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STOCHASTIC CALCULUS OVER SYMMETRIC
MARKOV PROCESSES WITH TIME REVERSAL

K. KUWAE

Abstract. We develop stochastic calculus for symmetric Markov processes in
terms of time reversal operators. For this, we introduce the notion of the pro-
gressively additive functional in the strong sense with time-reversible defining
sets. Most additive functionals can be regarded as such functionals. We obtain a
refined formula between stochastic integrals by martingale additive functionals
and those by Nakao’s divergence-like continuous additive functionals of zero
energy. As an application, we give a stochastic characterization of harmonic
functions on a domain with respect to the infinitesimal generator of semigroup
on L2-space obtained by lower-order perturbations.
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81. Introduction

The author’s previous article [13] refined stochastic calculus over sym-
metric Markov processes and investigated stochastic integrals by extending
Nakao’s divergence-like continuous additive functional (CAF) of zero energy
in the framework of general symmetric Markov processes without using time
reversal operators. In the present article we develop the results in [13] in
terms of time reversal operators. For this we introduce a refined notion
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of additive functionals, so-called progressively additive functionals in the
strong sense (PrAFSs) with the notion of time-reversible defining sets. The
notion of PrAFSs on [0, ([ with time-reversible defining sets is also intro-
duced. Hereafter, we call PrAFSs (on [0,([) with time-reversible defining
sets reversible PrAFSs (on [0,([) (see Definitions 4.6 and 4.8). We show
that most additive functionals that appeared in the textbook by Fukushima,
Oshima, and Takeda [3] can be regarded as reversible PrAFSs (see Lemmas
6.1 and 6.2, Corollaries 6.1 and 6.2). The weaker notion, progressively addi-
tive functionals (PrAFs), was formulated in [4] as a natural extension of
the positive progressively additive functionals admitting no exceptional set
that were introduced by Walsh in [22]. In [22], Walsh considered the positive
PrAF for the study of dual additive functionals admitting no exceptional set
in the framework of a pair of Markov processes in duality. One of our aims
is to establish the dual PrAF admitting exceptional sets in the framework of
symmetric Markov processes associated with regular Dirichlet forms. How-
ever, the definition of the time reversal operator treated in [22] is slightly
different from ours, and his PrAFs require nonnegativity and strict measur-
ability, which are very restrictive for our purposes. The dual PrAF of any
PrAF obtained in [4, Theorem 2.18] allows only m-negligible sets because of
the lack of time-reversible defining sets, which is also restrictive for obtain-
ing refined formulas. For this reason we introduce the reversible PrAFS (on
[0,¢]) (see Lemma 4.3).

Our first result is that any locally square integrable martingale additive
functionals (MAFs) on [0, ([ introduced in [4] can be regarded as reversible
PrAFSs on [[0,([ (Theorem 5.1). Second, we prove a formula between locally
square integrable MAFs and its extension of Nakao’s divergence-like CAF
in terms of PrAFSs on [[0,([[ with time reversal operators (Theorem 5.2).
As corollaries, we obtain quasieverywhere (q.e.) refinements of Lyons—Zheng
decompositions for Fisk—Stratonovich-type integrals (Theorem 5.3 and Corol-
laries 5.1-5.5). Our Lyons—Zheng decompositions for Fisk—Stratonovich-
type integrals by purely discontinuous Dirichlet processes are new even
under the law Py,. Our Theorem 5.2 also connects two kinds of extensions
of Nakao’s divergence-like CAF of zero energy and its stochastic integrals
developed, respectively, in [4] and [13] (Theorem 5.4).

The time reversibility of the defining sets of PrAFS plays a crucial role in
our Theorems 5.1 and 5.2 instead of the Py-invariance of the time reversal
operator r; on {t < (} (see (2.3)). In particular, the dual additive functional
of the given reversible PrAFS defined by the time reversal operator can be
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regarded as a relazed PrAF (PrAF*) in Lemma 4.3 (see Definitions 4.1 and
4.4 for the definition of PrAF*). From this we obtain that the dual multi-
plicative functional on [0, ([ of any Doléans—Dade stochastic exponential of
locally square integrable MAFs on [0, ([ can be regarded as a relaxed pro-
gressively multiplicative functional (PrMF) on [[0,(] (Lemma 7.1), which
together with Theorem 5.1 yields the £-quasicontinuity of strongly contin-
uous semigroups on L?-space associated with a lower bounded quadratic
form obtained from the combinations of the Feynman—Kac transform and
Girsanov transform developed in [3] (Theorem 7.3). This £-quasicontinuity
enables us to obtain a stochastic characterization of the harmonic function
on a domain (Theorem 7.4 and Corollary 7.3).

Let us briefly outline the organization of this paper. In Sections 2 and 3
we give some results in [13] with several corrections as errata. In Section 4 we
introduce the notion of PrAFSs and reversible defining sets. In Section 5 we
prove Theorems 5.1 and 5.2 as our main theorems and prove Theorems 5.3
and 5.4. We show some examples. In Section 6 we present Theorems 5.1 and
5.2. In Section 7 we prove Theorems 7.3 and 7.4 and give an example.

§2. Preliminary facts

Let X ={Q, Foo, F4, Xt,0, Py, x € E} be an m-symmetric right Markov
process on a Lusin space F, where m is a o-finite measure with full support
on E. Its associated Dirichlet space (£,F) on L?(E;m) is known to be
quasiregular (see [17]). By [6], (€, F) is quasihomeomorphic to a regular
Dirichlet space on a locally compact separable metric space. Thus, using
this quasihomeomorphism, without loss of generality, we may and do assume
that X is an m-symmetric Hunt process on a locally compact metric space
E such that its associated Dirichlet space (£, F) is regular on L*(E;m) and
that m is a positive Radon measure with full topological support on E. Let
Ey:= E U{0} be the 1-point compactification of F, and let { :=inf{t >0 |
X; = 90} be the lifetime of X. We implicitly use the quasileft continuity up
to oo, which is not the usual property of right Markov processes. So the
strict quasiregularity of (€,F) is essentially assumed (see [6]). However, if
we restrict ourselves to stating the result that it holds up to the lifetime with
probability 1 for a q.e. starting point, then the framework of quasiregular
Dirichlet forms is enough.

Without loss of generality, we may assume that €2 is the canonical path
space D([0,00[— Ej) of right-continuous, left-limited (rcll) functions from
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[0,00[ to Eg. For any w € §2, we set X;(w) :=w(t). As usual, ., and .%; are
the minimal completed o-algebras obtained from .#2, :=o{X,|0< s < oo}
and .7 := 0{X,| 0 < s <t}, respectively, under P,. We set X;(w) := 9 for
t > ((w), and we use 6; to denote the shift operator defined by 6:(w)(s) :=
w(t+s), t,s > 0. Let wy be the path starting from 9. Then wy(s) =0 for
all s € [0,00[. Note that 0(,)(w) = wy for all w € Q, that {wy} € F§ C F
for all £ >0, and that P,({ws}) <P.(Xo=09)=0 for x € E. Given a path
w € {t < (}, the operator ry is defined by

- w(t—s)_, ifOSSSta
(2.1) ri(w)(s) = {w(()), if s >1t.

Forapathw € {t > (}, weset ¢(w) := wy. Here for r > 0, w(r)_ :=limgy, w(s),
and we use the convention that w(0)_ :=w(0). We note that

liﬁr)l r(w)(s) =w(t)— =1¢(w)(0) and
(2.2)

1;%1 r(w)(s) =w(0) = r(w)(t).

Note that ((rw) = oo under t < ((w). It is well known that for A € .7
(23) Pu(ry (A N{t<(}) =Pu(An{t<}).

For a (nearly) Borel subset B of E, op:=inf{t > 0| X; € B} (the first
hitting time to B of X;), op :=inf{t > 0| X;_ € B} (the first hitting time
to B of X;_), and 7p:=inf{t > 0| X; ¢ B} (the first exit time of B) are
(Z)-stopping times. In [8, Theorem A.2.3] we see that P,(op <op)=1
for all z € E. If B is closed, then 75 is an (., )-stopping time. Also, ¢ is an
(F?)-stopping time because {¢ <t} = {X; =9} € F?, t > 0. The transition
semigroup of X, {P;,t >0}, is defined by

Pf(z) =E,[f(X))] =E[f(Xy):t < (], t>0,

where the function f is regarded to be defined on Ey with f(9) =0. Each P,
may be viewed as an operator on L?(FE;m); collectively, these operators form
a strongly continuous semigroup of self-adjoint contractions. The Dirichlet
form associated with X is the bilinear form

1
E(u,v):= 12&)1 Z(u — Pou,v)y
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defined on the space

F .= {u c LQ(E;m) { suptfl(u — Pouyu)y < oo}.
>0

Here we use the notation (f,¢)m = [ f(z)g(z)m(dz) for f,g € L*(E;m).

An increasing sequence {F,, } of closed sets is called an E-nest if J,~ | Fr,
is 511/2—dense in F, where Fp, := {u € F|u=0m-almost everywhere (m-a.e.)
on E'\ F,}, and a family {F,} of closed sets is an E-nest if and only if
it is a (generalized) nest, that is, if P,(lim,oo7r, =) =1 q.e. x € E.
A function v on FE is said to be £-quasicontinuous if there exists an £-nest
{F,} of closed sets such that u is continuous on each F,,. A subset N of
E is called E-polar or (E-)exceptional if there exists an E-nest {F),,} such
that N C (02, (E \ Fy); equivalently, there is a Borel set N containing N
such that Py (0y <00) =0. A subset G of E is called £-quasiopen if there
exists an E-nest {F),} of closed sets such that, for each n € N, GNF, is
relatively open in Fj,. For an £-quasiopen set G and a function u on G,
u is said to be £-quasicontinuous on G if there exists an E-nest {F,} of
closed sets such that u is continuous on each F,, NG, where we may assume
that F,, NG is relatively open in F,, for each n € N. A statement S(z) is
said to hold for g.e. x € E if there exists an exceptional set N such that
{z € E'| S(x) does not hold} C N.

An increasing sequence {G,,} of q.e. finely open Borel sets is called a nest
if Py (lim, 00 7, =) =1 for q.e. x € E.

Denote by © the family of nest {G,} of q.e. finely open Borel sets. Note
that for an E-nest {F),,} of closed sets, {Gr} € © by setting G, := Flg_mt,
k € N, where F; ,f “"™ means the fine interior of F}..

Let F. be the family of m-measurable functions w on E such that |u| <
oo m-a.e. and there exists an £-Cauchy sequence {u,} of F such that
limy, 00 u, = u m-a.e. We call {u,} as above an approzimating sequence
for u € F.. For any u,v € F, and its approximating sequences {u,}, {v,},
the limit &(u,v) = lim;, o0 E(up,v,) exists and does not depend on the
choices of the approximating sequences for u, v. It is known that £Y/2 on
F. is a seminorm and that F = F, N L?(E;m). We call (£, F.) the extended
Dirichlet space of (€, F). We further let

Floe = {u € L°(E;m) ‘ there exist {G,} € © and u,, € F such that

u = u, m-a.e. on GG, for each n € N},

https://doi.org/10.1215/00277630-3335905 Published online by Cambridge University Press


https://doi.org/10.1215/00277630-3335905

96 K. KUWAE

where L°(E;m) denotes the family of all m-measurable functions. Floc 18
called the space of functions locally in F in the broad sense. It is shown in
[11, Theorem 4.1(i)] that F C F. C Fioc and that every u € Fi,. admits an &-
quasicontinuous m-version . More strongly, every u € F admits a strictly £-
quasicontinuous m-version % on F which is defined on Ey with 4(9) = 0. For
U € .7.-"10C, we always assume that 4 is extended to be a real-valued function
4 on Ejy if not otherwise specified, where we do not necessarily assume that
u(0) = 0. However, we can reduce to this case by setting 4 — @(9) on Ey,
which is in Fioc as a function defined on E. It is proved in [13, Lemma 2.1]
that every u € F. admits a strictly £-quasicontinuous m-version 4 on Ejpy
with @(9) = 0. Moreover, we know that F, C Fioe by [11, Theorem 4.1(i)].
Except in Lemma 2.2 below, we take u € Fio. to be represented by its &-
quasicontinuous m-version (when such exists), and we drop the tilde from
the notation.

For an £-quasiopen set G, we set
(2.4) {f@::{ue}"\u:Oq.e.onE\G},

Ea(u,v) :=E(u,v) for u,v € Fg;

(Ec,Fg) is called the part of (€, F) on L*(G;m). It is known that (g, Fg)
is a quasiregular Dirichlet form on L?(G;m), and we can always take an £g-
nest { K, } of closed subsets of G consisting of compact sets in E. (In general,
the quasiregularity of (€g, Fg) assures the compactness of K, only with
respect to the relative topology on G. The assertion is stronger than this.)
The space (g, Fg) is associated with the part process on X% = (Q, X& P,)
defined by

ar . JXi(w) t<tg(w),
(2.5) XC(w) = {a o

The following lemmas are used in Section 7.

LEMMA 2.1. Let G be an &-quasiopen set, and let u be a function defined
on G. The following are equivalent:
(1) w is E-quasicontinuous on G;
(2) u is Eg-quasicontinuous on G;
(3) for any open subset I of R, u='(I)NG is £-quasiopen; and
(4) for any open subset I of R, u=1(I)NG is Eg-quasiopen.
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Proof. In general, for a subset N of G, E-polarity of N is equivalent to
Eg-polarity of N, and N is £-quasiopen if and only if it is Eg-quasiopen
(see [12, Proposition 3.2] and [8, Theorem 4.4.3(ii)]). So the equivalence
(3)<=(4) is clear.

(1)<=(3): Suppose that u is £-quasicontinuous on G. Then there exists
an E-nest {F,,} of closed sets such that u is continuous on F,, N G for each
n € N. Take an open set I of R. We see that «~!(I) NG N F,, is open in F),
for each n € N, which implies that the u=!(I) NG is £-quasiopen. The proof
of the converse is easy. The proof of (2)<=(4) is quite similar to that of

(1)<=(3). N

LEMMA 2.2. Let (£,F.) be the extended Dirichlet space of (£,F). Let
G be an E-quasiopen set, and u, and u are g.e. finite functions defined
on E. Assume that all u,, € F. are E-quasicontinuous on G and that {u,}
1s €-bounded. Suppose that u, converges to u q.e. as n — oo. Then u is
& -quasicontinuous on G.

Proof. Since {u,,} converges to u q.e., we see that sup,,cyu2 < oo q.e. Let
f € LY(E;m) be a function satisfying 0 < f <1 m-a.e. on E. Define a func-
tion g € L'(E;m) having 0 < g <1 m-a.e. by g(x) := f/(sup,en tn(z)? V
1). Then we have [,u2gdm <1; hence, {u,} C F¢ is £9-bounded. Here
F? is the extended Dirichlet space of (£9,F), where £9(u,v) := E(u,v) +
[puvgdm, for u,v € F. It is known that (£9,F) is a transient Dirich-
let form on L?(E;m) and that the £9-quasinotions are equivalent to the
E-quasinotions, so we may assume the transience of (£,F). From the &-
boundedness of {u,}, taking an adequate subsequence, its Cesaro mean
E-converges to u, so we may assume that {u,, } £-converges to u. By taking
a further subsequence {ng}, {un, } converges to u £-quasiuniformly; that is,
there exists an £-nest {F}} of closed sets such that u,, uniformly converges
to u on each Fj. Taking a common nest {F}} such that each u,|Fn¢ is con-
tinuous and F; NG is relatively open in Fj, we see the £-quasicontinuity of
uon G. []

Let ,/\jl and N, denote, respectively, the space of martingale additive
functionals (MAFs) of finite energy and the space of continuous additive
functionals (CAFs) of zero energy. For u € F., the following Fukushima
decomposition holds:

(2.6) w(Xe) — u(Xo) = M + N}
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for all t € [0, 00[ Py-almost surely (Py-a.s.) for q.e. © € E, where M" € /\jl
and N% € N,.

