which dimH1�A�; a�X k. Then the image of Vk under the map
exp : a 7!L�a� is an irreducible component of Ss�M� and exp is a universal covering
of this component.

Proof. By Theorem 3.4 and Corollary 3.7 Vk is a linear space. By Proposition 4.2
we have dimH1�A�; a�W dimH1�M;L�a��. Thus expVk � V where V is an
irreducible component of Ss with sX k. In this case V is a subtorus of
H1�M;C�� (i.e. no translation is needed) since Vk contains the origin and
dimV � S � 1. Let f : M ! C be a map as in Theorem 5.1. Then C is a rational
curve, i.e., the complement in P1 to a set {p0; . . . ; ps�1}. Indeed, the base points
of the pencil given by f can be eliminated using a sequence of blow ups, and hence
f is a restriction of �f : �M ! �C where �M and �C are compacti¢cations of M and
C respectively. If �C had a positive genus it would admit a non trivial holomorphic
1-form and its pull back via �f to �M would yield a non trivial holomorphic 1-form
on �M contradicting the rationality of �M.

348 ANATOLY LIBGOBER AND SERGEY YUZVINSKY

https://doi.org/10.1023/A:1001826010964 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001826010964


Denote by oi 1-forms on P1 that generateH1�P1 n [{pi};C� (i � 0; . . . ; s� 1). The
pull backs of these forms span an �s� 1�-dimensional space ofVk. Since exp is a local
homeomorphism and dimVk X s� 1 the result follows. &

Finally we can prove a version of Conjecture 4.4 for p � 1. Recall that for every
a 2 A�1 we have H1�A�; a� � H1�A; a�.

THEOREM 5.3. For all but ¢nitely many cosets mod Zn of a 2 R1

dimH1�M;L�a�� � sup
N2ZZn

dimH1�A; a�N�:

Proof. The arguments are similar to the proof of Theorem 5.2. We ¢rst notice that
since dimH1�A; a� > 0, the local system L�a� belongs to a component of the charac-
teristic variety of positive dimension containing the identity character. Indeed, since
dimZ�a� > 1, one can ¢nd a deformation a�t� of a (a�0� � a) for 0W tW 1 such that
a�t� is not proportional to a�t0� for t 6� t0. Then a�t� 2 R1 and L�a�t�� provide a
deformation of L�a�.

Next let us consider the map p : M ! P1n{p0; ::; pm} corresponding to a
component of the characteristic variety containing L�a�. Then L�a� is a pullback
of a local system L�o� on P1n{p0; ::; pm} corresponding to a differential form o.
Let ~o be the form with constant coef¢cients on M representing the cohomology
class of the pullback of o (such a form exists according to Brieskorn's theorem [2]).
Then ~o and o�a� represent the same local system and hence o�a� � ~o� o�N�
for some N 2 ZZn. Equivalenlty a � ~a�N where ~a 2 A�1 and ~o � o�~a�.

Now we claim that H1�A; ~a� � H1�M;L�a��. We need to show that
dimH1�A; ~a�Xmÿ 1 since dimH1�M;L�a�� � mÿ 1 with only ¢nitely many excep-
tions by [1]. Indeed the map H1�P1n{p0; ::; pm}� ! A�1 is injective (by Leray Spectral
sequence) and its image lies in Z�~a�. This gives us an �mÿ 1�- dimensional subspace
in H1�A; ~a� that completes the proof. &

Exceptional cosets, for which the equality of the theorem fails may indeed exist. It
follows from Example 4.5 in [3]. The arrangement in this example consists of seven
lines that can be represented in three different ways as the union of braid arrange-
ment with a line connecting two double points. For this arrangement S1 contains
non empty S2 consisting of one point outside of the origin.

