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STOCHASTIC CALCULUS OVER SYMMETRIC
MARKOV PROCESSES WITH TIME REVERSAL

K. KUWAE

Abstract. We develop stochastic calculus for symmetric Markov processes in
terms of time reversal operators. For this, we introduce the notion of the pro-
gressively additive functional in the strong sense with time-reversible defining
sets. Most additive functionals can be regarded as such functionals. We obtain a
refined formula between stochastic integrals by martingale additive functionals
and those by Nakao’s divergence-like continuous additive functionals of zero
energy. As an application, we give a stochastic characterization of harmonic
functions on a domain with respect to the infinitesimal generator of semigroup
on L2-space obtained by lower-order perturbations.
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§1. Introduction

The author’s previous article [13] refined stochastic calculus over sym-

metric Markov processes and investigated stochastic integrals by extending

Nakao’s divergence-like continuous additive functional (CAF) of zero energy

in the framework of general symmetric Markov processes without using time

reversal operators. In the present article we develop the results in [13] in

terms of time reversal operators. For this we introduce a refined notion
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of additive functionals, so-called progressively additive functionals in the

strong sense (PrAFSs) with the notion of time-reversible defining sets. The

notion of PrAFSs on [[0, ζ[[ with time-reversible defining sets is also intro-

duced. Hereafter, we call PrAFSs (on [[0, ζ[[) with time-reversible defining

sets reversible PrAFSs (on [[0, ζ[[) (see Definitions 4.6 and 4.8). We show

that most additive functionals that appeared in the textbook by Fukushima,

Ōshima, and Takeda [8] can be regarded as reversible PrAFSs (see Lemmas

6.1 and 6.2, Corollaries 6.1 and 6.2). The weaker notion, progressively addi-

tive functionals (PrAFs), was formulated in [4] as a natural extension of

the positive progressively additive functionals admitting no exceptional set

that were introduced by Walsh in [22]. In [22], Walsh considered the positive

PrAF for the study of dual additive functionals admitting no exceptional set

in the framework of a pair of Markov processes in duality. One of our aims

is to establish the dual PrAF admitting exceptional sets in the framework of

symmetric Markov processes associated with regular Dirichlet forms. How-

ever, the definition of the time reversal operator treated in [22] is slightly

different from ours, and his PrAFs require nonnegativity and strict measur-

ability, which are very restrictive for our purposes. The dual PrAF of any

PrAF obtained in [4, Theorem 2.18] allows only m-negligible sets because of

the lack of time-reversible defining sets, which is also restrictive for obtain-

ing refined formulas. For this reason we introduce the reversible PrAFS (on

[[0, ζ[[) (see Lemma 4.3).

Our first result is that any locally square integrable martingale additive

functionals (MAFs) on [[0, ζ[[ introduced in [4] can be regarded as reversible

PrAFSs on [[0, ζ[[ (Theorem 5.1). Second, we prove a formula between locally

square integrable MAFs and its extension of Nakao’s divergence-like CAF

in terms of PrAFSs on [[0, ζ[[ with time reversal operators (Theorem 5.2).

As corollaries, we obtain quasieverywhere (q.e.) refinements of Lyons–Zheng

decompositions for Fisk–Stratonovich-type integrals (Theorem5.3 and Corol-

laries 5.1–5.5). Our Lyons–Zheng decompositions for Fisk–Stratonovich-

type integrals by purely discontinuous Dirichlet processes are new even

under the law Pm. Our Theorem 5.2 also connects two kinds of extensions

of Nakao’s divergence-like CAF of zero energy and its stochastic integrals

developed, respectively, in [4] and [13] (Theorem 5.4).

The time reversibility of the defining sets of PrAFS plays a crucial role in

our Theorems 5.1 and 5.2 instead of the Pm-invariance of the time reversal

operator rt on {t < ζ} (see (2.3)). In particular, the dual additive functional

of the given reversible PrAFS defined by the time reversal operator can be
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regarded as a relaxed PrAF (PrAF ∗) in Lemma 4.3 (see Definitions 4.1 and

4.4 for the definition of PrAF∗). From this we obtain that the dual multi-

plicative functional on [[0, ζ[[ of any Doléans–Dade stochastic exponential of

locally square integrable MAFs on [[0, ζ[[ can be regarded as a relaxed pro-

gressively multiplicative functional (PrMF) on [[0, ζ[[ (Lemma 7.1), which

together with Theorem 5.1 yields the E -quasicontinuity of strongly contin-

uous semigroups on L2-space associated with a lower bounded quadratic

form obtained from the combinations of the Feynman–Kac transform and

Girsanov transform developed in [3] (Theorem 7.3). This E -quasicontinuity
enables us to obtain a stochastic characterization of the harmonic function

on a domain (Theorem 7.4 and Corollary 7.3).