A positive continuous additive functional (PCAF') of X (call it A) deter-
mines a measure v = v4 on the Borel subsets of F via the formula

t—0t

(2.7) v(f)="lim - /f dAS,

in which f: E — [0,00] is Borel measurable. The measure v is necessarily
smooth (denoted by v € S) in the sense that v charges no exceptional set of
E and there is an E-nest {F),} of closed subsets of E such that v(F,) < oo
for each n € N. Conversely, given a smooth measure v, there is a unique
PCAF AY such that (2.7) holds with A = A”. We refer to this bijection
between smooth measures and PCAFs as the Revuz correspondence, and
we refer to v as the Revuz measure of A”. It is proved in [13, Lemma 2.2]
that p € S5 if and only if u charges no exceptional set and that there exists
{G,} € O such that u(G,,) < oo for each n € N,

Take M,N € _/\31, and denote by (M, N) its quadratic covariational pro-
cess, which is a CAF of bounded variation, and let sy be its Revuz

measure. For f € L?(FE; fu(ary), there exists a unique f* M € /\jl such that

e(f*M,N)= /f ~y(dz) forNEAj{.

Let (N(z,dy),H;) be a Lévy system for X; that is, N(x,dy) is a kernel
on (Ey,#(Ey)), and Hy is a PCAF with bounded 1-potential such that, for
any nonnegative Borel function ¢ on Ey x Ey vanishing on the diagonal and
any x € Ey,

[Z¢Xs ,X / | O(Xe )N (X, dy) AH |

s<t

To simplify notation, we will write

Ng(x):= [ ¢(x,y)N(x,dy).

Ey

Let g be the Revuz measure of the PCAF H. Then the jumping measure
J and the killing measure x of X are given by

J(dzdy) = %N(az, dy)pm(dx) and k(dz) = N (2,{0}) pr(dz).
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These measures feature in the Beurling—Deny decomposition of £: for f,g €
Fe,

E(f.q) =E(f.9) + / (F(x) - F) (9(x) — 9())J (dzdy)

ExE
4 /E f(@)g(x)n(dz),

where £¢ is the strongly local part of £.
For u € F., the martingale part M}* in (2.6) can be decomposed as

M = M + M + M""  for every t € [0, 0],

P,-as. for q.e. # € E, where M;"“ is the continuous part of martingale M*,
and

M = 1;&)1{ Z (u(Xs) = (X)) Lfu(xs)—u(X.)|>e} Ls<c}
0<s<t

. /0 </{yeE||u(y>u(xs)|>s} (u(y) — u(X:)) N (Xs.dy) ) dH, }.
M = /Otu(Xs)N(Xs, [0)) dH, — u(Xe)1gsg)

are the jump and killing parts of M" in M, respectively. The limit in the

expression for M™J is in the sense of convergence in M and of convergence
in probability under P, for q.e. x € E for each fixed ¢ > 0 (see [8, Theorem
A.3.9 and p. 341]).

If we let

o

Me:={M € /\jl | M is a continuous MAF},

o]

MT = (M)t = {ME/\il | (M,N)=0 for N € M},
then every M has an orthogonal decomposition
M =M+ M?

in the Hilbert space (,/\jl, e). The MAF M¢ € M€ (resp., M4 € M?) is noth-
ing but the continuous part (resp., purely discontinuous part) of M discussed
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in [8, Theorem A.3.18]. Moreover, set

M= {MEMd}(M,M"’“)EOforuefe}, /\jl”::/\/ldﬂ(/\/lj)l.

o

Then M/ is a closed subspace of M; hence, M¢ has a unique orthogonal

decomposition in ( _/\jl,e) as
M= M7+ M*,

. o . [¢]
where M7 € M7 and M* € M". For simplicity of notation, we will use the
convention AFy := Fs— Fs_ for any rcll-(.%#;)-adapted process F'. The square

bracket [M,N] for M,N € ,/\31 is defined by

[M,N]y:= (M, N+ Y AM,AN,.
0<s<t

Then (M, N) is the dual predictable projection of [M, N| (see [8, (A.3.7)]).
We further set, for each i =0,c,d, j, k,

./\/;foc := {M | there exist {Gy,} € © and (MM ./\ilZ
such that M; = Mt(”) for all t <7g,
and n € N, P -a.s. for q.e. x € E},

Nejoc := {N | there exist {G,} € © and {(N™} c N,

such that Ny = N\™ for all t < ¢,

and n € N, P -a.s. for q.e. x € E}

Here i = () means M?:= /\3{, and we write M, instead of ./\/l?0 .- Every PCAF
is an element of N.joc. It is well known that, for u € Floe With J =k =0,
the Fukushima decomposition (2.6) holds for ¢ € [0, ([ Ps-a.s. for q.e. z € E,

where M* € M{, . and N* € N o (see [8, Theorem 5.5.1]).

loc

We introduce the spaces 7, J of jump functions:

J = {¢ B9 x Eg—R ’ ¢ is a Borel measurable function

such that ¢(x,z) =0 for = € Ey and N(¢?)py € S},
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andj {0 €T | [z N(¢?)dun < oo}. Further, we set Jas .—{(Z)Gj\(b—

0 J-a.e.on ExXE}, J.:={¢pe J| N(lEﬁEqb Jm €S}, and jaS:: jﬁjas.
Here ¢(z,y) := ¢(y, ) for 2,y € Ep, and ¢ := (¢ +¢)/2 on Ey x Ey. Clearly,

J C Jx and Jas C Js, because [, N(lEanz) dpr = [ N(1pxpé?) dp for

¢ € §U Jas. Moreover, for ¢ € J., we see that 1gyg¢ € J,. For ¢, € 7,
we write ¢ ~ Y if ¢ = J*-a.e. on E x Ey, where J* is the measure on
E x Ejy defined by J*(dz dy) LN (2,dy)pp(dz). Then ~ is an equivalence

relation, and we denote by j / ~, J/ ~ the families of equivalence classes.

Let M. be the space of locally square integrable MAF's, and let Ml[[gf[[
be the space of locally square integrable MAFs on [0,([[. That is, M €
Mo (resp., M € Ml[[gf[[) if and only if there exists an increasing sequence
{T,} (resp., {Sn}) of (F)-stopping times and {M™} c M such that
limy, 00 T}, = 00 (resp., limy, 00 Sp = () Py-a.s. for q.e. z € E and for each
n €N, Myr, = MUY, (vesp., Mins, Lins,<cy = M% Lins,<cy) for all t €
[0,00[ Py-a.s. for q.e. x € E. Let Mf, _ (resp., Mﬁ)c) be the space of locally
square integrable continuous (resp., purely discontinuous) MAFs. That is,

for M € M¢ . (vesp., M € M ), we can take {M™} from M° (resp., M%)
074[[ (

in the above definition. Similarly, we can define the space Mﬁ;{ resp.,
/\/ld [0, C[[) of locally square integrable continuous (resp., purely discontinu-
ous) MAFs on [[0,¢[. For every M € Ml[[gf[[, its quadratic variational pro-
cess (M) can be defined to be a PCAF (see [4, Proposition 2.8]), and M is
decomposed to M = M¢+ M¢9 (see [9, Theorem 8.23]), where M¢ € Mlc(;[[CO,C[[’
Mde Mﬁ)’go’cu have the property (M¢, M%) =0.

By [13, Lemma 2.1] and [14, Theorem 1.1], there exists a one-to-one

correspondence between ; / ~ (resp., J/~) and M? (resp., Mﬂo,g[).
We define subclasses of Mﬁ;EO’CH as follows:

Alocl. {MeMd[[O <l | ¢(-,0) =0 k-a.e. on E},

loc

M [0 _{Me/\/ld [[O’C[[|¢:0 J-a.e. on E x E}.

loc loc

Then we have that M € MZL* C[ N e My [[O dl implies that (M,N) =0

loc

P,-as. for q.e. x € E and that every M € M[[ <[ g decomposed to M =

loc

Me + M3 + M=, where M¢ € MO ai € (7 10CL ppn e p0CT paye
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the properties (M¢, M7) = (M7, M*) = (M*, M*¢) =0 in view of [14, Theo-
rem 1.1].

By [14, Remark 1.1], for each i = ¢,d, j,x we have Mﬁ)[[CO,C[[ = ./\/lf:)rc (i=
¢,d,j, k), where

Mt ={M | there exists {Gr} € © and M™ e M? such that

loc

M,; = Mt(n) for all t <7, and n € N,P,-a.s. for q.e. z € E}

C?[[07<[[ — OC

loc loc*
We introduce a subclass ]-"f[) . of Floc as follows:

More strongly, we have M

Pl = {0 Fuc| N (L () ~u) ) < 5.

Note that u € ]-'ILC if and only if u € Fioe and (u(-) — u)? € J. Clearly, ]:ch
is a linear subspace of Fioe, and 1 Es 1E € ]:ILC By [4, Remark 3.9] and the
fact that x € S, we see that F, U (.7310(:)1, c Fl . For u,v € Fi

loc* locs We see that

uv € J’.:;LC, provided that u or v is bounded. From in [14, Theorem 1.1], for
u € .7:1];6 with (u(-) —u)? € 5 (resp., u € ].-'ILC), there exists an M%?% ¢ M4
(resp., M™4 ¢ Mﬁ;go’q) such that AM"% = Au(X,) for all t € [0, 00[ (resp.,
[0,(]) Pg-a.s. for q.e. x € E. Moreover, we define

Fi

loc

= {u € Floc

for any compact set K,

/ (u(y) — u(x))QJ(dx dy) < oo}.
KxE

Here Fj, is the space of functions locally in F in the ordinary sense (see [8]).
Clearly, .7-"11(: C ]-"ILC For u € Fioe, u € .7-";[)(: if and only if, for any compact

set K with its relatively compact open neighborhood G, it holds that
/ (u(y) — u(x))QJ(dw dy) < 0.
KxGe

We see that F U (Fioc)p C ]-"IJLC, because of J(K x G¢) < 0o (see [11, Corol-

lary 5.1]), where K and G are noted as above.

REMARK 2.1. In [13] we introduced the following classes:

iy
‘Floc

= {uEfT

loc

| u(d) €R and (u(-) — u(@))Qﬂa €S},
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u(0) € R and for any compact set K,

loc loc

Fi o= {ue]—"T

/ (u(z) — u(@))Qm(dm) < oo}.
K

These classes are unnecessary. Indeed, we can easily see that any u € ]:IJLC

(resp., u € ]:lTOC) with u(8) € R satisfies (u(-) —u(9))?k € S (resp., [j (u(z)—
u(0))?k(dz) < oo for any compact set K).

83. Nakao integrals

We summarize the extension of the Nakao operator and Nakao integrals
investigated in [13] with corrections.

Let N C N. denote the class of continuous additive functionals of the
form N* + [;g(X)ds for some u € F and g € L*(E;m). Nakao [18] con-

[¢]
structed a linear operator I" from M into N in the following way. For every
[¢]
Z € M, there is a unique w € F such that

1

(3.1) Eu(w, f) = g s parre z)(E) - for every feF.

This unique w is denoted by v(Z). The operator I" is defined by
t (o]
(3.2) I(Z);:= N —/ v(Z)(Xs)ds for Z€ M.
0

It is shown in Nakao [18, (3.6)] that I'(Z) can be characterized by the
following equation:
1

. 1
(3.3) lgfg ZEgm [D(2)] = — 54 Mo 2) (E) for every g € Fy.

Here F := FNL>*(E;m). So, in particular, we have I'(M") = N* for u € F.
By [13, Lemma 3.1], we have I'(M") = N* for u € F..
In the same way as Nakao [18] (see [4, (3.13)]), we can define a stochastic

integral by using the operator I', as follows. For M € M with its jump
function p € J and f € F.N Lz(E;MM)), we set

- /O F(X,)dr (M),
3.4

1 ) )
=T(f % M), — §<Mf70+Mf’J,MC+MJ +K)y, t€]0,00],
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where (f*M); = [} f(Xs—)dM, and K € M with K; — K~ = —1pyxp(p+
?)(Xi—, X¢) t €]0,00] Py-a.s. for q.e. x € E. The integral (3.4) is well defined
under P, for q.e. z € E. In this paper we call the operator I' the Nakao
operator and the integral (3.4) the Nakao integral.

For any M € Mf(’)[g)’d[ (in particular, for M € Mg ), I'(M) can be defined

loc

as an element in N;joc in view of [13, Lemma 3.2]. The space (Mﬁ;goﬂ)*

(resp., (/\/ld’[[md[)as) is defined to be a subclass of Mfio’[[o’g[[ associated to

loc ¢

T/ ~ (resp., Jas/ ~) by [14, Theorem 1.1].
We say that M € (./\/ll[[(?f[)* (resp., M € (M[[O’C[[)as) if and only if its

loc
purely discontinuous part M¢ belongs to (./\/liio’go’d[)* (resp., (Mﬁ;ﬁo’d[)as).
For M € (M{[gf[[)* with its jump function ¢ € J,, let M€ € Mlc(;[([:o’q[ be its

{(’)[LO’C[[ associated with 1gpxgp € J, and take

Kc M{’[[O’C[[ associated with —1pxp(e+P) € J.

ocC

We shall extend I' over (MHO’CH)* and establish (3.4) for more general

loc

integrands and integrators under P, for q.e. x € E. By [13, Lemma 3.3], for

continuous part; take M7 € M

M e (M[[o,c[[)* with its jump function ¢ € J, and a q.e. finely open Borel

loc
set G satisfying 1gxpp, laxp® € ﬁ, and f e FeN LQ(E;M<M>) satisfying
f=0m-ae. on G, we have I'(f x M), = $(MF¢+ M3 M+ MJ + K),; for
t € [0,7¢[ Py-a.s. for q.e. x € E, which ensures the well-definedness in the
following definition.

DEFINITION 3.1 (extended Nakao operators and Nakao integrals). We
consider M € (Ml[[gc’d[)* with its jump function ¢ € J, and f € Fioe. Let
{Gr} € © be a common nest such that ) (Gy) < oo, f= fr m-a.e. on Gy
for some f, € Fy, and 1g, <9, Lo, xEP € ﬁ for each k € N. Set Ey:={z €
E|E.[[,“* e7g(X;)dt] > 1/k} for g € L2(E;m) with 0 < g <1 m-a.e. Then
e = I{:E.[fOTG’“ e tg(Xy)dt] A1 € Fg, satisfies 15, <er <1g, q.e. on E. In
view of [11, Lemma 3.3], we have {E}} € ©. Then we set

1 . ,
(M) :=T(exx M) — §<M6k’c—|—M6W,MC+M] + K); forte|0,75,]

for each k € N, Pg-a.s. for q.e. x € E. For M € (M[[O’C[[)* and f € F. N

loc

L2(E;M<M>), we set
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t
| sexoaran,
1 . .
=T(f* M), — §<Mf’c + M M+ MI+ K), for t € [0,00]

P_-a.s. for q.e. z € E. For general f € Fi,. and M € (./\/ll[[gf[[)* with e, and
{E}} as noted above, we set

(3.5) /0f(Xs)dP(M)S::/O(fek)(Xs)dF(M)s for t € 0,7, [

for each k € N P,-a.s. for q.e. € E. Note that fep € F, N L2(E;,u<M>) for
each k € N. We call I' defined over (MHO’CH)* an extended Nakao operator,

loc
and we call the integral in the left-hand side of (3.5) an extended Nakao
integral. These are well defined for all ¢ € [0, ([ P-a.s. for q.e. x € F in view

of [13, Lemma 3.3] as noted above and are elements in NV, joc.