Finally let us note that theorems 5.2 and 5.3 are valid for arbitrary arrangements
in P�Cn�. Indeed by Lefschetz theorem (cf. [10]) for a generic plane H the
cohomology of the complement to arrangement in Pn and its intersection with
H are the same in dimension 1 and injects in dimension 2. Hence the cohomology
of the Orlik^Solomon algebra in dimension 1 is the same for both arrangements.
On the other hand characteristic varieties also are the same since they depend only
on the fundamental group (cf. de¢nition in Section 1 of [9]). This yields 5.2 for
arrangements in Pn. The theorem 5.3 follows from this comparison and the Lefschetz
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theorem for cohomology with coef¢cients in local system (which is a consequence of
the same argument as in the case of constant coef¢cients, i.e. that the complement in
Pn obtained from the complement inH by attaching cells of dimension greater than 2
cf. [10, 16])

6. Types of A¤ne Matrices, Realizations and Examples

In this section, we exhibit examples of types of matrices Q with af¢ne components
and discuss the problem of their realizations by matroids and arrangements.

Recall that for every subset X � L0�2� we put I � I�X� � SX2X X and n � jI j.
Then Q � Q�X� � �qij� is a symmetric n� n-matrix with mi � qii 2 ZZ� and
qij � ÿ1 or 0 for i. To parametrize matrices Q we write Q � Q�m;G� where G is
the graph on n vertices vi; . . . ; vn with edges {vi; vj} for qij � ÿ1. The vector
m � �m1; . . . ;mn� 2 ZZn

� can be regarded as a labeling of the vertices of G. The
decomposition of Q into the direct sum of indecomposable components corresponds
to the partition of G into connected components.

The section is organized in the following way. First we collect some information
and series of examples of pairs �G;m� with Q�m;G� af¢ne indecomposable. Then
we attend the question which of the af¢ne matrices and more importantly matrices
Q having at least three af¢ne components can be realized by matroids. These
(especially the latter) are more restrictive conditions which allows us to classify some
classes of examples. The ¢nal question is whether the matroids appearing in this way
can be represented by arrangements of complex lines. We give some examples of
representations leaving negative results till the next section where we will apply dif-
ferent methods.

6.1. AFFINE INDECOMPOSABLE MATRICES

We start with the following two general observations.

PROPOSITION 6.1. Let G be an arbitrary (¢nite) connected graph. Then the set
M�G� of vectors m 2 ZZn

�, for which Q�m;G� is af¢ne, is ¢nite.
Proof. Suppose that G has n vertices. For each m 2 M�G� denote by Qk the

principal submatrix of Q � Q�m;G� such that the involved rows have k smallest
mi and by Dk the determinant of Qk. Without loss of generality assume that
m1 Wm2 W � � � Wmn. [7], Lemma 4.4 implies that for k < n matrix Qk is a direct
sum of ¢nite matrices whence Dk > 0. Thus for ¢xed k < n and Qk determinant
Dn can be viewed as a polynomial in mk�1; . . . ;mn with a positive coef¢cient Dk

of the highest degree term mk�1 � � �mn. Since Dn � 0 the possible value of mk�1
is bounded from above whence mk�1 can afford only ¢nite set of values. The result
follows by induction on k. &
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PROPOSITION 6.2. Let G be a connected graph on n vertices with a set E of edges.
Let N be the set of all positive integer column vectors u ( ut � �u1; . . . ; un�) such that
ui are mutually relatively prime and each ui divides u�i� �Pfi;jg2E uj. De¢ne
m � f �u� via mi � u�i�=ui. Then (i) m 2 M�G�, (ii) u lies in the null space of
Q�m;G� and (iii) f : N !M�G� is a bijection.

Proof. Fix u 2 N and consider the respective matrix Q � Q�m;G�. Clearly Qu � 0
whence Q is af¢ne (see [7], Corollary 4.3) which proves (i) and (ii). Now let Q be an
arbitrary integer af¢ne matrix. Then its null space contains a unique positive integer
vector with mutually relatively prime coordinates which implies (iii). &

Examples of A¤ne Indecomposable Matrices

1. Laplace matrices of graphs.Here G is an arbitrary connected graph and Q is its
Laplace matrix, i.e.,Q � Q�d;G�where di is the degree of vi. It is easy to check thatQ
is af¢ne, in particular a column vector u generating its null-space can be taken as
ui � 1 for all i.