Let us briefly outline the organization of this paper. In Sections 2 and 3

we give some results in [13] with several corrections as errata. In Section 4 we

introduce the notion of PrAFSs and reversible defining sets. In Section 5 we

prove Theorems 5.1 and 5.2 as our main theorems and prove Theorems 5.3

and 5.4. We show some examples. In Section 6 we present Theorems 5.1 and

5.2. In Section 7 we prove Theorems 7.3 and 7.4 and give an example.

§2. Preliminary facts

Let X= {Ω,F∞,Ft,Xt, θt,Px, x ∈E} be an m-symmetric right Markov

process on a Lusin space E, where m is a σ-finite measure with full support

on E. Its associated Dirichlet space (E ,F) on L2(E;m) is known to be

quasiregular (see [17]). By [6], (E ,F) is quasihomeomorphic to a regular

Dirichlet space on a locally compact separable metric space. Thus, using

this quasihomeomorphism, without loss of generality, we may and do assume

that X is an m-symmetric Hunt process on a locally compact metric space

E such that its associated Dirichlet space (E ,F) is regular on L2(E;m) and

that m is a positive Radon measure with full topological support on E. Let

E∂ :=E ∪ {∂} be the 1-point compactification of E, and let ζ := inf{t≥ 0 |
Xt = ∂} be the lifetime of X. We implicitly use the quasileft continuity up

to ∞, which is not the usual property of right Markov processes. So the

strict quasiregularity of (E ,F) is essentially assumed (see [6]). However, if

we restrict ourselves to stating the result that it holds up to the lifetime with

probability 1 for a q.e. starting point, then the framework of quasiregular

Dirichlet forms is enough.

Without loss of generality, we may assume that Ω is the canonical path

space D([0,∞[→E∂) of right-continuous, left-limited (rcll) functions from
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[0,∞[ to E∂ . For any ω ∈Ω, we set Xt(ω) := ω(t). As usual, F∞ and Ft are

the minimal completed σ-algebras obtained from F 0
∞ := σ{Xs | 0≤ s <∞}

and F 0
t := σ{Xs | 0≤ s≤ t}, respectively, under Px. We set Xt(ω) := ∂ for

t≥ ζ(ω), and we use θt to denote the shift operator defined by θt(ω)(s) :=

ω(t+ s), t, s ≥ 0. Let ω∂ be the path starting from ∂. Then ω∂(s) ≡ ∂ for

all s ∈ [0,∞[. Note that θζ(ω)(ω) = ω∂ for all ω ∈ Ω, that {ω∂} ∈ F 0
0 ⊂ F 0

t

for all t > 0, and that Px({ω∂})≤Px(X0 = ∂) = 0 for x ∈E. Given a path

ω ∈ {t < ζ}, the operator rt is defined by

(2.1) rt(ω)(s) :=

{
ω(t− s)−, if 0≤ s≤ t,

ω(0), if s≥ t.

For a pathω ∈ {t≥ ζ}, we set rt(ω) := ω∂ . Here for r > 0,ω(r)− := lims↑r ω(s),
and we use the convention that ω(0)− := ω(0). We note that

lim
s↓0

rt(ω)(s) = ω(t)− = rt(ω)(0) and

lim
s↑t

rt(ω)(s) = ω(0) = rt(ω)(t).
(2.2)

Note that ζ(rtω) =∞ under t < ζ(ω). It is well known that for A ∈ F 0
t

Pm

(
r−1
t (A)∩ {t < ζ}

)
=Pm

(
A∩ {t < ζ}

)
.(2.3)

For a (nearly) Borel subset B of E, σB := inf{t > 0 |Xt ∈ B} (the first

hitting time to B of Xt), σ̂B := inf{t > 0 |Xt− ∈B} (the first hitting time

to B of Xt−), and τB := inf{t > 0 |Xt /∈ B} (the first exit time of B) are

(Ft)-stopping times. In [8, Theorem A.2.3] we see that Px(σB ≤ σ̂B) = 1

for all x ∈E. If B is closed, then τB is an (F 0
t+)-stopping time. Also, ζ is an

(F 0
t )-stopping time because {ζ ≤ t}= {Xt = ∂} ∈ F 0

t , t≥ 0. The transition

semigroup of X, {Pt, t≥ 0}, is defined by

Ptf(x) :=Ex

[
f(Xt)

]
=Ex

[
f(Xt) : t < ζ

]
, t≥ 0,

where the function f is regarded to be defined on E∂ with f(∂) = 0. Each Pt

may be viewed as an operator on L2(E;m); collectively, these operators form

a strongly continuous semigroup of self-adjoint contractions. The Dirichlet

form associated with X is the bilinear form

E(u, v) := lim
t↓0

1

t
(u− Ptu, v)m
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defined on the space

F :=
{
u ∈ L2(E;m)

∣∣ sup
t>0

t−1(u− Ptu,u)m <∞
}
.