For f € Fioe and M € (MHO’CH)*, we see that

loc
! c\ c 1 fc c
(3.6) /0 f(X)dD(MC)s=T(f*x M )t—§<M “ M)y

for all ¢t € [0,(] P,-a.s. for q.e. z € E, where I'(f x M¢); can be defined by
way of [13, Lemma 3.2]. Moreover, from [13, Corollary 4.1], we have that

/Otf(Xs)dF(K)s =0

holds for all ¢ € [0,([ P,-a.s. for q.e. x € E. In particular, I'(K); =0 for all
t €[0,([ Py-as. for q.e. z € E. Here K € (Ml[[gf[[)* is the purely discontin-

uous local MAF associated to —1gxp(p+9) € J.

84. Progressively additive functionals in the strong sense

In this section, we shall refine the notion of additive functionals called
progressively additive functionals in the strong sense. We begin with some
details on the completion of filtrations. Let &?(E) be the family of all
probability measures on E. For each v € Z(E), let #Y (resp., .Z#/) be
the P,-completion of .#2 (resp., P,-completion of .Z in .Z%), and set
Foo = Nyer(p) Foo a0d Ft =, c p(p) F{ - Further, we introduce #Z, :=
ﬂyesoowéo FY and F) = muesoo,u;éo F¢, where Spo :={u € Sy | u(F) <
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oo and Uyp € L*°(E;m)} and v :=v/v(E). Here Sy denotes the family of
measures of finite energy, and Uy denotes its 1-potential (see [8]). Clearly,
Foo C FL and Fy C F/ for each t € [0, 00].

First we recall the definition of additive functionals.

DEFINITION 4.1 (additive functional). An (.%;)-adapted (resp., (F#;")-
adapted) process A = (A¢)t>0 with values in [—o0, 00] is said to be an addi-
tive functional (resp., relazed additive functional (AF*)) if there exist a
defining set = € Fo (resp., = € FL
the following conditions:

(1) Py(E)=1forall x € E\ N;

(2) 6= C E for all t > 0; in particular, wy € Z and Py(Z) = 1, because of
wp = O¢ () (w) for all w € E;

(3) for all we =, A.(w) is right-continuous and has a left limit on [0, {(w)],
Ap(w) =0,]|As(w)| < oo for t < ((w), and Asps(w) = Ap(w) + As(Giw) for
all ¢, s > 0; and

(4) for all t >0, Ai(wy) = 0; in particular, under the additivity in (3),
Ap(w) = A¢y(w) for all £ > ((w) and w € E.

An additive functional A is called right-continuous with left limits (rcll-AF')
if t — A;(w) is right-continuous on [0, 00[ and has a left limit on ]0, 00 for

) and an exceptional set N satisfying

each w € E. An additive functional A is said to be a finite (resp., continuous
additive functional (CAF)) if |Ay(w)| < oo, for all t € [0, 00[ (resp., t — Ay (w)
is continuous on [0,00[) for each w € =. A [0,00]-valued CAF is called a
positive continuous additive functional (PCAF). Two additive functionals
A and B are called equivalent if there exist a common defining set = € %,
and an exceptional set N such that Ay(w) = Bi(w) for all ¢ € [0,00] and
w e E. We call A= (A;)i>0 an additive functional on [0, (] or a local additive
functional if A is (#;)-adapted and satisfies (1), (2), (4), and the property
(3") in which (3) is modified so that the additivity condition is required
only for t + s < {(w). The notions of rcll-AF, CAF, and PCAF on [0, ([ are
similarly defined. Two additive functionals on [0,([, A and B, are called
equivalent if there exist a common defining set = € .%., and an exceptional
set N such that A;(w) = Bi(w) for all ¢t € [0,¢[ and w € =. These notions
can be formulated for AF* by replacing Z € %, with 2 € . 7.

DEFINITION 4.2 (multiplicative functional). An (.%;)-adapted (resp.,
(F)-adapted) process M = (M;)>0 with values in [0, 0o] is said to be a mul-
tiplicative functional (MF') (resp., relaxzed multiplicative functional (MF*))
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if there exist a defining set Z € Z, (resp., 2 € Z#2) and an exceptional set

N satisfying conditions (1) and (2) in Definition 4.1 and

(3) for all w € E, M.(w) is right-continuous and has a left limit on [0, {(w)],
My(w) =1 and M;ys(w) = Mi(w)Ms(6w) for all t,s > 0; and

(4) for all t >0, M¢(wp) = 1; in particular, under the multiplicativity in (3),
M (w) = M) (w) for all > ((w) and w € E.

An MF on [0,¢] is similarly defined.

DEFINITION 4.3. For any t > 0, we say that two sample paths w and «’
are t-equivalent if w(s) =w'(s) for all s € [0,t]. We say that two sample
paths w and w’ are pre-t-equivalent if w(s) =w'(s) for all s € [0,].

The following lemma is proved in [4, Lemma 2.15]. Recall that {6;,t > 0}
denotes the time-shift operators on the path space for the process X.

LEMMA 4.1 (see [4, Lemma 2.15]). Fort,s >0,
(1) Opreysw is s-equivalent to rew if t+s < ((w) or s > ((w); and
(2) rfsw is pre-t-equivalent to riysw; moreover, if w is continuous at s,
then 05w is t-equivalent to ri4sw.

For an rcll-AF (or rcll-AF*) A; of X adapted to (F)i>0, Ai(w) = Ay (W)
if w and W’ are t-equivalent, and A;_(w) = Ay (w') if w and &’ are pre-t-
equivalent. If the measurability is lifted, it does not necessarily hold. In [4,
Definition 2.1], we introduced the following notion of progressively additive
functional in order to justify the stochastic calculus discussed in [4].

DEFINITION 4.4 (PrAF). A process A = (A;);>0 with values in R :=
[—00,00] is said to be a progressively additive functional (PrAF') (resp.,
relazed progressiwvely additive functional (PrAF*)) if A is (#:)-adapted
(resp., (Z;")-adapted) and there exist defining sets = € F, E; € % (resp.,
=€ .7, B €.%)) for each t >0 and an exceptional set N satisfying the
conditions
(1) Py(E)=1forall z€ E\ N, and = C Z; C =5 for every t > s> 0, and

E= ﬂt>0 =5

(2) 0,2 C = for all s >0 and 65(Z¢) C Z— for all s €]0,¢[; in particular,
wyg € 2 C =y and Py(E) =Py(E;) =1 under (1);

(3) for all w e =, A.(w) is defined on [0,t], and it is right-continuous on
[0,t A ¢(w)[ and has a left limit on ]0,¢]N]0,{(w)[ such that Ay(w) =0,
|As(w)| < oo for s € [0,t A((w)[, and Apiq(w) = Ap(w) + Ag(6pw) for all
p,q >0 with p4+q <t
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(4) for all £ >0, Ai(wy) =0; and
(5) for any ¢ > 0 and pre-t-equivalent paths w,w’ € Q, w € Z; implies that
W' €5y, As(w) = Ag(W) for any s € [0,¢].

Furthermore, A is called an rcll-PrAF if, for each t >0 and w € 5, s+—
As(w) is right-continuous on [0,¢[ and has left limits on ]0,¢], and a PrAF
is said to be finite (resp., continuous) if |As(w)| < oo, for all s € [0,¢] (resp.,
continuous on [0,¢[) for every w € Z;.

An R-valued process A is called a PrAF on [0,([ if A is (%;)-adapted,
and there exist = € F, Z¢ € % for each t > 0 and an exceptional set N
such that (17), (2), (3'), (4), and (5) hold:

(I Py(E)=1forall z€ E\N, ECEZ; for all t>0, ZE=(),.(Z, and
=N{t<(} CcEsN{s <} for s<t; (3) for each w € ZyN{t < (}, the same
conclusion as in (3) holds; and

(5") for any ¢ > 0 and pre-t-equivalent paths w,w’ € QN {t < (}, the same
conclusion as in (5) holds.

The notion of rcll-PrAF on [0,([ is similarly defined, and all notions can
be formulated for PrAF* (on [0,(]) by replacing = € F,, E; € F#; with
EeFL, 5 e F .

DEFINITION 4.5 (progressively multiplicative functional). An (.%)-
adapted (resp., (.%;)-adapted) process M = (M;)¢>o with values in [0, o]
is said to be a progressively multiplicative functional (PrMF') (resp., relazed
progressively multiplicative functional (PrMF*)) if A is (.%#;)-adapted (resp.,
(Z[)-adapted) and there exist defining sets E € F, =y € F; (resp., E €
Fr, 2 € F)) for each t > 0 and an exceptional set N satisfying conditions
(1) and (2) in Definition 4.4 and

(3) for all we Z;, M.(w) is defined on [0,¢], and it is right-continuous on
[0,t A ¢(w)] and has a left limit on ]0,¢]N]0, {(w)] such that My(w) =1,
and Mp4q(w) = Mp(w)My(0pw) for all p,q >0 with p+ ¢ < t;

(4) for all t >0, Mi(wy) =1; and

(5) for any ¢ > 0 and pre-t-equivalent paths w,w’ € Q, w € Z; implies that
W' €5y, My(w) = Mg(w') for any s € [0,¢].

Furthermore, M is called an rcll-PrMF if, for each t >0 and w € Z¢, s —
M (w) is right-continuous on [0,¢[ and has left limits on ]0,].

The notion of PrMF on [0,(] is similarly defined, and all notions can
be formulated for PrMF* (on [0,(]) by replacing E € Z, E; € F with
EeFL, Ee F

o0 —it
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The next notion is stronger than PrAF and suitable to describe our main
theorem.

DEFINITION 4.6 (PrAFS). A process A = (A;);>0 with values in R :=
[—00, 0] is said to be a progressively additive functional in the strong sense
(PrAFS) (resp., relazed progressively additive functional in the strong sense
(PrAFS™)) if Ais (.%;)-adapted (resp., (% )-adapted) and there exist defin-
ing sets E € Foo, Bt € Fy (vesp., E€.F5, 2 € F) for each t >0 and an
exceptional set N satisfying the following conditions:

(1) Py(E)=1forall z€ E\ N, for every t >s>0EZCZE; CEg, and ==
ﬂt>0 Et;

(2) 0,2 C E for all s >0 and 05(5;) C E,_s for all s €]0,¢[; in particular,
wy € EC Z¢ and Py(E) =Py(E¢) =1 under (1):

(3) for all we€ =, A.(w) is defined on [0,¢], and it is right-continuous on
[0,£] N [0,¢(w)[ and has a left limit As_(w) on ]0,¢]N]0, {(w)[ such that
Ap(w) =0, |As(w)| < oo for s € [0,¢]N[0,¢(w)[, and Apq(w) = Ap(w) +
A,y (Opw) for all p,g >0 with p+ ¢ <t;

(4) for all £ >0, Ai(wy) =0; and

(5) for any ¢ > 0 and t-equivalent paths w,w’ € Q, w € Z; implies that w' €
Ei, As(w) = Ag(W) for any s € [0, t].

Further, A is called an rcll-PrAFS if, for each ¢t >0 and w € £, s+— As(w)

is right-continuous on [0, ] and a has left-hand limit on |0,¢], and a PrAFS

is said to be finite (resp., continuous) if |As(w)| < oo, for all s € [0,¢] (resp.,
continuous on [0,¢]) for every w € =Zy.

An R-valued process A is called a PrAFS on [0,([ if A is (.%;)-adapted
and there exist =2 € F, Z; € % for each t > 0 and an exceptional set N
such that (17), (2), (3"), (4), and (5”) hold:

(3"): for each w € Z; N {t < ¢}, the same conclusion as in (3) holds;

(5"): for any t > 0 and t-equivalent paths w,w’ € QN {t < (}, the same
conclusion as in (5) holds.

The notion of rcll-PrAFS on [[0,(] is similarly defined, and all notions
can be formulated for PrAFS* (on [[0,([[) by replacing = € %, E; € %,
with 2 € F2, B € F/.

DEFINITION 4.7 (PrMFS). An (.%;)-adapted (resp., (.%;)-adapted) pro-
cess M = (M;)¢>0 with values in [0,00] is said to be a progressively
multiplicative functional in the strong sense (PrMFES) (resp., relaxed pro-
gressiwvely multiplicative functional in the strong sense (PrMFS*)) if M is
(Z)-adapted (resp., (.Z;")-adapted) and there exist defining sets Z € F,
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=t € Fy (vesp., 2 € .7, 5y € #) for each t >0 and an exceptional set N

satisfying conditions (1), (2), (3), and (4) in Definition 4.5 and

(5) for any ¢ > 0 and t-equivalent paths w,w’ € Q, w € Z; implies that ' €
E¢, Ms(w) = Ms(w') for any s € [0,1].

The notions of rcll-PrMF and PrMFS on [0,([ are similarly defined, and

all notions can be formulated for PrMFS* (on [[0,([) by replacing Z € .Z,

=€ with Ze€ F5, B e F/.

o0

REMARK 4.1.

(1) Our notions of PrAF and PrAFS are different from what is found in
Walsh [22]. In [22], the notion of only positive PrAF is treated, and (¥ )-
adaptedness for the positive PrAF is required, which is very restrictive
for our purpose. Here, 4, =) LEP(E) @}, and ¢}" is the P,-completion
of #) smaller than .Z}'. Moreover, the definition of the time reversal
operator in [22] is slightly different from ours.

(2) Any PrAF (or PrAFS) (on [[0,¢[) is an additive functional (on [0, (]).
Note that any PrAFS (on [[0,(]) cannot be regarded as a PrAF (on
[0,¢[[) with the same defining sets. But every PrAFS A with defining
sets Z¢, 2 can be regarded as a PrAF with larger defining sets =, :=
{w € Msejos Es | Ar-(w) exists in R}, E7:=(,50 5y -

(3) Every PCAF A can be regarded as a continuous PrAFS (hence PrAF)
(see Lemma 6.1 below or [4, Lemma 2.14 with Remark 2.13]). But it may
not be a positive PrAF treated in [22] for the strict (¢;)-adaptedness.

(4) The MAF M" and the CAF N* of 0-energy appearing in the Fukushima
decomposition (2.6) can be regarded as finite rcll-PrAFSs in view of
[8, proof of Theorem 5.2.2] or Lemma 6.2 below. Hence, an MAF of
stochastic integral type f(fg(XS_) dMY (g,u € F with g € L*(E; juy))
can be regarded as a finite rcll-PrAFS in view of [10, Proposition 4.44].
Consequently, any M € ,/\jl also can be regarded as an rcll-PrAFS in
view of the assertion of [8, Lemma 5.6.3] and Lemma 4.4 below. Recall
the orthogonal decomposition

M = M¢+ M?

in the Hilbert space (/\jl,e), where M¢ € M (resp., M4 € M%). M¢ is

the unique element as the minimizer of

M3 Nw—e(M,N).

https://doi.org/10.1215/00277630-3335905 Published online by Cambridge University Press


https://doi.org/10.1215/00277630-3335905

STOCHASTIC CALCULUS WITH TIME REVERSAL 111

Hence, both M¢ and M9 can be regarded as rcll-PrAFSs in view of the

assertion of [8, Lemma 5.6.3] and Lemma 4.4 below.
(5) Every M € Mlﬂgfﬁ can be regarded as an rcll-PrAFS on [0,([ from
Theorem 5.1 below.