2. Af¢ne generalized Cartan matrices.Here G is an extended Dynkin diagram with
single edges and mi � 2 for all i. Notice that for the diagrams of type other than A�1�`
the labeling is different from that in the previous example.

3. Full graphs. Let G be the full graph on n vertices. Then it is not hard to describe
all the labelings m so that Q � Q�m;G� is af¢ne.

PROPOSITION 6.3. For the full graph G the matrix Q � Q�m;G� is af¢ne if and only
if

Xn
i�1

1
mi � 1

� 1: �6:1�

Proof. Since the null space of Q should contain a positive vector the following
system should have a positive solution:

�mi � 1�xi �
Xn
j�1

xj; 1W iW n: �6:2�

Clearly (6.1) is equivalent to it. Conversely (6.1) implies that any solution of (6.2) is
proportional to

xi � 1
mi � 1

; i � 1; . . . ; n:

&

Notice that the Laplace matrix of the full graph has mi � nÿ 1 for all i.
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4. Bushes. Let G be the bush on n� 1 vertices. By that, we mean that G is a tree
whose one vertex v0 has degree n (the root) and all the other vertices v1; . . . ; vn
(changing enumeration slightly) are leaves. An argument similar to that of Prop-
osition 6.3 shows that Q is af¢ne if and only if

m0 �
Xn
i�1

1
mi
: �6:3�

If (6.3) holds then the null space of Q is generated by the vector
ut � �1; 1=m1; . . . ; 1=mn�. As a concrete example, the complete list of admissible
vectors m for the extended Dynkin diagram D�1�4 consists of the following 20 vectors
(up to permutations of leaves): (4,1,1,1,1) (the Laplace matrix), (3,2,2,1,1),
(2,2,2,2,2) (the Cartan matrix), (2,3,3,3,1), (2,6,3,2,1), (2,4,4,2,1), (1,4,4,4,4),
(1,3,4,4,6), (1,12,4,3,3), (1,6,6,3,3), (1,12,12,3,2), (1,15,10,3,2), (1,18,9,3,2),
(1,24,8,3,2), (1,42,7,3,2), (1,8,8,4,2), (1,12,6,4,2), (1,20,5,4,2), (1,10,5,5,2),
(1,6,6,6,2).

6.2. REALIZATION OF MATRICES Q BY MATROIDS

Here we study the problem about a realization of Q by a matroid of rank at most
three. A matrix Q is indecomposable af¢ne in the ¢rst part of the subsection
and then will have several af¢ne components. We describe matroids as in Section
3 by the incidence matrices J of the collections of dependent sets. More precisely
the columns of J are parametrized by the points of the matroid and the rows by
its dependent sets. If the matroid is representable over a ¢eld C by an arrangement
of lines in the projective plane then the columns of J correspond to the lines
and its rows to the multiple points of their intersections. Abstractly J is a 0^1 matrix
whose any two columns both have entries 1 in at most one common row. The
decomposition of Q into indecomposables de¢nes a partition P of columns of J
hence for each K 2 P de¢nes a matrix JK of the respective columns. We will always
assume that JK does not have 0-rows for every K . A realization of Q by J is the
identity Q � JtJ ÿ E.

Not all af¢ne matrices are realizable.

EXAMPLE 6.4. Let Q be the Laplace matrix of the graph G on vertices {v1; . . . ; v5}
which is the full graph on {v2; . . . ; v5} extended by the single edge {1; 5}. We want
to observe that Q is not realizable. Moreover consider the indecomposable component
S (on rows 1 to 4) of Q� E:

S �
2 1 1 1
1 4 0 0
1 0 4 0
1 0 0 4

0BB@
1CCA:

Suppose S � JtJ for a 0^1 matrix J. Then the ¢rst column of J has precisely two 1's in
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some rows and each of the following three columns has 1 in one of these rows. Thus
some two of these three columns have 1 in common row which is a contradiction.
Therefore S and Q are not realizable.