Here we use the notation (f, g)m :=
∫
E f(x)g(x)m(dx) for f, g ∈ L2(E;m).

An increasing sequence {Fn} of closed sets is called an E-nest if
⋃∞

n=1FFn

is E1/2
1 -dense in F , where FFn := {u ∈ F |u= 0m-almost everywhere (m-a.e.)

on E \ Fn}, and a family {Fn} of closed sets is an E -nest if and only if

it is a (generalized) nest, that is, if Px(limn→∞ τFn = ζ) = 1 q.e. x ∈ E.

A function u on E is said to be E-quasicontinuous if there exists an E -nest
{Fn} of closed sets such that u is continuous on each Fn. A subset N of

E is called E-polar or (E-)exceptional if there exists an E -nest {Fn} such

that N ⊂
⋂∞

n=1(E \ Fn); equivalently, there is a Borel set Ñ containing N

such that Pm(σÑ <∞) = 0. A subset G of E is called E-quasiopen if there

exists an E -nest {Fn} of closed sets such that, for each n ∈ N, G ∩ Fn is

relatively open in Fn. For an E -quasiopen set G and a function u on G,

u is said to be E-quasicontinuous on G if there exists an E -nest {Fn} of

closed sets such that u is continuous on each Fn ∩G, where we may assume

that Fn ∩G is relatively open in Fn for each n ∈ N. A statement S(x) is

said to hold for q.e. x ∈ E if there exists an exceptional set N such that

{x ∈E | S(x) does not hold} ⊂N .

An increasing sequence {Gn} of q.e. finely open Borel sets is called a nest

if Px(limn→∞ τGn = ζ) = 1 for q.e. x ∈E.

Denote by Θ the family of nest {Gn} of q.e. finely open Borel sets. Note

that for an E -nest {Fn} of closed sets, {Gk} ∈ Θ by setting Gk := F f-int
k ,

k ∈N, where F f-int
k means the fine interior of Fk.

Let Fe be the family of m-measurable functions u on E such that |u|<
∞ m-a.e. and there exists an E -Cauchy sequence {un} of F such that

limn→∞ un = u m-a.e. We call {un} as above an approximating sequence

for u ∈ Fe. For any u, v ∈ Fe and its approximating sequences {un}, {vn},
the limit E(u, v) = limn→∞ E(un, vn) exists and does not depend on the

choices of the approximating sequences for u, v. It is known that E1/2 on

Fe is a seminorm and that F =Fe ∩L2(E;m). We call (E ,Fe) the extended

Dirichlet space of (E ,F). We further let

Ḟloc :=
{
u ∈ L0(E;m)

∣∣ there exist {Gn} ∈Θ and un ∈ F such that

u= un m-a.e. on Gn for each n ∈N
}
,
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where L0(E;m) denotes the family of all m-measurable functions. Ḟloc is

called the space of functions locally in F in the broad sense. It is shown in

[11, Theorem 4.1(i)] that F ⊂Fe ⊂ Ḟloc and that every u ∈ Ḟloc admits an E -
quasicontinuous m-version ũ. More strongly, every u ∈ F admits a strictly E -
quasicontinuous m-version ũ on E which is defined on E∂ with ũ(∂) = 0. For

u ∈ Ḟloc, we always assume that ũ is extended to be a real-valued function

ũ on E∂ if not otherwise specified, where we do not necessarily assume that

ũ(∂) = 0. However, we can reduce to this case by setting ũ− ũ(∂) on E∂ ,

which is in Ḟloc as a function defined on E. It is proved in [13, Lemma 2.1]

that every u ∈ Fe admits a strictly E -quasicontinuous m-version ũ on E∂

with ũ(∂) = 0. Moreover, we know that Fe ⊂ Ḟloc by [11, Theorem 4.1(i)].

Except in Lemma 2.2 below, we take u ∈ Ḟloc to be represented by its E -
quasicontinuous m-version (when such exists), and we drop the tilde from

the notation.