We recall the time reversal operator r; on the rcll path space €. It is
shown in [4, Lemma 2.10] that for A € .Z™ we have r; *(A) € .Z™ and (2.3)
holds, where .7 is the Py-completion of .# in F2.

DEFINITION 4.8 (reversible defining set). Let A be a PrAF (or PrAFS)
on [[0,(]. For each t > 0, the defining set Z; for A is said to be r-reversible
or simply reversible if w € =y with t < ((w) implies that rw € Z;. It is easy
to see that the reversibility of Z; is equivalent to Z; C r; (Z;), because of
N (EZ) N {t> ¢} =0. A PrAF (or PrAFS) on [[0,(], or its defining sets
(Z2¢)t>0, is called time-reversible, or simply reversible, if for every t >0, Z;
is reversible. The notion of reversibility for PrMF (or PrMFS) on [0, is
similarly defined.

REMARK 4.2. For an w € Q with ¢ < ((w), r¢(rw) # w even if on [0,1].
Indeed, t < ((w) implies that ¢ < {(rw) and r¢(rw)(s) = w(s) if s € [0,¢]
and that ry(rw)(s) =w(t—) if s >t. Then the reversibility of the defining
set Z; of a PrAF on [0, (] is equivalent to that under ¢ < {(w), w € E; if and
only if ryw € Zy; that is, if 2N {t < ¢} =7 (E) N{t <¢}. If Q consists of
continuous paths up to the lifetime, then the reversibility of the defining set
=; of a PrAFS on [[0,([ is equivalent to that under ¢ < ((w), w € E; if and
only if rw € =Z¢.

LEMMA 4.2. Let (Z;)i>0 be the family of reversible defining sets of a
PrAFES on [0,C[. Then 7' (Z;) € F for each t > 0. If Po(Z¢) =1 for all
x € F, we have rt_l(Et) € F for each t > 0. Moreover, if (Et)tso is the
defining set of a PrAF on [0,C[, or if Q consists of continuous paths up to
the lifetime, then rt_l(Et) € % for each t > 0.

Proof. By the definition of Z;, we have r; {(Z5) N {t <} CE5N{t <
¢}; hence, r; 1(Z5) C Z5, because 7; 1 (2¢) N {t > ¢} = (. This implies that
r Y (2§) € ZY holds for any v € Spp and that it holds for any v € P(E)
provided that P,(Z;) =1 for all x € E. Next, suppose that (Z;);~¢ is the
defining set of a PrAF or that Q consists of continuous paths up to the
lifetime. By Remark 4.2, 7,7 1 (Z¢) N {t < ¢} ==, N {t < ¢}. Hence, r; ' (Z¢) =
Enft<cHuft=(e A Q
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Hereafter, we will use the convention that Xo_(w) := X¢(w). For nota-
tional simplicity, we use the following convention for additive functionals: for
an additive functional A and each path w, we write A% (w):= A;(w) — As(w)
for 0 < s <t, and we write A,” (w):= A;_(w) — As_(w) for 0 < s <.

The following lemma is needed for the present article and can be proved
in the same way of the proof of [4, Theorem 2.18]. Its proof is complicated
by measurability issues, but the idea behind it is fairly transparent.

LEMMA 4.3 (dual PrAF). Let A be an rcll-PrAF on [0,(] with defining
sets 27 € Foo, B, € % obtained from a reversible PrAFS A with reversible
defining sets Z¢, E; that is, Zy 1= {w € (\s¢104( Zs | At (w) exists in R} and

—_——_—

E7 =0 Z; - Suppose that there is a Borel function ¢ on E x E with
o(x,x) =0 for x € E such that p(Xs—(w), Xs(w)) = As(w) — As—(w), for all
5 €]0,t[N]0,¢[ and allw € Z; . For w€r; '(Z;), we set

w0 A ) + e Xilw). X)) for b€ 0.
' Ay(w) =0 fort e [((w),o0].

Suppose that Ay ory is F, -measurable for each t > 0. Then A s a finite
rell-PrAF* on [0,¢[ with defining sets Z¢ := 1, *(E; ) and E := ;o Z¢ such
that

zzl\t:At_ OTt+g0(Xt,Xt_) and A\t —A\t_ ZQO(Xt,Xt_)
for all t €]0,¢[, Py-a.s. for g.e. z € E.

REMARK 4.3.

(1) The reversibility of the PrAFS A in Lemma 4.3 is necessary to obtain
the PrAF* A. This is one of the key points of our results.

(2) The assumption on the .#;-measurability of A;or; in Lemma 4.3 is
satisfied provided that A is (.#)-adapted by [4, Lemma 2.10]. If there
exist a set {A"|i=1,...,m} of finite rcll reversible PrAFSs with the
common reversible defining sets (Z;);~0 and a Borel function f:Rf —
R such that As(rw) = f((Al)ft__S)_(w), e (Af)zt__s)_(w)) for we E N
{t <} and s € [0,t], then A; ory is % -measurable. Indeed, for C €
AB(R), we see that r; 1 (A;71(C))NE,N{t < ¢} € F from the expression
Ap(rw) = f(AL(w),..., Al (w)) for w € EyN{t < ¢}, and

p ifogcC,

r{l(Ail(C))ﬁEm{tzc}={Q Foec
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Since any subset of Zf belongs to .%#;", we have the desired .%/-
measurability.

Proof of Lemma 4.3. The first statement follows from Remark 4.1(2).
The proof of the middle part is quite similar to [4, proof of Theorem 2.18],
Which is complicated by measurability issues, so we omit it. We should check
that =; € #; and P +(E)=1, z€ E\ N for some exceptlonal set N. These
follow from the rever81b1hty of &, because of Z; C (:t) C Z; and because
any subset of Zf is .#;*-measurable. Therefore, the .#;*-measurability of A,
completes the proof. []

LEMMA 4.4. Let {(A™)2 |i=1,...,0} be a finite set of sequences of
finite rcll-PrAFSs with common defining sets 2" € %, Ef € F;. For each

t>0, set
Et;:{weﬂE? A,
neN
A™(w) converges uniformly on [07t]}
€%
and

foreachi=1,2,....¢,

= :{weﬂE"

neN

A™(w) converges uniformly on [0,t] for every t € [0,00[}
€ Foo-

Suppose that there exists an exceptional set N such that P,(E) =1 for
xe E\N. If we define Ai:=1lim, , A" on Q, then all A" are finite rcll-
PrAFSs (resp., PrAF's) with the defining sets E, = (resp., 2=, Z; ), where
Er ={w € NygoyEs | all Al_(w) ezist in R} and E7 = (V,o0Z; - If, fur-
ther, all A™" are finite continuous PrAFSs, then all A* constructed above are
finite continuous. Moreover, suppose that, for each n € N, Z} is reversible
and that there exists a continuous function f = (f1, fa,..., fo) : R = R such
that, for each i =1,....0 and w € 2P with t < ((w), AP'(rw) =

fi((A™ 1)(t - (w),. (A” Z)’Et_ - (w)) for s €[0,t]. Then E; is reversible.
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Proof. The proof of the first part is quite similar to the proof of [4,
Lemma 2.14], so all A® (i=1,...,f) are PrAFSs with defining sets =, =,
as claimed. As noted in Remark 4.1(2), those are also PrAFs with defining
sets =7, ;. Now we prove the second statement. Suppose that each =} is
reversible for each n € N. The reversibility of Z; is clear from the expressions

for A% ory on Z, N {t < ¢} for s€[0,1]. U

§5. Main theorems

In this section, we give our main theorem. Recall that, for M € (MI[[SCCH)
with its jump function ¢ € J,, there exists K € (./\/lﬁ)c)* (resp., Kt e
(M ).) such that its jump function is given by 1ExE(g0+¢) € Jx (resp.,
—1gxr(ee+@2) € Ji). We write (f « I'(M)); instead of fo X)dI'(M)

for M € (Mjoc)« and f € Floc-

THEOREM 5.1. Let Y € /\/ll[[gf[[. Then Y can be extended to be an rcll
reversible PrAFS on [[0,([ with reversible defining sets (Z¢)i>0. Moreover,
Y can be extended to be an rcll-PrAF on [0,(] with some defining sets =, ,
=7 containing =i, =, respectwely, and Y defined as in (/.1) is a PrAF* on

[0, C[ with defining sets Z¢ :=r; ' (Z;), == ﬂt>0 =

THEOREM 5.2. Take M € (Ml[[gcd[)*, and take f € Fioe. Then additive
functionals f+ M,f« K, [f(X),M + K], f«T'(M), and f «T'(K) can
be extended to be rcll reversible PrAFSs on [0,(] with common reversible
defining sets (Et)t=o such that, for w € Zp, T < ((w), and t € [0,T],
(f*I(K))t(w)=0 and

(f « M)(rrw) = —(f* (M+K))(TT__t)_(w)

(5.1) . .
— [£(X), M + K] 7,y _(w) = 2(f *T(M))7_, ().

In particular, there exist reversible defining sets (E¢)i>0 of f* K such that
forweZr, T <((w), and t €[0,T],

T—

(52)  (F*E)urrw) = (f * K)oy (@) + [FO0.K] [, (w).

Moreover, the same assertion as in Theorem 5.1 for PrAFSs including f+ K,

[f(X),M+ K], f«I'(M), and f*T'(K) holds.
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REMARK 5.1. The conclusions of Theorems .1 and 5.2 also include the
assertion that, for each ¢ > 0, =; C Z; holds for the defining set =; of the
given PrAFS on [[0,(] and the defining set =; of the constructed PrAF* on

[0,<[-

One of the consequences of Theorem 5.2 is the following refinement of
the Lyons—Zheng decomposition.

THEOREM 5.3 (Lyons—Zheng decomposition for the Fisk—Stratonovich
integral). Take M € (M{[gcd[)*, and take f € Fioe. Set M := M + 1K, and

set A:= A+ (1/2)K = M +T(M). Then for g.e. x € E, the followmg holds
P,-a.s. on {T < (}: for allt €]0,T]

/f )odA, = /f

(5.3)
A aat o)
(T—t)+
- 1. 1 . .
(54) At = §Mt — §(MT_ orr — M(T—t)— 9] TT).
Here fo )odAs is the Stratonovich-type integral defined for t € [0,([ in

[13, Deﬁmtzon 4.1] (see also [1}]).

Proof. Let (2;)¢>0 be the common reversible defining sets that appeared
in Theorem 5.2. By (5.1) and (5.2), we see that, for w € Zp, T < ((w),
te0,T7],

right-hand side of (5.3)

= S W) = 5 ((f * M) (rrw) = (F # M)y (7))
§<f*M> )= 5 ((F Myr_ (1) = (f * M)y (rrw)
LK) - §(<f « K1 (rrw) — (F  K) g (rr)

(5.1),(5.2) §(f>¢<M) w) + = {( M+K))( )+[f(X),M—|—K]t(w)

+ 2(f * (M ))t(w)}
0 ) = (O Kuf) + [£(), K], ()
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= (f* (M+ %K))t(w) +%[f(X),M+ %K]t(W)
+(f*+T(M)),(w)

:/0 f(Xs(w)) o dAs(w). 0

The following corollaries are consequences of Theorem 5.3.

COROLLARY 5.1 (Lyons—Zheng decomposition for the Fisk—Stratonovich
integral by A :=M +T'(M), M € (MHO C[[)as) Take M € (M[[O C[[)as, and

loc loc

take f € Fioe. Set A := M + ['(M). Then for q.e. x € E, the following holds
P,-a.s. on {T < (}: for allt €10,T],

/f odA—/f

(5.5)
- 5/ f(XT s) d(Ms © T‘T),
(T—-t)+
1 1
(56) At == §Mt - i(MT, orr — M(Tft)f e} T‘T).
Here fo s) o dAg is the Stratonovich-type integral defined for t € [0,(] in

[13, Deﬁmtwn 4.1] (see also [1]]).

COROLLARY 5.2 (Lyons—Zheng decomposition for the Fisk—Stratonovich
integral by A%% v e .7:1J[)C) Take f € Fioe, and take u € ]:l];c We set A9 .=
M4 T (M™Y. Here M9 is an element in (Mﬁ)’go’cﬂ)as such that AMt“d =
u(Xy) — u(X¢—) t €]0,(] Pyp-a.s. for q.e. x € E. Then for g.e. x € E, the
following holds Py-a.s. on {T' < (}: for all t €[0,T)

/Otf(X 0dA%? = / f( X, )dMed

! / F(Xr_) d(M54 o rp),
(T t)-‘r

2
u,d 1 u,d 1 u,d y
(58) At :§Mt - §(MT orr — M(T t)— orT).
Here fO )o dA%? is the Stratonovich-type integral defined for t € [0, (][

in [13, Deﬁmtzon 4.1] (see also [1}]).
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COROLLARY 5.3 (Lyons—Zheng decomposition for A", u € ]-"f[)c) Take
u € .ﬂ‘;c For g.e. x € E, the following holds P-a.s. on {T < (}, respectively:

for all t € (0,77,
1 u 1 U u
(5:9)  u(Xe) —u(Xo) = 5M — S(Mf_orr — Miy_y_orr),

where we regard Xo— = Xo and My— :=0.

COROLLARY 5.4 (Lyons—Zheng decomposition for M € MC’[[O’C[[). Take

loc

M e Mlc(,)[([:o,g[[' Set Ay := My +T'(M);. Then for g.e. x € E, the following
holds Py-a.s. on {T < (}: for all t € [0,T],

1 1
(5.10) At: §Mt— i(MTOTT_MT—tOTT)-

COROLLARY 5.5 (Lyons— Zheng decomposition for the Fisk—Stratonovich
integral by A“¢). Take u € Fioe, f € Lloc({Gn};u<Mu,c>) for some nest
{G,} € ©, and take {u,} C Fp such that u = u, m-a.e. on G, for each
n € N. Then for g.e. x € E, the following holds P-a.s. on {T < (}, respec-
tively: for all t € [0,T],

/f )odA%e = /f _)dMe

(5.11)
-5 f(XT §) (M orr),
2 Jr—
u,c 1 u,c 1 uU,C u,c
(5.12) A, :§Mt _Q(MT orp — My, orry).
Here fo ) o dAS™ is the Stratonovich-type integral defined for t € [0,(]

in [13, Deﬁmtwn 4.1] (see also [1]]).

REMARK 5.2. Corollary 5.5 strengthens Lyons—Zheng decompositions on
Fisk—Stratonovich-type integrals by Nakao [18], Lyons and Zheng [16], and
Lyons and Zhang [15] formulated under the condition that J =k =0. Actu-
ally, [15, (2.1.6)] essentially proves that (5.11) holds for every ¢ € [0,7] Pp,-
a.e. under the condition that X is a conservative diffusion process having
no inside killing and the associated Dirichlet form admits the square-field
operator.
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As another consequence of Theorem 5.2, we can connect two kinds of
extensions of Nakao operators and Nakao integrals defined in [4] and [13].

More precisely, as in [4, Definition 3.3], we can define A(M) for M € (./\/ll[g (’f[)*
having jump function ¢ € J,: A(M)p:=0 and

1
A(M), := -5 (My+ Myory+o(Xe, Xo—) + Ki),  t€]0,(]

P-a.e. The stochastic integral fotf(XS)dA(M)s for M € (Mjoc)« and f €
}—12 . is now defined in the following way:

t
| #xoann, = a(s <
_ %<Mf,c+Mf,j,Mc+Mj+K>t te0,¢[

P-a.e. Here M7 is the locally square integrable MAF of purely discontin-
uous type such that AMtf’] = (f(Xy) = f(Xi-)) 1y t €]0,00[ Py-aus. for
q.e. € F.