If an af¢ne matrix is realizable then it could have several different (up to per-
mutations of rows in J) realizations. Clearly the number of realizations is ¢nite.
For instance, the Cartan matrix of type D�1�4 has 3 different realizations. For certain
ordering on the vertices they are

Ji 

1
1
1

0@ 1A
where

J1 �

1 1 1 1
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
; J2 �

1 1 1 0
1 0 0 1
1 0 0 0
0 1 0 1
0 1 0 0
0 0 1 1
0 0 1 0

0BBBBBBBB@

1CCCCCCCCA
; J3 �

1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

0BBBBBB@

1CCCCCCA:

More interesting problem for us is the realization of decomposable matrices with
at least 3 af¢ne components. This class turns out to be more restrictive. While study-
ing this class we sometimes apply the dual point of view to a matrix J realizing Q.
Each column Ci of it can be considered as a subset of the set R of all rows of
J. Since there are no 0-rows in JK , the system C�K� �{Ci}i2K is a covering of R
for each K 2 P. If K 0 2 P and K 0 6� K then Cj for every j 2 K 0 is a transversal
of C�K�. By that we mean that Cj \ Ci 6� ; for all i 2 K whence jCi \ Cjj � 1. This
immediately implies the inequalities

j �K jW jCjjW jK j �6:4�

where j 2 K 0 and �K is a subset of K such that Ci \ Ck � ; for every i; k 2 �K .
The inequalities (6.4) allow us to classify in some sense a series of realizable

matrices with at least 3 af¢ne components.

THEOREM 6.5. Suppose Q � Q�m;G� is a realizable matrix whose graph G has at
least two connected components that are full graphs with at least two vertices each
and the matrices corresponding to the components are af¢ne. Then there exists an
integer nX 2 such that all the diagonal elements of Q are nÿ 1, jPjW n� 1 and
jK j � n for each K 2 P. If jPj � n� 1 (i.e. maximal) then the realizations of Q
are parametrized by latin n� n squares with entries 1; . . . ; n.
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Proof. First notice that for any matrix corresponding to a full graph all pairs
{Ci;Cj} in any realization J are disjoint. Then (6.4) implies that jCij � jK j for each
i and each K 2 P. Put n � jK j. Since each QK is at least 2�2-matrix we have
nX 2. Clearly all the diagonal elements of Q are nÿ 1.

Now order all the elements of P as K0;K1; . . . ;K`ÿ1. Ordering the elements inside
Ks (s � 0; 1) and the rows of J appropriately we can assume without loss of generality
that (i) Ci �{n�i ÿ 1� � 1; . . . ; ni} for i 2 K0, i.e., 1W iW n, (ii) Cj �{j ÿ n; j; . . . ;

j � �nÿ 2�n} for j 2 K1, i.e., n� 1W jW 2n, and (iii) for every r > 0 the ¢rst n rows
of Jr � JKr form the identity matrix. Now break all the rows of J into blocks of
n subsequent rows from jn� 1 to �j � 1�n (j � 0; 1; . . . ; nÿ 1). All the blocks of
Jr (r � 1; . . . ; `ÿ 1) are in bijection with the set of n-permutations {s�i; j�}
(1W iW n; 1W jW `ÿ 1) with the following properties:

(i) s�1; j� � s�i; 1� � e (the identity permutation) for all i; j;
(ii) every two permutations s�i1; j� and s�i2; j� for j > 1 are disjoint, i.e., the images of

any element are distinct under these permutations;
(iii) similar condition holds for s�i; j1� and s�i; j2� for i > 1.

Both yet unproved statements of the theorem follow. &

It is interesting to notice that in terms of line arrangements the above full-graph
connected components of G correspond to sets of lines such that any point from
X lies on exactly one line of the set. We will discuss the existence of such arrange-
ments in 6.3.