For an E -quasiopen set G, we set{
FG := {u ∈ F | u= 0 q.e. on E \G},
EG(u, v) := E(u, v) for u, v ∈ FG;

(2.4)

(EG,FG) is called the part of (E ,F) on L2(G;m). It is known that (EG,FG)

is a quasiregular Dirichlet form on L2(G;m), and we can always take an EG-
nest {Kn} of closed subsets of G consisting of compact sets in E. (In general,

the quasiregularity of (EG,FG) assures the compactness of Kn only with

respect to the relative topology on G. The assertion is stronger than this.)

The space (EG,FG) is associated with the part process on XG = (Ω,XG
t ,Px)

defined by

XG
t (ω) :=

{
Xt(ω) t < τG(ω),

∂ t≥ τG(ω).
(2.5)

The following lemmas are used in Section 7.

Lemma 2.1. Let G be an E-quasiopen set, and let u be a function defined

on G. The following are equivalent:

(1) u is E-quasicontinuous on G;

(2) u is EG-quasicontinuous on G;

(3) for any open subset I of R, u−1(I)∩G is E-quasiopen; and
(4) for any open subset I of R, u−1(I)∩G is EG-quasiopen.
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Proof. In general, for a subset N of G, E -polarity of N is equivalent to

EG-polarity of N , and N is E -quasiopen if and only if it is EG-quasiopen
(see [12, Proposition 3.2] and [8, Theorem 4.4.3(ii)]). So the equivalence

(3)⇐⇒(4) is clear.

(1)⇐⇒(3): Suppose that u is E -quasicontinuous on G. Then there exists

an E -nest {Fn} of closed sets such that u is continuous on Fn ∩G for each

n ∈N. Take an open set I of R. We see that u−1(I)∩G∩Fn is open in Fn

for each n ∈N, which implies that the u−1(I)∩G is E -quasiopen. The proof
of the converse is easy. The proof of (2)⇐⇒(4) is quite similar to that of

(1)⇐⇒(3).

Lemma 2.2. Let (E ,Fe) be the extended Dirichlet space of (E ,F). Let

G be an E-quasiopen set, and un and u are q.e. finite functions defined

on E. Assume that all un ∈ Fe are E-quasicontinuous on G and that {un}
is E-bounded. Suppose that un converges to u q.e. as n → ∞. Then u is

E-quasicontinuous on G.

Proof. Since {un} converges to u q.e., we see that supn∈N u
2
n <∞ q.e. Let

f ∈ L1(E;m) be a function satisfying 0< f ≤ 1 m-a.e. on E. Define a func-

tion g ∈ L1(E;m) having 0 < g ≤ 1 m-a.e. by g(x) := f/(supn∈N un(x)
2 ∨

1). Then we have
∫
E u2ng dm ≤ 1; hence, {un} ⊂ Fg

e is Eg-bounded. Here

Fg
e is the extended Dirichlet space of (Eg,F), where Eg(u, v) := E(u, v) +∫
E uvg dm, for u, v ∈ F . It is known that (Eg,F) is a transient Dirich-

let form on L2(E;m) and that the Eg-quasinotions are equivalent to the

E -quasinotions, so we may assume the transience of (E ,F). From the E -
boundedness of {un}, taking an adequate subsequence, its Cesàro mean

E -converges to u, so we may assume that {unk
} E -converges to u. By taking

a further subsequence {nk}, {unk
} converges to u E -quasiuniformly; that is,

there exists an E -nest {Fl} of closed sets such that unk
uniformly converges

to u on each Fl. Taking a common nest {Fl} such that each un|Fl∩G is con-

tinuous and Fl ∩G is relatively open in Fl, we see the E -quasicontinuity of

u on G.

Let
◦

M and Nc denote, respectively, the space of martingale additive

functionals (MAFs) of finite energy and the space of continuous additive

functionals (CAFs) of zero energy. For u ∈ Fe, the following Fukushima

decomposition holds:

(2.6) u(Xt)− u(X0) =Mu
t +Nu

t
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for all t ∈ [0,∞[ Px-almost surely (Px-a.s.) for q.e. x ∈E, where Mu ∈
◦

M
and Nu ∈Nc.

A positive continuous additive functional (PCAF ) of X (call it A) deter-

mines a measure ν = νA on the Borel subsets of E via the formula

(2.7) ν(f) =↑ lim
t→0

1

t
Em

[∫ t

0
f(Xs)dAs

]
,

in which f : E → [0,∞] is Borel measurable. The measure ν is necessarily

smooth (denoted by ν ∈ S) in the sense that ν charges no exceptional set of

E and there is an E -nest {Fn} of closed subsets of E such that ν(Fn)<∞
for each n ∈ N. Conversely, given a smooth measure ν, there is a unique

PCAF Aν such that (2.7) holds with A = Aν . We refer to this bijection

between smooth measures and PCAFs as the Revuz correspondence, and

we refer to ν as the Revuz measure of Aν . It is proved in [13, Lemma 2.2]

that μ ∈ S if and only if μ charges no exceptional set and that there exists

{Gn} ∈Θ such that μ(Gn)<∞ for each n ∈N.