THEOREM 5.4. For M € (M{[Sf[[)*, A(M); t €10,¢[ can be defined Py-a.s.
for g.e. x € E and

L(M)y=AM): te€]0,(] Py-a.s. for ge. z€ E.

Moreover, for f € .7-"1J[)C and also for M € (Moc)«, it holds that the stochastic
integral fot f(Xs)dA(M)s t €[0,(] can be defined Py-a.s. for q.e. x € E and

t
| sexoaran,
= /tf(XS)dA(M)S for allt € [0,¢[ Py-a.s. for g.e. x € E.
0

Proof. For w € Ep with T'< {(w) and t € [0,T], we have w € Z;; hence,
by applying (5.1) to w € E; with ¢t < {(w),

(F# D) () = 5 ((F * (M + K)),_()
+ [MT M + Ky (w) + (f * M) (rw));

(5.13)

in particular, if f =1g, we then have

https://doi.org/10.1215/00277630-3335905 Published online by Cambridge University Press


https://doi.org/10.1215/00277630-3335905

STOCHASTIC CALCULUS WITH TIME REVERSAL 119

Let K be the local MAF of purely discontinuous type such that AK; =
—(f(Xi)p( Xy, Xi) + [(Xe)o(Xe, Xy )) 1<y for all £ €]0,00[ Py-a.s. for
q.e. © € E (see [4, Lemma 3.2(ii)]); K can be also regarded as a PrAFS with
reversible defining sets. Indeed, let (_t)t>0 be the time-reversible defining
sets for the CAF fo (1exe(for+ fee))(Xs) dH. Then

=t = {w e 2L ‘ D o+ Foo) (X, Xo)lieeqy
0<s<t

absolutely converges on [0, T]}

is the time-reversible defining set for the purely discontinuous local MAF
K e (M¢ ). whose jump function is given by —1ExE(fSOe +f—g04) Since

fgoz—i-m f(905+g05) (f — )¢, we can see that 1G «K' e /\/l and that
{1¢g, * (K -K' ) }¢ forms an e Cauchy sequence in M Taking a subsequence
{lr} of {£}, we see that K™ uniformly converges to K on each compact
interval P;-a.s. for q.e. z € E. Then one can construct an adequate time-

reversible common defining set =7 for K and f * M. We define, for w € Zp
with 7' < ((w) and t € [0,T7,

=S ((f % M) (W) + (f % M)i(raw) + Ki(w)).

wlv—\

Af+M)(w):=

This means that A(f * M) defined under Py, in [4, Definition 3.3] can be
redefined P -a.s. for q.e. z € E. Putting M’ := —(M7 4+ K) and f % MJ :=
—(f * M7 + K), we see that w € Zp with T < ((w) and t € [0, 7]

/O F(Xol(w)) dA(M), (@)
=A(f % M) (w) — %<Mﬁc + M M T ) (w)

=L M)+ (5 M) — () (0)
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— (F % MI)(w) + (M, M)y (w) — (MP3 T, (w))
=~ (7 # (M4 K)),_ (@) + M7, M 4 K] (@) + (f » M)u(r)
= (f*T(M)),(w),
which implies the desired assertion. []

EXAMPLE 5.1 (d-dimensional Brownian motion). Let X = (2, X;,P,) be
the d-dimensional Brownian motion. We take a measurable vector field b:
R? — RY, and we assume that the measure |b(z)|?dz is a smooth measure.

(o]

We consider the Ito integral M; := fo s)dXs. Then M € M = M .
and N :=T'(M) € N, joc. Note that if we assume that b € C1(R? — RY), then
we have the expression N, = fg (divb)(Xs)ds. By Theorem 5.2, for each
feHL (RN, M, N, f«M and f * N can be regarded as finite continuous
PrAFSs with a common time-reversible defining set (Z;);~0 such that, for

T>0,weZpandte|0,T],
My(rrw) = =M7_y(w) = 2N7_4(w),  Ne(rr(w)) = N_y(w),
(f % M)i(rew) = =(f * M)7_y(w) = 2(f * N)7_(w),
(f* N)e(rr(w)) = (f * N)7_y(w).

That is, these hold for P -a.s. for q.e. 2 € R? (for all x € R provided that
d=1).

EXAMPLE 5.2 (symmetric Lévy process on RY). Let X = (Q,X:,¢,
P,),cra be the symmetric Lévy process. That is, X is a time-homogeneous
additive process determined by a family {1} of probability measures on R?
satisfying [8, (4.17), (4.18), (4.19)]. Let (€, F) be the corresponding Dirichlet
form on L?(R?). Then (&, F) is given by

{ = Jpa UE)D(E)H(E) de,

F={ue L*R? \fR |6(€)|?(€) d€ < o0},

where u(§) := (1/(27T)d/2)fRd &%)y (z) dz and where 1(x) is the function
determined by Eq[e&X1)] = ¢=1(©) We assume that X is purely discontin-
uous, namely, that 1) has the expression

v = [ (1= cos(e.m)vld)
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where v is a symmetric measure on R%\ {0} such that fRd\{O}(|€’2 Al)v(d) <

00, which is called the Lévy measure of X. We see that C(];ip(Rd) C H{(R%) C
F; hence, CHP(RY) € HL (R?) C Fioe, because of

loc loc
1+9(8) <c(1+]¢%) "¢eRr

for some constant ¢ > 0 (see [1, Corollary 7.16]). Here C(I;ip(]Rd) (resp.,
CII;iCp (R%)) is the family of Lipschitz continuous functions with compact sup-
port (resp., locally Lipschitz continuous functions), and F.. is the space
of functions locally in F in the ordinary sense (see [8]). Further, (£,F)
is a regular Dirichlet form having C§°(R?) as its core (see [21]). Define
N(z,A) :=v(A—z), N(x,{0}) =0 for Ac B(R?), x € R and H; =t. By
[19, Theorem 19.2(i)], we have

N(w, A) =B, [ 3 14(X, - X,-)| Aez®);

0<s<1

hence, (N, H) becomes a Lévy system of X. Further, we assume that v(dy) =
f(Jyl) dy, where f is a Borel function satisfying

(5.14) / f(r)rittdr < oo for some ¢ > 0.

Equation (5.14) is not satisfied for f(r) = Ald—a),—d-a  where a €]0, 2],

2
_ opdtep(die)
Ald, —0) = garramr—a)
satisfied for processes with finite range jumps, or processes with jumps expo-

, the case of symmetric a-stable processes, but is

nentially decayed, and so on. More concretely, (5.14) is satisfied for relativis-
tic symmetric o«-stable processes with mass m > 0 by setting
f(r) = Mr_d_alﬂ(ml/ar), where U(r) := I(r)/I(0) with I(r):=

d¥a 1 s 12 . — _
X572 “leTi7 5 ds satisfies ¥ < e (1 4 r¥e7) at r = o0, Let u €

0 .
CUP(RY). Then under (5.14),

(5.15) sup/c(u(w) —u(y))Qf(|x—y|) dy < oo

zeK

for any compact set K and its relatively compact open neighborhood G;
hence, u € F,.  (equivalently, (u(-) — u)? € J). Then there exists M" €

loc

(M[[O’C[)as such that M} — M} = u(Xy) —u(Xe) t < Pyas. for qe.

loc

rcRY We set N*:=T(M¥) ¢ MNejoe- By Theorem 5.2, for each f € Fioc,
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MY, N" fxM" and f* N" can be regarded as PrAFSs with common
reversible defining sets (Z;);~0 such that for T'> 0, w € Ep with T < ((w)
and t € [0,77,

M (rrw) = — (M) (@) = 2N, (),

N (rrw) = (V") (w),
(f  M"(rrew) = —(f « MUY () = 2(f Ny (w)

Z f(X w
T—t<s<T
— [ (Xo- () (u(Xs(w)) — u(Xs—(w))),
(f * N*)(rrw) = (f * N*)_y ().
Under (5.14), each coordinate function w;(z):=x; (i =1,2,...,d) satis-
fies (5.15). We set My := (M",..., M;""), and we set N; := (NZ“,...,N;”).

Then we have a Fukushima decomposition by [13, Theorem 4.2] (see also
[14, Theorem 1.2]):

Xt—XOZMt+Nt foralltG[O,C[
P,-a.s. for q.e. z € R% and a Lyons-Zheng decomposition by Corollary 5.3:
1 1
Xy —Xo= §Mt - §(MT, orp — M(T—t)— o TT) for all t € [O,T]

P,-a.s. on {T <} for q.e. z € R%.
86. Proofs of Theorems 5.1 and 5.2

Recall that 2 consists of rcll paths. First we show that any PCAF can
be regarded as a continuous reversible PrAFS.

LEMMA 6.1. Every PCAF A can be regarded as a continuous reversible
PrAFS with reversible defining sets (E¢)¢>0 and for w € ZEp with T' < ((w),
Ay(rrw) = AL (w) for all t €[0,T). If the Revuz measure p of A has finite
total mass, then A can be taken to be a finite continuous reversible PrAFS.
Moreover, A can be extended to be a continuous PrAF with some defining
sets Ey (DE), 2 (D E), and A defined as in (/.1) is a PrAF* with defining

- ~

, 8
sets Zy:=r, (E;), E:= ﬂt>out

https://doi.org/10.1215/00277630-3335905 Published online by Cambridge University Press


https://doi.org/10.1215/00277630-3335905

STOCHASTIC CALCULUS WITH TIME REVERSAL 123

COROLLARY 6.1. For M,N € /\3{ (resp., M, N GMI[[&C[[), (M,N) can be
regarded as a finite continuous (resp., continuous) reversible PrAFS having
a family of reversible defining sets (Z¢)i>0, and for w € Ep with T < ((w),
(M,N)¢(rqw) = (M,N)L_ (w) for all t € [0,T]. Moreover, (M,N) can be
extended to be a continuous PrAF with some defining sets =; (D =), ”_(D
=), and <M N) defined as in (4.1) is a PrAF* with defining sets Z; :
Tt_l( ¢ ) 2= mt>0~t

Proof of Lemma 6.1. The last assertion follows from Lemma 4.3 with
Remark 4.3. So we prove only the first assertion of Lemma 6.1. First, we
suppose that A is a PCAF whose Revuz measure p belongs to Sy. We can
reconstruct A as a PrAFS having reversible defining sets in the following
way. As in [8, proof of Theorem 5.5.1], let u be a nonnegative finite Borel
E-quasicontinuous m-version of Uy such that nR,,riju(x) 1 u(z), n — oo for
reFE \ N3, and u(z) =0 x € N3 for some properly exceptional set. We set
A (w fo 9n(Xs(w))ds, and set AP (w fot 5 dAY(w) for w € Q, where
gn(x ) =n(u(z) —nRyriu(x))(>0), x € E \ N3, and gp(z):=0, x € N3. In
view of [20, Proposition 4.22(iv)], there exists an exceptional set N such
that

Px({s E]O,CH X # XS,} is at most Countable) =1

for x € E'\ N;. Taking a common properly exceptional set N including N3

and N, we can set
Q:={we| Xs(w) € E\N for s€]0,t[ and
(6.1)
X;_(w) € E\ N for s €]0,t[}.

Then Q, € %, is an r;-reversible set. Since N is properly exceptional, we
have P,(€;) =1 for x € E'\ N. Further, we set

E(A") = wEQt‘/gn s( ds<ooand

{s€)0,t[| Xs(w) # Xs—(w)} is countable}.

Then A" is a finite continuous PrAFS with the reversible defining set =;(A™)
of A", and for w € Ep(A") with T < ((w), A (rrw) = (AM)L_,(w) for t €
[0,7]. We observe that the (pre-)t-equivalence between w; and wy together
with wy € Z4(A"™) implies that we € Z4(A™). In the same way as [8, proof of
Theorem 5.2.2], there exists a subsequence {ny} such that A" converges
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uniformly on each compact interval P -a.s. for x € E'\ N, where N is an
adequate properly exceptional set. Note that uniform convergence for An
is equivalent to that for A", because A} = e tA} + fg e *AYds and A} =
et Ap — fot e* A" ds. We further set

Zi(A) = {w € ﬂ E(A™F) ’ A" (w) converges uniformly on [O,t]},
k=1

and we set Ay(w) :=lim,_, A" (w) for w € Q. Then, by Lemma 4.4, A is
a PrAFS having the reversible defining set =;(A), and for w € Ep(A4) with
T < ¢(w), Ae(rrw) = AL (w) for t € [0, T]. Next we prove the general case.

Let A be a PCAF with Revuz measure 1 € S. Then there exists an £-nest
{F,} of closed sets such that 1p, 1 € So. Let A™ be a PCAF which is also
a finite continuous PrAFS having a reversible defining set Z;(A™) with an
exceptional set N, whose Revuz measure is 15, € Sp. We know that for
n < £ there is an exceptional set NV, , such that Agn) = Agz) for all t < 7p,,
P,-as. for x € £\ N, . Note that

P (lim op\p, > () =Ps(lim Gpp, >¢) =1

holds for x € E'\ Ny for some properly exceptional set Ny in view of [8,
Theorem A.2.3].

Choose a properly exceptional set N containing all N,,, n € NU{0} and
Ny, n,£ € N with n < /. We set

Ei(A) = {w e n ﬂ =,(AM) ‘ there exists n € N such that
n=1

t<omp, W) AT E, (W), Al (w) = AP (W)

S

holds for all s € [0,#] and n < e},

where € is the set for N as in (6.1), and for w € Zp(A) we reset A(w) :=
Agn)(w), t€[0,T] if op\p,_ (W) <t <opp,(w), n €N, and Ay(w) :=
Ag)—(w) if t > o(w) := limy, 00 0\ g, (w). Note that, for w € Z(Y), t <
op\F, (W) (resp., t < Tp\p,(w)) implies that t < op\p, (rw) (resp., t <
op\F,(Tw)). Then A is a continuous PrAFS having the reversible defin-
ing set Z;(A), and for w € Ep(A) with T < ((w), Ai(rrw) = AL, (w) for
te0,T].
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Finally, suppose that the Revuz measure p of A has total mass. Then
E;[A:] < 0o for each t € [0,00][ for q.e. x € E; hence, P,(A; < oo for all t €
[0,00]) = 1 for q.e. z € E. So Z4(A) := {w € Z(A) | Ay(w) < o0} forms a
reversible defining set for A. This implies that A is a finite continuous
PrAFS. []

Next we show that any MAF of finite energy and CAF of zero energy
appearing in the Fukushima decomposition can be regarded as finite rcll
reversible PrAFSs with reversible defining sets.

LEMMA 6.2. Take v € Fe, let M“ € /\Z be the MAF of finite energy,
and let N* € N, be the CAF of zero energy appearing in the Fukushima
decomposition for w. Then M"™ (resp., N*“) can be regarded as a finite
rell (resp., finite continuous) reversible PrAFS with a family of common
reversible defining sets (Z¢(u))i>0 such that, for w € Zp(u) with T < ((w),
M (rpw) = —(M*) (@) = 20N")E_,(w) and Np(rrw) = (N*)5_(w).
Moreover, for f,u e F. with f € L2(E;/,L<Mu>)7 f*=M* (resp., T'(f « M*))
can be regarded as a finite rcll (resp., finite continuous) reversible PrAFS
with a family of common reversible defining sets (Z;(f,u))i>0 such that, for
w e Er(f,u) with T < ((w),

(f * M")e(rrw) = —(f+ M™) (7__(w)

— (M MM (w) = 2(f + T(M™)) (@)

(6.2)

and T(f * M) (rrw) =T(f * ML (w).