We obtain another series of representable matrices Q using the af¢ne matrices
corresponded to bushes. Let G be the graph of three connected components, each
one being the bush on r� 1 vertices. Let the restriction of the labeling vector m
to each connected component be �1; r; . . . ; r� where 1 labels the root of the bush.
Then Q�m;G� has three af¢ne components and is realizable. As a matroid one
can take that of the complex arrangement of lines of type Ar;1;3 given by
xyz�xr ÿ yr��xr ÿ zr��yr ÿ zr�. It follows immediately from [3], Remark 6.3.

In the rest of this subsection we classify all the realizable matrices with several
af¢ne components such that at least three of the components are Cartan matrices.
Our argument is straightforward: given an indecomposable matrix we consider
all possible realizations of it and list all transversal columns for each realization.
Going through this list we can see what other components can be realized jointly
with the initial matrix. In order to reduce amount of case by case inspections
the following simple observation is useful.

LEMMA 6.6.Let G be a graph on vertices {v1; . . . ; vn}, m � �m1; . . . ;mn� a labeling of
its vertices and Q � Q�m;G�. Fix K 2 P and i 2 K. Suppose J is a realization of Q and
J 0 is obtained from J by deleting the ith column and all the rows whose restrictions to
Kn{i} are 0. Then J 0 is a realization of Q0 � Q�m0;G0� where G0 is the subgraph of
G on {v1; . . . ; v̂i; . . . ; vn} and m0j Wmj for all j 6� i with equality on Kn{i}.
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Since we consider Cartan matrices the labelsm have mi � 2 for all i. Notice that in
terms of arrangements of lines, this means that we consider only systems of multiple
points such that any line passing through them contains precisely 3 of them. Under
this condition, the indecomposable af¢ne matrices are Cartan matrices of extended
Dynkin diagrams with singular edges, i.e., the types A�1�` (`X 2), D�1�` (`X 4) and
E�1�` (` � 6; 7; 8). Notice that all these graphs except A�1�2 contain G0 � A3 as a sub-
grpah. Thus the ¢rst graph to analyze is G0.

The following facts about G0 can be obtained by simple inspection.

(i) The Cartan matrix of G0 has the unique (up to permutations) realization by

J0 �

1 0 1
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1

0BBBBBBBBBB@

1CCCCCCCCCCA
:

(ii) There are precisely two (up to permutations of columns and rows) maximal sets
of columns transversal to the collection of columns of J0 such that every two of
them intersect at no more than one element. Written as matrices they are

T1 �

1 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
1 0 0 1 0 0 1
0 1 0 0 1 1 0
0 0 1 0 0 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1

0BBBBBBBBBB@

1CCCCCCCCCCA
;T2 �

1 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
1 0 0 1 0 0 0
0 1 0 0 1 1 0
0 0 1 0 0 0 1
0 0 0 1 0 1 0
0 0 0 0 1 0 1

0BBBBBBBBBB@

1CCCCCCCCCCA
:

The respective symmetric matrices Ri � Tt
i Ti ÿ E�i � 1; 2� are

R1 �

1 0 0 0 ÿ1 ÿ1 0
0 1 0 ÿ1 0 0 ÿ1
0 0 1 ÿ1 ÿ1 ÿ1 ÿ1
0 ÿ1 ÿ1 2 0 0 0
ÿ1 0 ÿ1 0 2 0 0
ÿ1 0 ÿ1 0 0 2 0
0 ÿ1 ÿ1 0 0 0 2

0BBBBBBBB@

1CCCCCCCCA
;
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R2 �

1 0 0 0 ÿ1 ÿ1 ÿ1
0 1 0 ÿ1 0 0 ÿ1
0 0 1 ÿ1 ÿ1 ÿ1 0
0 ÿ1 ÿ1 2 0 0 ÿ1
ÿ1 0 ÿ1 0 2 0 0
ÿ1 0 ÿ1 0 0 2 0
ÿ1 ÿ1 0 ÿ1 0 0 2