Take M,N ∈
◦

M, and denote by 〈M,N〉 its quadratic covariational pro-

cess, which is a CAF of bounded variation, and let μ〈M,N〉 be its Revuz

measure. For f ∈ L2(E;μ〈M〉), there exists a unique f ∗M ∈
◦

M such that

e(f ∗M,N) =
1

2

∫
E
f(x)μ〈M,N〉(dx) for N ∈

◦
M.

Let (N(x,dy),Ht) be a Lévy system for X; that is, N(x,dy) is a kernel

on (E∂ ,B(E∂)), and Ht is a PCAF with bounded 1-potential such that, for

any nonnegative Borel function φ on E∂ ×E∂ vanishing on the diagonal and

any x ∈E∂ ,

Ex

[∑
s≤t

φ(Xs−,Xs)
]
=Ex

[∫ t

0

∫
E∂

φ(Xs, y)N(Xs,dy)dHs

]
.

To simplify notation, we will write

Nφ(x) :=

∫
E∂

φ(x, y)N(x,dy).

Let μH be the Revuz measure of the PCAF H . Then the jumping measure

J and the killing measure κ of X are given by

J(dxdy) =
1

2
N(x,dy)μH(dx) and κ(dx) =N

(
x,{∂}

)
μH(dx).
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These measures feature in the Beurling–Deny decomposition of E : for f, g ∈
Fe,

E(f, g) = Ec(f, g) +

∫
E×E

(
f(x)− f(y)

)(
g(x)− g(y)

)
J(dxdy)

+

∫
E
f(x)g(x)κ(dx),

where Ec is the strongly local part of E .
For u ∈ Fe, the martingale part Mu

t in (2.6) can be decomposed as

Mu
t =Mu,c

t +Mu,j
t +Mu,κ

t for every t ∈ [0,∞[,

Px-a.s. for q.e. x ∈E, where Mu,c
t is the continuous part of martingale Mu,

and

Mu,j
t = lim

ε↓0

{ ∑
0<s≤t

(
u(Xs)− u(Xs−)

)
1{|u(Xs)−u(Xs−)|>ε}1{s<ζ}

−
∫ t

0

(∫
{y∈E||u(y)−u(Xs)|>ε}

(
u(y)− u(Xs)

)
N(Xs,dy)

)
dHs

}
,

Mu,κ
t =

∫ t

0
u(Xs)N

(
Xs,{∂}

)
dHs − u(Xζ−)1{t≥ζ}

are the jump and killing parts of Mu in
◦

M, respectively. The limit in the

expression for Mu,j is in the sense of convergence in
◦

M and of convergence

in probability under Px for q.e. x ∈E for each fixed t > 0 (see [8, Theorem

A.3.9 and p. 341]).

If we let

◦
Mc := {M ∈

◦
M|M is a continuous MAF},

◦
Md := (

◦
Mc)⊥ =

{
M ∈

◦
M
∣∣ 〈M,N〉 ≡ 0 for N ∈

◦
Mc
}
,

then every M has an orthogonal decomposition

M =M c +Md

in the Hilbert space (
◦

M,e). The MAF M c ∈
◦

Mc (resp., Md ∈
◦

Md) is noth-

ing but the continuous part (resp., purely discontinuous part) ofM discussed
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in [8, Theorem A.3.18]. Moreover, set

◦
Mj :=

{
M ∈

◦
Md
∣∣ 〈M,Mu,κ〉 ≡ 0 for u ∈ Fe

}
,

◦
Mκ :=

◦
Md ∩ (

◦
Mj)⊥.

Then
◦

Mj is a closed subspace of
◦

M; hence, Md has a unique orthogonal

decomposition in (
◦

M,e) as

Md =M j +Mκ,

where M j ∈
◦

Mj and Mκ ∈
◦

Mκ. For simplicity of notation, we will use the

convention ΔFs := Fs−Fs− for any rcll-(Ft)-adapted process F . The square

bracket [M,N ] for M,N ∈
◦

M is defined by

[M,N ]t := 〈M c,N c〉t +
∑

0<s≤t

ΔMsΔNs.

Then 〈M,N〉 is the dual predictable projection of [M,N ] (see [8, (A.3.7)]).