COROLLARY 6.2. Take M € /\3[, and take f € Fe N L2(E;M<M>). Then
L(M), fxT(M), T(fxM), and (M7?¢+ M5 M+ MI +K) can be regarded
as finite continuous reversible PrAFSs with a family of common reversible
defining sets (Zi(u))iso such that, for w € Ep(u) with T < ((w)
and t € [0,T], T(M)i(rrw) = D(M)L_,(w) and (f * T(M))i(rrw) =
(f + DOM)YF_(w).

Proof. Applying Lemma 6.2 to (3.2), we first obtain the assertion for
['(M). The second assertion is clear from the first assertion with (3.4) and
Corollary 6.1. [l

Proof of Lemma 0.2. We prove only the latter assertion. The proof of
the former one is easy. We first prove for the case u = R;g with Borel
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measurable g € L2(E;m) and f € (F.)p. In this case, N* =T'(M") is a CAF
of locally bounded variation. In particular, from [18, Theorem 3.1], the Fisk—
Stratonovich integral

/f )odAY = /f _)dAY + [Mf,M“]t

is a semimartingale on [0,00[ under P, for q.e. x € E. Set t}' :=iT/2",
i=0,1,...,2". Then {tI'} forms a subdivision of [0,T]. For simplicity, we
write t; = t'. We may assume that X;, = Xy _ (hence, M,}f = M;f_), 1=
0,1,...,2", neN, Pg-a.s. for q.e. z € E.

By [10, Proposition 4.44 and Theorem 4.47 in Chapter I], we see that

2" —1
sup | > (F(Xeiiine) = F(Xeone)) (M, g = M) — (M7, MY
te[0,T]' ;o

2" —1
sup Z (f(Xtipant) = F(Xeine)) (NE e — Nitag)|
te[0, 71" ;. =,

2" —1
a5 00 [ sy
ol 4 Z M o — M;ing)

and
2" —1
sup ‘Zth (N e = NE0) /f ) dNE
t€[0,T]

converge to 0 in P -probability for q.e. € E. Note that s— f(Xs_) is
bounded left-continuous. In particular,

on_ 1
tiant) + F(X4,)
- Z = (A= A

uniformly converges to fot f(Xso)dAY + $[MS,M"]; on [0,T] in P,-
probability for q.e. x € E. By way of the usual diagonal argument, we can
construct a suitable subsequence {n;} (we write it {n} again for simplicity)
such that the above Riemann sums uniformly converge on [0,7] P-a.s. for
g-e. ¢ € E. Let (Z¢)¢>0 be the common reversible defining sets of M, N,
and (M7F¢ 4 MT3 M®€ 4 M%), which admits an exceptional set. Let Q7 be
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the set analogously defined as in (6.1) for an adequate properly exceptional
set N containing all exceptional sets that appeared so far in this proof. Set

Zr(f, ) = {w € Qr NEp(u) ]

on_1
Z f(Xti+1/\t(w) - f(Xti/\t(w))) (Mtqurl/\t(w) - Mt%/\t(“’))’
=0

2n—-1

Z f(Xt¢+1/\t(W) - f(Xti/\t(W))) (N157:+1At(w) - thf/\t(w))?
i=0

2" —1
Z f(th (UJ)) (Mfz.,_l/\t(w) - Mg/\t(w)), and
=0

2" —1

D (X () (N pelw) = Ny ()

=0

uniformly converge on [0,77;

M (w) (resp., M{* (w)) is right-continuous

(resp., left-continuous); and N;*(w) is continuous on [0, ]}

Then (Ep(f,u))r=o is a family of reversible defining sets. Indeed, by setting

ig == [2"t/T] and j; := 2" —4; and noting that t; =T — ton_;, we see that
i, <t <tj41 and tj,_1 <T —t <tj,. We then have that, for w € Zp with
T <((w),

2" -1

(3 F(Xu ) (M o)~ Ming())) o7
=0

2n—1
= Z f(X(T—ti)—(W)) (Mtqjﬂ/\t(rTW) - MLZ:/\t(TTW))
=0

ir—1

=D F(Xwoy- @) (Miy,, (rrw) = M (r7w))
i=0

+ [ (Xt (W) (M (rrw) — Mg, (rrw))

= Z FX - (@) (M{r_y, - (@) = Mip_y,)_(w))
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it—1
23 (Kroa- () (Vo () = N ()
+ f(X(T*tit)*(w)) (Mp_py—(w) = Mgy, ) (w))
+2f (X(T*tit)*(w)) (N%—t(w) - N:%—t,-t (w))

2"—1
= > (X (@) (M (w) = Mg, ()
J=Jt
271
+2Zf(th+1—(w))(N£;( w) = Npi,, (@)

+ f (X, — (W) (M7 - (w) = M _(w))
+2f (X, - (W) (Nip_p (W) = Nf (w))

271
= Z f XtJ+1 Mt (W) - MtJH (W))

2" —1

£2 3 (X (@) (V) = N2, ()

J=0
2n—1

B Z f(thJrl/\(T_t)_(w)) (M;;/\(Tft)f(w) - M;;H/\(Tft)f(w))
§=0

2" —1

-2 Z F(Xt, A r—)— (W) (NZjA(T_t) (W) = Ng: Ar—t) (w))
=0

+ (f(tht—(w)) - f(X(T—t)—(W))) (ng-t_l—(w) - M(uT—t)—(w))
+2(f (X, (@) = F(Xr—0—(@))) (Ni}, _, (@) = Nf_y(w)),
which uniformly converges to
(MY (@) =20« NYE () — [T AT, ().
We will explain why the last two terms uniformly converge to 0. Since

t— M (w) (Mo—(w) := M§(w) =0) is left-continuous on [0,7], we can
extend M;_ (w) as a left-continuous function on [0, co[ by putting M¥ (w) :=
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M} (w) for s >t. Then we see that M}* (w) is uniformly left-continuous on
[0,T] in the following sense: for any £ > 0, there exists § > 0 such that
sup sup | M (w) — MY (w)| <e.
te[0,T] s€]t—4,t[N[0,T)
The proof of this uniform left-continuity is the same as in the proof of the
uniform continuity of continuous functions on compact sets. Noting that
0<(T—1t)—tj,—1 <T/2" and 0 < tj, — (T —t) <T/2", the last two terms
in the right-hand side uniformly converge to 0 with respect to ¢ € [0,77.
The uniform convergences of

2" —1

" (Z{:} f(Xti(w» (NZHM(”) - NZ:At(“») err,

2" —1

tor (D0 (F(Keeane(@)) = F(Xuina())) (Mt po(e) = Milpo(@)) ) o7,
1=0
2" —1

tor (D (F(Keiane@) = F(Xeins ) (Vi o) = Nipel@)) ) 071
1=0

are similarly confirmed. Hence we, have the rp-reversibility of Zrp(f,u).
Then, for such w € Ep(f,u) with T' < ((w), we have (6.2) for all ¢ € [0,T].
Therefore, we obtain the desired formula (5.1).

Next we prove the case for u € F, f € (Fe)p. Taking up, = Rign, gn :=

n(u — nR,11u) € L2(E;m) N B(E). We know that f x MUr € M is e
convergent to fx M" in _/\;t Moreover, let wy, j := 1, — ug, and for v € Spo,
we see that

B e | 5 (060 = 06 (0a2) a2 )

1/2

<B[ 3 (f(X) - F(X)

B[ (unpX0) e (,))]

<E, [<Mf’d>T} 1/2El/ [(Mun’k’d>T:| 1/2

< (14 D)||U || sce(MTF Y 2e(Mnm /2 50 as n,k — co.
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Then one can construct a common subsequence {n;} such that f s M"
(resp., [M7T, MY, f x T'(M"+)) uniformly converges to f x M® (resp.,
(M, MY, f*M*) on [0,T], Py-a.s. for q.e. x € E. We can take a common
subsequence so that both convergences hold. Set

Er= {w € ﬂ ET(f,unk)ﬂET(f*F(M“”k)) ‘ (f * M) (w),
k=1

[ D(M"%).(w) and [M/, M¥].(w) uniformly converge on [O,T]},

where Z(f « I'(M""x)) is the reversible defining set of f  I'(M"“"«). Then
(2r)7>0 is a family of reversible defining sets. Indeed, by use of Corol-
lary 6.1, we have T'(f * M“n ) (rrw) = T(f * M")L_(w) and

fr My (rrw) = = (f * M%) {7y ()

= 2(f R DM ) o (w) = [MF, M) (w),

which means that rrw € E7 and that (6.2) holds for w € Zp with T' < {(w).
The strategy of the proof for the case f € (Fe)p, u € Fe is similar to this
proof by E-approximating u,, € F. For general f € F.N L2(E;/.,L<Mu>) with
u € Fe, we can approximate f by f,:=(—n)V fAn € (Fe)p. Then f, x M"
is e-convergent to f x M". The rest is similar. 0

Proofs of Theorems 5.1 and 5.2.

(Step 1): Proof of Theorem 5.2 with (5.1) for M € M? f¢c F.n
L2(E; poary)-
In this case, M = M?. For any v € Sy, we have

|

Eu[ Z ‘f(XS) +f(XSi)]-E><E'§0€(Xs—aXs)

2
0<s<t
< SB[ 3 [(F(X) — K)o (Xo, X,

+ El,[ Z |f(XS,)1ExE90£(XsfaXS)H

1/2 }1/2

E, |: Z 902(X577Xs)1{s<ﬁ}

0<s<t 0<s<t
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+(B, | /\f \/ Y)N(X,,dy) dH,|

1 4 . S
< SB[ B[]+ 8, (115,007 < o
and, by [8, Lemma 5.1.9],

E, [ Z ‘ USORSIRES 1pxePi(Xs—, Xs)

]

0<s<t 2
< %Ev[ Z |(f(XS*) - f(Xs))lExEW(XsfaXs)u
0<s<t
TE [ D |£(X)1exs7e(Xom, X,
0<s<t
< T U ace (M) (M) 4 (14 8) [Urv | ace(1f] = M7, M)
< o0.

By [13, Lemma 4.1(2)], we have that T'(K*); = f*T'(K*); = 0 holds for all t €
[0,¢[ Py-a.s. for q.e. x € E. In particular, I'(K*) and f *T'(K*?) are PCAFs
by setting T'(K*%); = f «'(K*); = 0 for t > (. Hence, they can be regarded as
PrAFS with the common reversible defining set Z7(T'(K*)) N Zp(f *T'(K*))
in view of Lemma 6.1; in particular, w € Z¢(T'(K%)) NEp(f *T(K*)) implies
that T'(K%);(w) = f * T(K%)¢(w) =0 for all t € [0, T]. Then

=0(f,0) 1= {w € Qr NZp(D(f + (M* + K)) nEp (M7, M + K))
NEr(N(K") NEr(f+T(K") |
{5 €)0,T] | Xs(w) # Xs—(w)} is countable,

t— Z f(Xs—(w))1pxppe(Xs—(w), Xs(w)), and
0<s<t

t— Z f(Xs—(W))1E><E@(Xs—(w)7XS(w))

are absolutely uniformly convergent on [O,T}}

is an rp-reversible defining set of f* (M®% + K%, f+T(M®* + K*), and
(M7, M%* 4 K*]. Here Qr is analogously defined as in (6.1) for an adequate
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properly exceptional set N containing all exceptional sets that appeared so
far in this proof. Then for w € E¢(f,¢) with T' < {(w) and ¢ € [0,T], we have
f*T(KY(w) =0, rrw € Zr(f,£), and

(f #+ M)y (rrw) = = (f+ (M 4+ K)) iy (@) = 2(F + T(MH) 1 (w)

= [MT MY+ KT, (w).

Since f* M®%* (resp., f+ K¢, M%' K*) is e-convergent to f % M? (resp.,
fxK, M K ), by [18, Theorem 3.2] there exists a common subsequence
{¢;} such that f* M®% K% and f*T'(M%%) uniformly converge to f *
M f+ K, and f*I'(M?), and [MS, M%% + K%] uniformly converges to
(M7, M+ K] on each compact subinterval of [0, 0] P,-a.s. for q.e. z € E.
Then for such subsequence {{;} we can define the following defining set with
an adequate properly exceptional N containing all countable exceptional
sets that appeared so far in the proof:

=r(f+ M%) i={wern () Zn(f,4) ‘ all fx (M% + K)(w),
k=1

[ DM 4 K%)(w) and
(M, MY 4 K*%)(w) uniformly converge on [O,T]},
where Q7 is the set defined for N as in (6.1). We see that Zp(f * M?) is

an rp-reversible set. Then, for w € Zp(f * M?) with T < ¢(w), we have, for
te[0,7], f«T(K)i(w)=0 and

(f * M)y (rpw) = —(f s« (M + K))?:E_t)_(w)

—2(f* (M) (w) = M7, MP+ KJ[ - (w),

which shows (5.1).
(Step 2): Proof of Theorem 5.2 with (5.1) for M € M® and f € F. N

L2(E; puary)-
In this case, M = M¢. Consider a subfamily

5= { f+ M € M| f € FNCo(E),ue F
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o o]
of M¢. In view of [8, proof of Lemma 5.6.1], we have that M§ is dense in
o [e]
(M¢,e). Hence, for any M € M€, we can take an e-convergent sequence

{M"} C /\318 to M. Note that M™ = f, * M"~¢ for some f, € F N Cy(E),
un, € F. Then there exists a subsequence {ny} such that M, uniformly
converges on [0,7], Py-a.s. for q.e. z € E. By [18, Theorem 3.2], we have
that there exists a subsequence {ny} such that I'(M "), uniformly converges
to I'(M); on [0,T], Py-a.s. for q.e. x € E. Take a common subsequence so
that both convergences hold. Set

Ep(f* M) := {w € ﬂ E7(frg uny,) NE7 (D(M™)) ‘ M"™(w) and
k=1

I'(M™)(w) uniformly converge on [0,7 ]},

where E7(fn, , un, ) is the intersection of the reversible defining sets of f;,, *
MY« and fp, * M un® which are defined in the proof of Lemma 6.2 and in

the proof for the case that M € M% and Z¢(T'(M™*)) is the reversible defin-
ing set of I'(M™). Then (E7(f * M))rso is a family of common reversible
defining sets of M and I'(M). Indeed, by use of Corollary 6.2, we have
D(M™)(rpw) =T (M™)1_,(w) and

M (rpw) = AP* (row) — T(M™ ) (row)
= —(A"™)_y(w) = (M) (w)
= —(M™)_y(w) = 20(M"™ )]y (w),
which means that rrw € Ep, M(rpw) = =ML, (w) — 2I'(M)E_,(w), and
D(M)i(rrw) =T(M)7_,(w).
Therefore, we obtain the formula (5.1) for the case M € /clc and f =

15. Replacing M € /\31c with f+« M € ./\316, fe LQ(E;M<M>), we obtain the
formula (5.1) for all ¢ € [0, 7.

(Step 3): Proof of Theorem 5.2 with (5.1) for M € /\il and f e FeN
L2(E; puay)-

In this case, we have M = M¢+ M9, and we employ the rr-reversible
defining set Z7(f * M) := Ep(f * M) NEp(f * M¢). We easily get (5.1) for
all t € 10,7].