0BBBBBBBB@

1CCCCCCCCA
;

These matrices correspond to the labeled graphs G1 and G2.
(iii) Now suppose that a graph G has (at least three) extended Dynkin diagrams

with single edges as its connected components and at least one of them, say G0, con-
tains A3 as a subgraph (i.e., this component is not A�1�2 ). Suppose the respective
Cartan matrix Q � Q�m;G� (m � �2; . . . ; 2�) is realizable by J. Denote by J 0 the sub-
matrix of J that consists of the columns of J corresponding to vertices ofG0 and by J 00

the matrix of the other columns. We can apply Lemma 6.6. It implies that J 00 can be
obtained from either of J1 and J2 by adding three new rows that form the identity
block with the ¢rst three rows of Ji and have only 0 in the other positions and then
omitting some columns (maybe none). The addition of three new rows does not
change Gi, just makes the labeling �2; 2; . . . ; 2�. Thus one should be able to delete
some vertices from one of these graphs and obtain a graph having at least two
extended Dynkin diagrams as its connected components. It is quite obviously
impossible and we get a contradiction. Thus Q cannot be realized.
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(iv) It is left to consider Q whose each component is the Cartan matrix A�1�2 .
This case is covered by Theorem 6.5. Moreover since the permutation group
on {1; 2; 3} has only two elements without a ¢xed point there is the unique
realization of Q (up to permutations of rows and columns). The maximum
number of components Q can have is 4 and if it has 4 af¢ne components it
is realized by the matrix JC

JC �

1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 1 0 0 1 0
1 0 0 0 0 1 0 0 1 0 0 1
0 1 0 1 0 0 0 1 0 0 0 1
0 1 0 0 1 0 0 0 1 1 0 0
0 1 0 0 0 1 1 0 0 0 1 0
0 0 1 1 0 0 0 0 1 0 1 0
0 0 1 0 1 0 1 0 0 0 0 1
0 0 1 0 0 1 0 1 0 1 0 0

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
:

If it has three af¢ne components then it is realized by either 9 or 10 or 11 ¢rst
columns of JC .

Summing up, we obtain the following result.

PROPOSITION 6.7. Let Q have at least three af¢ne components that are Cartan
matrices. Then Q is realizable if and only if Q has at most four components such that
each af¢ne component is 2I3 (where I3 is the 3�3 identity matrix) and if a ¢nite
component exists then it is a principle submatix of 2I3.

Similarly it is possible to study the case where mi W 2 for every i. The only extra
possibility here is given by three components each being the af¢ne matrix corre-
sponding to the bush with 2 leaves.

6.3. REPRESENTATIONS OF MATROIDS

If a matrix Q is realizable then we can ask if the respective matroid can be rep-
resented by an arrangement A of lines in a projective plane over a given ¢eld. If
it is possible then the set X of all multiple points of A de¢ne component V �X�
of R1 with the associated matrix Q.

Here we give the positive answers about the representability of certain matroids
from this section.

For Q from Theorem 6.5 representations over C exist for n � 2 and n � 3. For
n � 2 it is the braid arrangement given by xyz�xÿ y��xÿ z��yÿ z� and for n � 3
the Hessian arrangement of 12 lines containing 9 £exes of a non-singular cubic (e.g.,
given by xyz

Q
i;j�0;1;2�x� ziy� zjz� where z � exp�2p �������ÿ1p

=3�). In Section 7, we will
prove that for n > 3 these matroids cannot be represented over C.

The arrangement of 9 lines projectively dual to the Hessian arrangement (that is a
representation of the plane of order 3) gives a different example. All the 12 points of
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this arrangement do not de¢ne any component of R1 since all components of the
respective matrix Q are ¢nite. Any subset of 9 points such that the left out 3 points
have all 9 lines passing through them de¢nes a component of R1 of the above type
with n � ` � 3.