We further set, for each i= ∅, c, d, j, κ,
◦

Mi
loc :=

{
M
∣∣ there exist {Gn} ∈Θ and {M (n)} ⊂

◦
Mi

such that Mt =M
(n)
t for all t < τGn

and n ∈N,Px-a.s. for q.e. x ∈E
}
,

Nc,loc :=
{
N
∣∣ there exist {Gn} ∈Θ and {N (n)} ⊂Nc

such that Nt =N
(n)
t for all t < τGn

and n ∈N,Px-a.s. for q.e. x ∈E
}
.

Here i= ∅means
◦

M∅:=
◦

M, and we write
◦

Mloc instead of
◦

M∅
loc. Every PCAF

is an element of Nc,loc. It is well known that, for u ∈ Ḟloc with J = κ = 0,

the Fukushima decomposition (2.6) holds for t ∈ [0, ζ[ Px-a.s. for q.e. x ∈E,

where Mu ∈
◦

Mc
loc and Nu ∈Nc,loc (see [8, Theorem 5.5.1]).

We introduce the spaces
◦
J , J of jump functions:

J :=
{
φ :E∂ ×E∂ →R

∣∣ φ is a Borel measurable function

such that φ(x,x) = 0 for x ∈E∂ and N(φ2)μH ∈ S
}
,
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and
◦
J := {φ ∈ J |

∫
E N(φ2)dμH <∞}. Further, we set Jas := {φ ∈ J | φ̃=

0 J-a.e. on E×E}, J∗ := {φ ∈ J |N(1E×Eφ
2
)μH ∈ S}, and

◦
J as:=

◦
J ∩Jas.

Here φ(x, y) := φ(y,x) for x, y ∈E∂ , and φ̃ := (φ+φ)/2 on E∂ ×E∂ . Clearly,
◦
J ⊂J∗ and Jas ⊂J∗, because

∫
E N(1E×Eφ

2
)dμH =

∫
E N(1E×Eφ

2)dμH for

φ ∈
◦
J ∪ Jas. Moreover, for φ ∈ J∗, we see that 1E×Eφ ∈ J∗. For φ,ψ ∈ J ,

we write φ ∼ ψ if φ = ψ J∗-a.e. on E × E∂ , where J∗ is the measure on

E×E∂ defined by J∗(dxdy) := 1
2N(x,dy)μH(dx). Then ∼ is an equivalence

relation, and we denote by
◦
J /∼, J /∼ the families of equivalence classes.

Let Mloc be the space of locally square integrable MAFs, and let M[[0,ζ[[
loc

be the space of locally square integrable MAFs on [[0, ζ[[. That is, M ∈
Mloc (resp., M ∈M[[0,ζ[[

loc ) if and only if there exists an increasing sequence

{Tn} (resp., {Sn}) of (Ft)-stopping times and {M (n)} ⊂ M such that

limn→∞ Tn =∞ (resp., limn→∞ Sn = ζ) Px-a.s. for q.e. x ∈E and for each

n ∈N, Mt∧Tn =M
(n)
t∧Tn

(resp., Mt∧Sn1{t∧Sn<ζ} =M
(n)
t∧Sn

1{t∧Sn<ζ}) for all t ∈
[0,∞[ Px-a.s. for q.e. x ∈E. Let Mc

loc (resp., Md
loc) be the space of locally

square integrable continuous (resp., purely discontinuous) MAFs. That is,

for M ∈Mc
loc (resp., M ∈Md

loc), we can take {M (n)} from Mc (resp., Md)

in the above definition. Similarly, we can define the space Mc,[[0,ζ[[
loc (resp.,

Md,[[0,ζ[[
loc ) of locally square integrable continuous (resp., purely discontinu-

ous) MAFs on [[0, ζ[[. For every M ∈M[[0,ζ[[
loc , its quadratic variational pro-

cess 〈M〉 can be defined to be a PCAF (see [4, Proposition 2.8]), and M is

decomposed to M =M c+Md (see [9, Theorem 8.23]), where M c ∈Mc,[[0,ζ[[
loc ,

Md ∈Md,[[0,ζ[[
loc have the property 〈M c,Md〉 ≡ 0.

By [13, Lemma 2.1] and [14, Theorem 1.1], there exists a one-to-one

correspondence between
◦
J /∼ (resp., J /∼) and

◦
Md (resp., Md,[[0,ζ[[

loc ).

We define subclasses of Md,[[0,ζ[[
loc as follows:

Mj,[[0,ζ[[
loc :=

{
M ∈Md,[[0,ζ[[

loc

∣∣ φ(·, ∂) = 0 κ-a.e. on E
}
,

Mκ,[[0,ζ[[
loc := {M ∈Md,[[0,ζ[[

loc | φ= 0 J-a.e. on E ×E}.