(Step 4): Finally, we prove Theorems 5.1 and 5.2 for the general case.
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Proof of Theorem 5.1. Take a Y € M and its corresponding jump

loc

function ¢ € J. Let {G,,} be a nest of q.e. finely open Borel sets satisfying

1g,. xEp € 5, and set Yt(n) =1g, *Y € /\jl Recall that P (lim,, 0 TE\Gn =
() =P (limy 00 EE\GTL > () =1 holds for x € E'\ Ny for some properly
exceptional set Ny in view of [8, Theorem A.2.3].

Take the reversible defining sets (Z,(Y()) and Z(Y ™) =", E(Y™)
of Y("). Note that those are still defining sets for I'(Y (")) as shown in Steps
1-3; that is, T(Y(") is a PrAFS with defining sets Z;(Y™), Z(Y(").

Let N, be the exceptional set for Z(Y (™). Then for n < ¢ there exists
an exceptional set IV, , such that Y;(n) = Yt(e)
x € E\ Npy. Choose a properly exceptional set N containing all N, n €
NU{0}, and N, ¢ (1 <n<?). We set

for all ¢t < 7g, Ps-a.s. for

o0
Zr(Y):= {w eQrn ﬂ 2p(Y ™) ) there exists n € N such that

n=1

T <op\G, (W) ATp\q, (W),

Y™ (w) = ¥, () holds for all ¢ € [0,T] and ¢ > n}

where Q7 is the set for N as in (6.1). Note that, for w € Z¢(Y) with T' <
((w),

Y rrw) = ~(Y )y (w) = 2(T(r )

(T—t)— (W),

LY ™)e(rrw) =D )Ty (w).

For w € Ep(Y) with T' < ((w), there is an n with T < 7¢, (w), and set
Yi(w) := Yt(n) (w) for all t €[0,7]. Next we prove the rp-reversibility of
Er(Y). First note that, for w € Z7(Y), T < op\q, (w) (tesp., T <op\q, (w))
implies that T' < op\q, (r7w) (resp., T' < op\g, (r7w)). Then, we see that
Zr(Y) is the reversible defining set for Y.

Finally, we prove the .%/-measurability of Y; or;. Take C € #(R). Since
((rw) = oo for t < ((w),

(Yior) HC)NE(Y) N {t < ¢}

— U (Yior) L CO)YNE(W)N{t<(}n{t<rg, or}
n=1
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¥, or) HC)NE(Y)N{t< PN {t<1q, ord

I
(G

3
Il
_

¥, or) HO)NE(Y) N {t <IN {t< Fma.} €T

I
(G

3
—

As noted before, we have (Y;or) Y (C)NEXY)N{t>¢} =0, or =Q
and any subset of Z,(Y)¢ is .#/-measurable. Therefore, we obtain the .%;*-
measurability of Y; ory. []

Proof of Theorem 5.2 with (5.1). Take an M € (MHO’CH)*, and take f €

loc
Froc. Let {G),} be anest of g.e. finely open Borel sets satisfying 1, xpp € ‘;,
lpxg,p € § and Mt(") =1g, *M € /\jl, and take {f,} C Fp such that, for
each n €N, f = f, q.e. on G,. Recall that M’ := —K — M7. We see that
1g, * M e ,/\jl for each n € N. Let K(™ ¢ /\jl be the purely discontinuous
locally square integrable MAF whose jump function is given by —1¢, «g(p+
©). We then see that K; = Kt(n) t <7g, Pgas. for qe. z€FE.

Take the rp-reversible defining set Zp(f, * M (")) NEr(fnx K (")) and
the defining set Z(f, * M) N E(f, * K™) of f, x (M™ + K™). Note
that Zp(fn * (M + KM)) := Zp(fr, « MDY N Ep(f,, « K™) and B(f,
(M) 4 KM)Y)) :=Z(f,, « M™)NE(f,, « K™) are still common defining sets
for f, * D(M™), f, « T(K™), and [MF M™ 4+ KM,

Let N, be the exceptional set for Z(f, * M™)NE(f, x K™). Then for
n < { there exists an exceptional set N, ¢ such that (f, * (M + K™)), =
(fox (MO + KDY, frusxT(MM™), = foxD(MO),, and [M I, M) 4 K], =
[MFe, MO+ KO)), for all t < 76, Pg-a.s. for € E\ N, 4. Choose a properly
exceptional set N containing all V,,, n € N and N,, s, n <{. We set

2r(f « M) i={we Qrn () Er(fos (M® + KO)) |

n=1

there exists n € N such that T'< op\g, (W) ATp\q, (w), and

(fux (M™ + KM)) () = (fox (MO + KO)) (),
(fax DM™N T (w) = (fo+T(M®))7._,(w) and

(M MM+ KM (w) = (M, MO + KO (w)

hold for all ¢ € [0,T] and £ > n},
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where Qp is the set for N as in (6.1). Note that, for w € Ep(f * M) with

T <((w),
(fn*M(”))t(rTw):—(fn (M(n +K(n ))( —)— (w)
— (M, M ](TT t)— (w)
(6.3) (f*F(M(” N7—t(w),
(M, MO KO (rpw) = — (M, MO+ KO (),
F* (M) (rpw) = f+ T(MO)T_ (w).

For w e Ep(f *x M) with T < ((w), there is an n with T' < 7¢,, (w), and
set (fx M)p(w) = (fox MT)y(w), (f * K)e(w) = (fox K™)y(w), [MT, M +
KJo(w) o= M, MO 4 K], (), and (f xT(M))e(w) = (fo < T(M))y ()
for all ¢t € [0,7]. Then from (6.3) we see that Zp(f = M) is the reversible
defining set for f* M. We obtain the desired formula (5.1) for all ¢ € [0,T].
The proof of .%;-measurability of A; or, for each A= f« M, fxT'(M),
[*T(K), [f(X),M + K] is similar to the proof of Theorem 5.1. 0

Proof of (5.2). Tt suffices to substitute K for M. Recall that K €
(M{[g;%*, I(K)=0, and M’ := —K — MJ. Put M/ := (M7 + 1). Then
K = —2MJ. Since the jump function of K is symmetric on £ x E, we have
Ki=K , which implies that the purely discontinuous locally square inte-
grable MAF K from K, which is analogously defined like K obtained from

M, is given by —2K. Hence, K + K = —K. Therefore, we obtain (5.2). O

§7. Application: Boundary value problem for infinitesimal gener-
ator of perturbed semigroup

A smooth measure p is said to be of Kato class if its associated PCAF A
satisfies ||E.[A¢]||cc — 0 as t — 0. Denote by K(X) the family of all smooth
measures of Kato class, and set Ko(X):={p e K(X) | u(E) < oo}. Let M
and M be two locally square integrable local MAF's on [0, C[[, that is, M, Me
Ml[[gf[[, and let A be a CAF locally of bounded variation with (signed)
Revuz measure p. More precisely, A has a representation A = Al — A2,
where A! and A% are PCAFs with Revuz measures p' and p?, respectively.
We set p:= pu' — p?. Then the signed smooth measure p has a Jordan-Hahn
decomposition p = pu™ —p~, and set |pu| ;= pT + p~. Similarly to [3, proof of
Theorem 3.1], there is a nest {F } such that 15, (f(ar) +han t lu]) € Ko(X)
for all n.
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Our main results in this section concern the form perturbation Q of (£, F)
defined on |J, Fr, by

Q1) = £ =~ [ F@hpgs70)
(7.1) - /E 9@t an () — /E F(@)g(x)u(dz)

- FWg(@)p(z,y)¢(y, z)N (2, dy)ppy (dz).
ExE

Here ¢ € J and ¢ € J are Borel functions defined on Ey x Ejy, vanishing
on the diagonal and on (E x {9})U ({0} x E), and ¢,y > —1 on E x E;
these are the “jump functions” associated with M and M:

My — My = p(X—, Xy), ]\//-Tt - J\//-Tt— = (X, Xy)  for every t €]0,(],

P,-a.s. for q.e. x € E by [14, Theorem 1.1] (see [13, Theorem 2.1]).
Now define, for 0 <t <,

(7.2)  Zy = Exp(M; + Al + (M€, M°),) - Exp(My) o 7 - (1 4+ 9( Xy, X)),

wherein Exp denotes the familiar Doléans—-Dade stochastic exponential: if
Y is a semimartingale on [0, ([ with Yy =0, then L = Exp(Y’) is the unique
solution of the stochastic differential equation

t
Ltzl—i-/ Ls,_dY,, t<(
0
and is given explicitly by the formula
1
Exp(¥) =exp (Y — 5 (V<. Y9)) J] (1+AY)e™", telol
s€]0,t]

Now, we define

(7.3) Qif(x) =E.[Z f(Xy)].
The statement of Theorem 5.1 yields the following.
LevMa 7.1, Let Ve M2 je ¢ locally square integrable MAF on [0, (],

loc
and let ¢ € J be its corresponding jump function. Suppose that ¢ is bounded
above and that ¢ > —1 on E x E. Then L; :=Exp(Y;) is an rcll-PrMFS on

[0,<[, and Lioriy(1+ ¢(X¢, Xe—)) is an rell-PrMF* on [[0,(].
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COROLLARY 7.1. The functional Z; is a PrMF* on [[0,([. In particular,
Ziys = Zi(Zsob) holds for all s,t >0 witht+ s <( Py-a.s. for g.e. x € E.

REMARK 7.1. In [4] we deduce only that Z; is an rcll-PrMF admitting
an m-null set, which is derived from [4, Theorem 2.18]. The content of
Corollary 7.1 is a refinement of this observation.

Proof of Lemma 7.1. 1t suffices to prove the case for —1+e<¢ <1/con
E x FE for some ¢ €]0,1[. Note that there exists C(e) € [1/2,00[ such that
|z —log(1 + 2)| < C(e)z? for x € [-1 +¢,1/¢]. Then we see that N(|¢ —
log(1+ ¢)|)pug € S and that N((¢ —log(1 + ¢))?)uy € S. In particular,

M = 3 {(Xom, X) —log (1 + ¢(Xsm, Xo)) }
0<s<t

- /0 N (6 — log(1 + ¢)) (X.) dH,

is a locally square integrable MAF on [0, ([. Let A;:=log L;. Theorem 5.1
and Corollary 6.1 together imply that

t
A=Y, — %(Y’%—Mt@) /0 N(¢ —log(1 + ¢))(X,) dH,

can be regarded as an rcll reversible PrAFS with A; — Ay~ =log(1 + ¢(X¢—,
X)) for all t >0 Pg-a.s. for q.e. x € E. Applying Lemma 4.3 to A, A=
Apory +log(l+ (X, Xy—)) is an rcll-PrAF* on [0,([; hence, L; o ry(1 +
$(Xy, Xi_)) = exp Ay is an rcll-PrMF* on 10, ¢ U

Proof of Corollary 7.1. The assertion follows from Lemma 7.1, provided
that ¢ and v are bounded above and below away from —1. Next we prove
the assertion for general ¢ > —1 and ¥ > —1. For £ > 2, we set @y :=
L i41/60(@) =101/ ()@ (resp., e := 1141700 (V) Y11 /0,1 01 (¥)2), and
let Mt (resp., M d’z) be its corresponding purely discontinuous locally
square integrable MAF on [0, ([. We can define Zf , as well as Z;, by replac-
ing M?, ]\7‘1, @, 1 with M, ]\/Id’é, e, Wy, respectively. Recall that we
can construct a subsequence {£;} of {¢} such that M® (resp., M 4.k ) uni-
formly converges to M? (resp., M 4) on each compact subinterval of [0, (]
P,-a.s. for q.e. z € E. Consequently, Z% uniformly converges to Z on each
compact subinterval of [0, ([ P-a.s. for q.e. x € E. Therefore, the assertion
follows from this observation. []
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Recall that a signed smooth measure v is said to be of Hardy class
(denoted by v € H(X)) if there are constants >0 and -y > 0 such that

(7.4) / w(z)?|v|(dz) <6 - E(u,u) +7- (u,u)n for every u € F,
E

where |v]:=v" + v~ denotes the total variation measure of v. Note that
every v € H(X) is a Radon measure. It is known that K(X) C H(X), and for
v € K(X) the constant J satisfying (7.4) can be taken to be arbitrarily small.
Also, we write Fp for the class of (m-essentially) bounded elements of F.

For pu(py s 1Ry ,|u] € H(X), there exists C' > 0 depending on F(MY P 7y s 1
such that |Q(f,9)| < C&(f, f)/*€1(g,9)"/? for any f,g € F.

The following theorem is proved in [3].

THEOREM 7.1 ([3, Theorem 3.1]). Assume that F(ay s 1 iy and |u| are all

in the Hardy class H(X), and that there are constants >0 and ¢ > 1 such
that

c 1 (u,u) < Qulu,u) < ey (u,u)  for u € Fy.

Then Qf(x), f € L*(E;m) N B(E) defined by (7.6) coincides with the
strongly continuous semigroup in L*(E;m) associated with (Q,F).

As a consequence of the above result, the following result is also estab-
lished in [3, Theorem 3.1] and [5, Theorem 1.7].

THEOREM 7.2 (special case of [5, Theorem 1.7]). Suppose that M €
(MHO’CH)* is a locally square integrable local MAF on [[0,C[ of X with jump

loc

function ¢ € Ji such that pyry € H(X). Define

1
Q(f.g):=£&(f.9)+ iﬂ(Mngergw,M)(E) for f,g € Fp.
Suppose that there are constants o >0 and ¢ > 1 so that
L& (u,u) < Qulu,u) < & (u,u)  for u € Fy.

Then Pif(x) := B [eAM:f(X,)], f € L*(E;m)N B(E) is the symmetric
semigroup associated with (Q,F), where

1
A(M)t ::—§(Mt+MtOTt+S0(Xt,Xt_)), 0<t<<.
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For u € o, M* is an MAF of X having finite energy with antisymmetric
jump function u(y) — u(z) and A(M"™) = N*. The following corollary is an
immediate consequence of Theorem 7.2.

COROLLARY 7.2. Suppose that u € Fe with pwy € H(X). Define
Qf.9)=E(f,9) +&(fg,u) for f,g€Fp.

Suppose that there are constants o >0 and ¢ > 1 so that
c 11 (u,u) < Quu,u) < c&y(u,u)  for u € Fy.
Then P.f(z) :=E.[eMN f(X,)], f € L*(E;m)N%A(E) is a strongly continu-
ous symmetric semigroup in L?(E;m) associated with (Q,F).
Our first main theorem in this section is the following.

THEOREM 7.3. For f € L?(E;m)N A(E), all semigroups Quf and P.f
that appeared in Theorems 7.1 and 7.2 and Corollary 7.2 are £-quasicon-
tinuous.

To prove Theorem 7.3, we need the following lemma.