Let us remark about matrices Q from Theorem 6.5 that they completely cover the
case of arrangements of lines with only triple multiple points and R1 6� 0. Indeed if
any row of matrix J has exactly three 1's then Q has at most three components.
Since R1 6� 0 the number of components is exactly three and each one of them cor-
responds to a full graph. It follows from the above theorem that there are 3n lines
(for some n) partitioned in 3 groups of equal size n such that lines in each group
are in general position and each multiple point is on a line from each group. In
section 7, we will show that these arrangements (equivalently their duals) do not
exist for n > 5.

Another series of representable (by de¢nition) matroids come from realizations of
matrices having components corresponding to bushes. The respective arrangements
are of types Ar;1;3.

Finally Proposition 6.7 gives the following result for arrangements.

THEOREM 6.8.LetA be a projective arrangement of lines with a setX of points from
L such that V �X� is a component of R1 of positive dimension. Let any line from L
having a point from X have exactly three of them. Then L�2� for this arrangement
is given by the incidence matrix that is a submatrix of JC from subsection 6.2 that
includes the ¢rst 9 of its columns.

7. Direct Sum Decompositions and Pencils

In the case where A is an arrangement over C the matrix Q � Q�X� assigned to a
subset X of L0�2� has a natural geometric interpretation as follows. Let us consider
the arrangement of lines induced by A in a generic plane P in P�C�`ÿ1. Let P0

be the blow up of P at the intersection points of the images of X 2 X with P.
Let S be a free abelian group generators of which correspond to the proper
preimages in P0 of intersections P with the hyperplanes from A.

PROPOSITION 7.1. Intersection form on P0 induces a symmetric bilinear form on S
which has ÿQ as its matrix.

Proof. The entries of the bilinear form induced on S by the intersection form of
P0 are the following. If the lines in P intersect at a point from X then the entry
corresponding to these lines is 0, if the lines intersect at a point outside of X then
the entry is 1 and the diagonal entry is 1 ÿm where m is the number of points
from X on this line (all this since a blow up at a point decreases the intersection
index by 1). Comparing with the de¢nition of Q in Section 2 we conclude the
proof. &
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Now ¢rst part of Proposition 2.2 (ii) from this point of view is a consequence of the
Hodge index theorem claiming that the signature of the intersection form on P0 is
�1; rkH2�P0� ÿ 1�

Next let us assume that dimR1 > 0 and the corresponding component S of the
characteristic variety (i.e. the image of a component of R1 under the exponential
map) is essential (cf. [9]). The latter means that A does not have a subarrangement
A0 such that for some component S0 of the characteristic variety of A0 one has
S � i��S0� where the map i� of the character groups i� : H1�P2�C� n A0;C�� !
H1�P2�C�nA;C�� is induced by inclusion. Recall also that S corresponds to a
choice of a subset X � L0�2� and to emphasize this we sometimes write S�X�
for S.

Let p : P n A ! P1n{p1; . . . ; pm} be the map corresponding to the component S (cf.
Section 5). The map p de¢nes a rational map ~p : P! P1 regular outside of a set of
codimension 2 (cf. [11]), i.e. a ¢nite set of points. Since p is regular outside of A
we have

[
~pÿ1�pi� � A: �7:1�

The pencil of curves consisting of the closures of ¢bres of ~p does not have common
components. Indeed, if we assume that ` is such an irreducible component, then
from (7.1) ` must be a line and S is the image of a component in the arrangement
obtained from A by deleting ` in contradiction with assumption that S is essential.
This implies that the pull back of the pencil corresponding to ~p has no base points
on P0 (i.e. the blow up of P at X ). Let p0 : P0 ! P1 be the corresponding map.
It follows from Bertini's theorem that a generic ¢bre of p0 is non singular. Now
let us consider a free abelian group Di generated by the classes of lines from A which
belong to the ¢bre p0ÿ1�pi�. Clearly subgroups Di and Dj of S are orthogonal with
respect to the intersection form. On the other hand, since neither of the exceptional
curves in P0 belongs to a ¢bre of p0 and by Zariski's connectedness theorem the ¢bres
of p0 are connected (cf. [11] (3.24)), it follows that the intersection form is irreducible
on Di.