Then we have that M ∈ Mj,[[0,ζ[[
loc , N ∈ Mκ,[[0,ζ[[

loc implies that 〈M,N〉 ≡ 0

Px-a.s. for q.e. x ∈ E and that every M ∈M[[0,ζ[[
loc is decomposed to M =

M c +M j +Mκ, where M c ∈Mc,[[0,ζ[[
loc , M j ∈M

j,[[0,ζ[[
loc , Mκ ∈Mκ,[[0,ζ[[

loc have
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the properties 〈M c,M j〉 ≡ 〈M j ,Mκ〉 ≡ 〈Mκ,M c〉 ≡ 0 in view of [14, Theo-

rem 1.1].

By [14, Remark 1.1], for each i = c, d, j, κ we have Mi,[[0,ζ[[
loc =

◦
Mi+

loc (i =

c, d, j, κ), where

◦
Mi+

loc :=
{
M
∣∣ there exists {Gn} ∈Θ and M (n) ∈

◦
Mi such that

Mt =M
(n)
t for all t≤ τGn and n ∈N,Px-a.s. for q.e. x ∈E

}
.

More strongly, we have Mc,[[0,ζ[[
loc =

◦
Mc

loc.

We introduce a subclass Ḟ†
loc of Ḟloc as follows:

Ḟ†
loc : =

{
u ∈ Ḟloc

∣∣N(1E×E

(
u(·)− u

)2)
μH ∈ S

}
.

Note that u ∈ Ḟ†
loc if and only if u ∈ Ḟloc and (u(·)− u)2 ∈ J . Clearly, Ḟ†

loc

is a linear subspace of Ḟloc, and 1E∂
,1E ∈ Ḟ†

loc. By [4, Remark 3.9] and the

fact that κ ∈ S, we see that Fe ∪ (Ḟloc)b ⊂ Ḟ†
loc. For u, v ∈ Ḟ†

loc, we see that

uv ∈ Ḟ†
loc, provided that u or v is bounded. From in [14, Theorem 1.1], for

u ∈ Ḟ†
loc with (u(·)− u)2 ∈

◦
J (resp., u ∈ Ḟ†

loc), there exists an Mu,d ∈
◦

Md

(resp., Mu,d ∈Md,[[0,ζ[[
loc ) such that ΔMu,d

t =Δu(Xt) for all t ∈ [0,∞[ (resp.,

[0, ζ[) Px-a.s. for q.e. x ∈E. Moreover, we define

F†
loc :=

{
u ∈ Floc

∣∣∣ for any compact set K,∫
K×E

(
u(y)− u(x)

)2
J(dxdy)<∞

}
.

Here Floc is the space of functions locally in F in the ordinary sense (see [8]).

Clearly, F†
loc ⊂ Ḟ†

loc. For u ∈ Floc, u ∈ F†
loc if and only if, for any compact

set K with its relatively compact open neighborhood G, it holds that∫
K×Gc

(
u(y)− u(x)

)2
J(dxdy)<∞.

We see that F ∪ (Floc)b ⊂F†
loc, because of J(K ×Gc)<∞ (see [11, Corol-

lary 5.1]), where K and G are noted as above.

Remark 2.1. In [13] we introduced the following classes:

Ḟ‡
loc :=

{
u ∈ Ḟ†

loc

∣∣ u(∂) ∈R and
(
u(·)− u(∂)

)2
κ ∈ S

}
,
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F‡
loc :=

{
u ∈ F†

loc

∣∣∣ u(∂) ∈R and for any compact set K,∫
K

(
u(x)− u(∂)

)2
κ(dx)<∞

}
.

These classes are unnecessary. Indeed, we can easily see that any u ∈ Ḟ†
loc

(resp., u ∈ F†
loc) with u(∂) ∈R satisfies (u(·)−u(∂))2κ ∈ S (resp.,

∫
K(u(x)−

u(∂))2κ(dx)<∞ for any compact set K).

§3. Nakao integrals

We summarize the extension of the Nakao operator and Nakao integrals

investigated in [13] with corrections.

Let N ∗
c ⊂ Nc denote the class of continuous additive functionals of the

form Nu +
∫ ·
0 g(Xs)ds for some u ∈ F and g ∈ L2(E;m). Nakao [18] con-

structed a linear operator Γ from
◦

M into N ∗
c in the following way. For every

Z ∈
◦

M, there is a unique w ∈ F such that

(3.1) E1(w,f) =
1

2
μ〈Mf+Mf,κ,Z〉(E) for every f ∈ F .

This unique w is denoted by γ(Z). The operator Γ is defined by

(3.2) Γ(Z)t :=N
γ(Z)
t −

∫ t

0
γ(Z)(Xs)ds for Z ∈

◦
M.