LEMMA 7.2. Suppose that H(Mys By P € Ko(X) hold. Then we have

sup Zs<oo Py-a.s. on {t <(} for g.e. x € E.
s€[0,t]

Proof. 1t suffices to show that sup,cpo 4 Exp(M2) Exp(]\/id) org(1+¢(Xs
Xs)) < oo Pg-as. for qe. z € E. First, we assume that |p| and ]w] are

bounded below by £ > 0. Under this lower bound, we have M, Me M and
Nl pm, N(|¢|) nr € Ko(X), because of 5|<p\ <2 gly] < w2. Moreover,
since fE (V) dpy = fE (1h2) dpg = 2e(M) < 0o, there exists an MAF

—d _
e M such that AMt =(X;—, X;) and (M ), = [{ N(¢?)(X) dH, for
all t € [0,00[ Pg-a.s. for q.e. z € E. Since
Bxp(Mf) < exp(M) = exp( p(X,-. X,) / N(p)(X,)dH,),
s<t

we have supcjo Exp(M%) < 0o P,-as. for qe. x € E. Let {F,} be an
E-nest such that 1z, N(¥?)uy € Ko(X) for each n € N. Similarly, by Theo-
rem 5.2, the following holds P -a.s. on for {t < (} for q.e. z € E:

Exp(M{) o 7¢(1+ (X, Xe-))
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< exp(M{ o ry) (14 (X, Xi-))

—exp (ﬁf_ — oD (M%), (1 + (X, Xp))

gexp( LM%+ > 0(Xem, X) /N )

s<t

Then we see that sup,cjo g Exp(]/W\Sd) ors(l+ (X, Xs—)) < oo Pg-a.s. on
{t <7p,} for q.e. x € E for each n € N, because of 1z, N(|¢|)ur € Ko(X).
Consequently, we have

sup Exp(M )ors(1+¢(Xs,X _)) <oo Pgas. on {t<(} for ge. z € E.
s€[0,t]

Finally, we prove the assertion without the boundedness for ¢, ¥. Set
W =1 1/61/6[¢ <(0)p, and set 1y 1= 1_q 01/ (1)1p. Let MO € M (resp.,
) e M) be an MAF of finite energy whose continuous part and killing

part coincide with M¢, M" (resp., M M “), respectively, and its jump
—d ° —d,(¥) o
function is given by ¢y (resp., ¢¥y). Let M € M (resp., M € M) be an

MAF of finite energy whose continuous part and killing part coincide with
Mc M* and its jump function is given by v (resp , Vp). Note that (M(Z)
sz ((pe — )(:U),uH(d:E) — 0, that e(M MO sz

w) )(@) e (dz) = L [ N((— )(x)ﬂH(dm)ze(ﬁd’()—M )—>Oas€—>

oo, and that there exists a subsequence {ly} such that M (e) —5 M, M)
— —==d,(0) —d
M, M — M uniformly converge on each compact interval P,-a.s. for

g.e. x € E. Moreover, by [18, Theorem 3.2, F(M\(ek)) — F(]/\/[\) uniformly
converges on each compact interval P, -a.s. for q.e. x € E. These conver-
gences imply that sup,c(oy Exp(Ms) < oo Py-a.s. for q.e. € E and that
SUDsel0,4] Exp(]\/is) ors(1+9¥(Xs,Xs—)) <oo Py-as. on {t <(} for qe. x €
E. Therefore, we obtain the assertion. []

Proof of Theorem 7.5. The proof of the £-quasicontinuity of P f is sim-
ilar to the proof of that for Q;f, so we prove only for the case Q;f.

(Step 1): We first assume that p(ay, iy 1 E Ko (X).

Set So f () :=Ey[ [~ e Zy f(X¢) dt] for a > 0 and f € L*(E;m)NA(E),
and take o > 0 w1th Qoo (u,u) > e 11 (u,u) for u € F. From Theorem 7.1
([3, Theorem 3.1]), we know that S,f € F and Qu(Saf,9) = (f,g)m for
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a > oo and g € F. We first prove the £-quasicontinuity of S, f under the
condition f € L?(E;m)N %,(E) and a > ag. By Corollary 7.1, for nonneg-
ative f € L2(E;m) N %,(E), the following holds under P, for q.e. x € E:

e~ Z,S.f(X;) = Ex, [ / e+ 7,7 F(X,) ds}
0
—E,| / e ) 7(Z00,) f(Xiys) ds ’ g?t]
-J0

_E, / e 7, F(X,) ds ‘ L%}
~Jt

- [00 t
:Ex/ e Z, f(X ds‘ﬁt} —/ e Z, F(X,) ds
-J0 0

Owing to Lemma 7.2, the second term of the right-hand side is finite P,-
a.s. on {t < (} for q.e. x € E; hence, the right-hand side is right-continuous
at t € [0,([ under P, for q.e. x € E. Consequently, S, f(X;) is so at all
t € [0, 00[, provided that a > ayp.

The right continuity of ¢t — S, f(X;) under P, for q.e. x € F implies
that S, f is [0, 00]-valued q.e. finely continuous; hence, it is [0, co]-valued
&-quasicontinuous for a > ap. Since S, f has an £-quasicontinuous m-version
S f, we see that S, f = S f q.e.; hence, S, f is q.e. finite and £-quasicon-
tinuous.

Next we prove the £-quasicontinuity of S, f for f € L?(E;m)N%(E) and
a > ag. We may assume that f >0 on E. Set f,, := f An for n € N. Then
{Safn}nen is E-bounded. Indeed, for o > v,

C_lgl(safm Safn) < Qa(safnasafn) = (fnasafn)m < ||an2||Safn||2
<1 £all3/(a = a0) < [IF13/ (e = ex),

because (a — Oéo)Hsafn”% < Qa(Safn,Safn) = (fas Safn)m < || full2llSafnll2-
We easily see that S, f, converges to S, f as n — oo q.e. Then Lemma 2.2
yields the £-quasicontinuity of S, f for a > ag.

(Step 2): Finally, we prove the assertion for the general case.

We can construct an £-nest {F,} of closed sets such that 1g, (p(pr) +

Hoip T lu]) € Ko(X), and there exists p, € F such that ['(1p, M¢), = NP —

fotpn(Xs)ds for t € 0,75, Py-as. for qe. x € E, p,|p, € C(F,) and
15, f1(p,) € Ko(X) for each n € N (see [3, proof of Theorem 3.1]). Let E),
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be the fine interior of F,. Then 1g, (11(ar) + fmy + ln]) € Ko(XFr). The

conclusion of [3, proof of Theorem 3.1] tells us that, for all o > ay), si f
defined by sy fTEn e Z,f(X,)] for f € L*(E;m) N B(E) sat-
isfies ST f e}"En and Qa(s ) £.9)=(f.9)m for g € F,. By Step 1, S f
is &g, -quasicontinuous on FE,,, hence £-quasicontinuous on FE, for each
n € N; consequently, it is £-quasicontinuous on Ej for all n > k in view
of Lemma 2.1.

Noting the £-boundedness of S((ln) f with respect to n for each f € L?(FE;
m)N%(E), Lemma 2.2 implies the £-quasicontinuity of S, f, f € L?(E;m)N
%B(E). The proof of the £-quasicontinuity of Q,f for f € L*(E;m) N %(E)
is similar to [8, proof of Theorem 4.2.3(ii)], so we omit it. U

Finally, we show the second main theorem of this section. From now on,
we assume that X is a transient strong Feller process, fi(ar), 13y || €
Koo (X), and that (€, F) is irreducible (see [8, p. 171] for the definition of
irreducibility). Here Koo (X) := {v € K(X) |limy, 0 [[ R1x¢ V| oo = 0 for any
increasing sequence of compact sets {K,,}} is the family of Green-tight
measures of Kato class. It is known that v € K (X) satisfies || RV| oo < 00.
We suppose that

V2R oo+ 20 Rit g oo + || Blul |

+2\/| RN (@) || A/ |[RN @) ]|, < 1.

Here Rv(z):= E,[A[], where A” is a PCAF associated with the smooth
measure v. Then Q can be extended to F, x Fe, and there exists ¢ > 1 such
that

E(u,u) < cQ(u,u),
(7.5) {|Q(u,v)| < & (u, 1) V2E (v, 0) 112

for any u,v € Fe.

In particular, (Q, F) is a strongly sectorial coercive closed form on L?(E;m)
with lower bound 0. If I' is a nonempty closed subspace of F (resp., F. for
a=0), then [17, Chapter I, Theorem 2.6] tells us that, for any u € F (resp.,
u € F) and each a >0 (resp., a =0), there exists unique IIfu € F (resp.,
% € F.) such that Q,(u —%u,w) =0 (resp., Q(u —%u, w) = 0) for any
w € I'. Let D be a nonempty open subset of E such that £\ D is non-m-
polar, and we set B:=FE \ D. For u € F (resp., u € F.), we write uf :=

u—1II% u (resp., up:=u — H(()]_-D)eu) and call it the a-reduced function of u
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on B. Since Qu(ug,ufy) < 2Qq(u,I1% u) +2Q0 (u,u) (resp., Qup,up) <
29(u, Mz, u) +2Q(u,u)) for u € F (resp., u € Fe), we have Qq (uf, upy) <
CQu(u,u), where C is the constant independent of « € [0,1]. In the same
way as [17, Chapter III. Proposition 1.5(iii)], u% is the smallest function v
such that e~ Q. (v Au$) <vAuf m-ae. for all ¢ >0 and v >u q.e. on B.

For q.e.-defined Borel function u, we set Q}u(x) :=Ey[e” ™" Z  u(X;,) :

7p < (] for a > 0 if its expectation has meaning, and we write Qpu := %u.

LEMMA 7.3. For each u€ F and o >0, QRBu is an &-quasicontinuous
m-version of u. In particular,

Qu(QEu,v) =0 for any v € Fp.

Moreover, for u € F., Qpu is an &-quasicontinuous m-version of ug. In
particular,

Q(Qpu,v)=0 for any v € (Fp)e.

Proof. First we assume that u = S, f € F for f € L?(E;m) N %B(E) for
a > 0. We may assume that f > 0 on E. From this, we see that e~ **'Q;Q%u <
Q%u m-a.e. for all £ > 0. It suffices to prove that

(7.6) Qpu<up m-ae.,

(7.7) Qpu=u q.e.on B.

Indeed, under (7.6) we have e~ Q. (Q%u A u$) < Q%u A u$ m-a.e. for all
t >0, and we have Q3u > u g.e. on B, which implies that Q%u > u% m-a.e.,
as mentioned above; consequently, Q%u = u% m-a.e. The proof of (7.7) is
easy, and the proof of (7.6) is similar to the proof for [8, (4.3.3)], so we omit
it.

Next, we only assume that v € F N HA(F). Fix a > 0. For n € N and
gn :=n(I —nSpia)u € L2(E;m) N AB(E), we have uy, := Spgn = nSniau (€
F)—u as n— oo in Qq, and equivalently in Qg for 5 > 0, hence in &;. By
taking a subsequence, we have the convergence u,, —u as n — oo q.e., so
QEun, — Qu as n — oo q.e. Putting u, 1, := u, —ug, and gy, 1, 1= gn — gr, wWe
then have that

Qa(Q%un,k; Q%un,k) = Qa(sagn,k - So?gn,kv Sagn,k - So?gn,k)
= (gn,lw Socgn,k - So?gn,k)m

< (gn,lm Socgn,k)m = Qa(un,ka un,k) —0
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asn,k — oo. Here SP f(z) ;== E,[[y” e~ Zs f(X,) ds]. Therefore, we obtain
Q%u e F and Q,(Q%u,v) =0 for v e Fp for each o > 0. The £-quasicon-
tinuity of Q%u follows from that e~ *QQ%u — Q%u as t — 0 q.e. and
{e7*QQ%u} is &1-bounded.

We now prove the latter assertion. Suppose first that v € 7. We then have
that Q(Q%u, QEu) < Qa(QBu, QEu) < CQq(u,u), where C' is a constant
independent of o €]0, 1]. From this, we have lim,_¢ ||aQ%ull2 =0 and

¢ 'E(u— Qpu,u— QBu) < Q(u— Qpu, u— QRu)

< Qa(u - Q%u,u - Q%u) < ZCQa(uau)a

which implies that © — Qpu € (Fp). and Q(Qpu,v) =0 for v € Fp by
use of the Banach—Saks theorem with lim,—,0(aQ%u,v)m = 0. The proof of
the assertion for u € F, is similar to [8, proofs of Lemma 4.3.2 and Theo-
rem 4.3.2], so we omit it. 0

THEOREM 7.4. Suppose that u € F. is Q-harmonic on D in the sense
that Q(u,v) =0 for any v € Fp. Then we have

(7.8) u(z) =By [Zrpu(Xs,)] gqe xzeD.

Proof. We easily see that Q(u — Qpu,v) =0 for any v € (Fp).. Since
u—Qpu € (Fp)e, we have £(u — Qpu,u — Qpu) = 0; hence, u=Qpu q.e.
on D under (7.5). U

COROLLARY 7.3. Suppose that (£, F) is a local Dirichlet form on L?(E;m)
and that u € Fioc is Q-harmonic on D in the sense that Q(u,v) =0 for
ve FpNCy(D). Then we have (7.8).

Proof. Let G' be an open set such that D C G C G C E. We can take
ug € F with u = ug m-a.e. on G. Then Q(u,v) = Q(ug,v) =0 for v € FpN
Co(D) implies that ug(z) = Eyx[Z-,uq(X,)] qe. z € D. Since Py (X, . ¢
0D,ope <0) =0 q.e. x € D, we obtain the assertion. 0

COROLLARY 7.4. Suppose that (£, F) is a local Dirichlet form on L*(FE;
m). Then E;[Z;, :7p < (] < oo for g.e. x € D.

Proof. Let G be an open set such that D C G C G C E. Taking eg €
F with e =1 q.e. on G, we have E,[Z;, : 7p < (] = Qpea(r) < < q.e.
xzeD. {
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REMARK 7.2. In [7], the Dirichlet boundary value problem for an ellip-
tic operator on Euclidean space associated with a quadratic form obtained
from lower-order perturbations is solved for bounded Lipschitz domains.
Our condition (7.5), which can be regarded as conditions for coefficients of
the elliptic operator in the framework of [7], is different from what is treated
in [7].

ExAMPLE 7.1. Let X be the d-dimensional Brownian motion, and let
(&, H'(RY)) be the associated Dirichlet form on LQ(Rd). Here Hl(]Rd) is
the 1-order Sobolev space, and &(f,g) := (1/2)D(f,g) = (1/2) [pa V f(x
Vy(z)da for f,g € H'(RY). Assume that d > 3, and ﬁx a bounded domain D
Let b, b:R?— R? be measurable vector fields, and let ¢: R? — R be a mea-
surable function such that [b|?, \b\Q, | € Lp(Rd) N LY(RY) for p > d/2. Then
b2 (x) dz, |/b\\2(x) dz,|c|(z)dz € K(X) N LY(R?) € Koo(X), where Ko (X)
is the family of Green-tight measures of Kato class (see [23]). Since any
v € Koo(X) is Green-bounded by [2, Proposition 2.2], we have

sup E, [/ (1b]* + 6|2 + le]) (Xs) ds] < 00.
0

z€R4

By scaling if necessary, we can take b,g, c so that

\/HE ) al| ME e as] |

+HE [/ le|(X )dswoo<1.

Define M; := fo s) dXs, Mt fO s)dXs, and Ay := fo s)ds. Then
the Revuz measures associated with (M ) <M ), and A are given by
oy (dz) = [b]? (z) da, ) (dx) = |€\2(a:) dz, and p(dz) = ¢(z) da. Consider
the quadratic from (Q, H'(R?)) obtained by

Q(f.9) = 3D(f.9) - /R F@)(Vo(a) Bw)) dr

/ @)V () b)) de— [ fa)g()e(z)da
Rd ]Rd

for f,g € H'(RY). We obtain that, if u € H._(R?) satisfies Q(u,v) =0 for
any v € Cg°(D), then u(z) = Eqg[Zr,u(Xr,)] g.e. 2 € D by Corollary 7.3.
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Here Z, (t € [0,00]) is defined by Z; := exp(A; + M; — 3(M),) exp(]\/it ory —
3 (M)y).
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