Next recall ([6], exp. X) that for each ¢bre of a ¢bration of a surface there is a
unique linear combination z0 of components of this ¢bre with positive integer
coef¢cients such that

(a) for any combination z of the components of this ¢bre �z; z�W 0 with equality if
and only if z is an integer multiple of z0.

(b) �z; z0� � 0 for any z supported on the ¢bre.
A consequence of this is that the intersection form on each Di is af¢ne.
We can summarize this as follows.

PROPOSITION 7.2. LetA be an arrangement such that dimR1 > 0 and S � S�X� an
essential component of a characteristic variety containing 1. Then there is a
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one-to-one correspondence between the blocks of matrix Q�X� from Section 2 and the
¢bres of the pencil corresponding to the component S�X�.

Existence of a pencil for which given arrangement is a union of several elements
imposes severe restrictions on the arrangement. For example one can show the
following (cf. 6.3).
PROPOSITION 7.3. Let A be an arrangement of n � k �nX 2) lines for which:

a) the corresponding matrix Q is sum of k equal blocks so that the lines correspond-
ing to each block are in general position;

b) any multiple point contains a line from each group;
c) each line contains n multiple points of the arrangement.
Then kW 5.

Proof. It follows from c) that each group is af¢ne and hence dimR1 > 0. Hence
there is a pencil such that the arrangement forms a union of its singular ¢bres.
Let us calculate the euler characteristic of P0, i.e. the plane blown up at the multiple
points of the arrangement. According to c) and a) there are n2 multiple points
and hence the euler characteristic of P0 is E1 � 3� n2. On the other hand, since
P0 is ¢bered over P1 with k ¢bers consisting of n lines in general position (which
has the euler characteristic equal to 2nÿ �n�n� 1�=2�) and with generic ¢bre a
non singular plane curve of degree n (which has the euler characteristic 3nÿ n2),
we see that e�P0�XE2 where E2 � �2ÿ k�� � �3nÿ n2� � k � �2nÿ �n�n� 1�=2��
(inequality is due to possible presence of other singular ¢bres and the semicontinuity
of euler characteristic). But E2 > E1 for kX 6 which yields (i). Also in the case
k � n� 1 we see that E1 � E2 if and only if n � 2; 3, i.e. in these cases we may
and indeed do have a ¢bration with no degenerate ¢bres other than those composed
of the lines of arrangement. &

Similar argument allows to obtain a restriction on arrangements having a given
number of multiple point on each line which bounds the number of arrangements
having large dimR1.

PROPOSITION 7.4. Let A�r; k� be a class of arrangements with each line having at
most k points and such that dimR1 � r. Then there is a function F �r; k�W 2k� 1 such
that the number of lines in each of r� 1 groups in which the arrangement splits does
not exceed F �r; k�. In particular the number of the lines in the arrangement is at most
�r� 1�F �r; k� < �r� 1��2k� 1�.

Proof.The argument is similar to the one used in the previous proposition. Let d be
the maximum of the numbers of lines in each group of lines forming a singular ¢bre
of the pencil. Then the euler characteristic of the total space of the ¢bration is greater
than E2 � �2ÿ r��3d ÿ d2� � r�2d ÿ d�d ÿ 1�=2� (use semicontinuity of euler
characteristic). On the other hand the euler characteristic of the blow up is greater
than or equal to E1 � 3� d � k � r. One has E2 > E1 and hence a contradiction unless

360 ANATOLY LIBGOBER AND SERGEY YUZVINSKY

https://doi.org/10.1023/A:1001826010964 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001826010964


E2 ÿ E1 has a positive root F �r; k� which is the bound on d. Direct calculation shows
that when r!1 the positive root of E2 ÿ E1 is an increasing function of r and its
limit is 2k� 1. &
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