It is shown in Nakao [18, (3.6)] that Γ(Z) can be characterized by the

following equation:

(3.3) lim
t↓0

1

t
Egm

[
Γ(Z)t

]
=−1

2
μ〈Mg+Mg,κ,Z〉(E) for every g ∈ Fb.

Here Fb :=F ∩L∞(E;m). So, in particular, we have Γ(Mu) =Nu for u ∈ F .

By [13, Lemma 3.1], we have Γ(Mu) =Nu for u ∈ Fe.

In the same way as Nakao [18] (see [4, (3.13)]), we can define a stochastic

integral by using the operator Γ, as follows. For M ∈
◦

M with its jump

function ϕ ∈
◦
J and f ∈ Fe ∩L2(E;μ〈M〉), we set∫ t

0
f(Xs)dΓ(M)s

:= Γ(f ∗M)t −
1

2
〈Mf,c +Mf,j ,M c +M j +K〉t, t ∈ [0,∞[,

(3.4)
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where (f ∗M)t :=
∫ t
0 f(Xs−)dMs and K ∈

◦
Md with Kt−Kt− =−1E×E(ϕ+

ϕ)(Xt−,Xt) t ∈ ]0,∞[ Px-a.s. for q.e. x ∈E. The integral (3.4) is well defined

under Px for q.e. x ∈ E. In this paper we call the operator Γ the Nakao

operator and the integral (3.4) the Nakao integral.

For any M ∈Mc,[[0,ζ[[
loc (in particular, for M ∈Mc

loc), Γ(M) can be defined

as an element in Nc,loc in view of [13, Lemma 3.2]. The space (Md,[[0,ζ[[
loc )∗

(resp., (Md,[[0,ζ[[
loc )as) is defined to be a subclass of Md,[[0,ζ[[

loc associated to

J∗/∼ (resp., Jas/∼) by [14, Theorem 1.1].

We say that M ∈ (M[[0,ζ[[
loc )∗ (resp., M ∈ (M[[0,ζ[[

loc )as) if and only if its

purely discontinuous part Md belongs to (Md,[[0,ζ[[
loc )∗ (resp., (Md,[[0,ζ[[

loc )as).

For M ∈ (M[[0,ζ[[
loc )∗ with its jump function ϕ ∈ J∗, let M c ∈Mc,[[0,ζ[[

loc be its

continuous part; take M j ∈Mj,[[0,ζ[[
loc associated with 1E×Eϕ ∈ J , and take

K ∈Mj,[[0,ζ[[
loc associated with −1E×E(ϕ+ϕ) ∈ J .

We shall extend Γ over (M[[0,ζ[[
loc )∗ and establish (3.4) for more general

integrands and integrators under Px for q.e. x ∈E. By [13, Lemma 3.3], for

M ∈ (M[[0,ζ[[
loc )∗ with its jump function ϕ ∈ J∗ and a q.e. finely open Borel

set G satisfying 1G×Eϕ,1G×Eϕ ∈
◦
J , and f ∈ Fe ∩ L2(E;μ〈M〉) satisfying

f = 0 m-a.e. on G, we have Γ(f ∗M)t =
1
2〈Mf,c +Mf,j ,M c +M j +K〉t for

t ∈ [0, τG[ Px-a.s. for q.e. x ∈ E, which ensures the well-definedness in the

following definition.

Definition 3.1 (extended Nakao operators and Nakao integrals). We

consider M ∈ (M[[0,ζ[[
loc )∗ with its jump function ϕ ∈ J∗ and f ∈ Ḟloc. Let

{Gk} ∈Θ be a common nest such that μ〈M〉(Gk)<∞, f = fk m-a.e. on Gk

for some fk ∈ Fb, and 1Gk×Eϕ,1Gk×Eϕ ∈
◦
J for each k ∈N. Set Ek := {x ∈

E |Ex[
∫ τGk
0 e−tg(Xt)dt]> 1/k} for g ∈ L2(E;m) with 0< g ≤ 1 m-a.e. Then

ek := kE·[
∫ τGk
0 e−tg(Xt)dt] ∧ 1 ∈ FGk

satisfies 1Ek
≤ ek ≤ 1Gk

q.e. on E. In

view of [11, Lemma 3.3], we have {Ek} ∈Θ. Then we set

Γ(M)t := Γ(ek ∗M)t −
1

2
〈M ek,c +M ek,j ,M c +M j +K〉t for t ∈ [0, τEk

[

for each k ∈ N, Px-a.s. for q.e. x ∈ E. For M ∈ (M[[0,ζ[[
loc )∗ and f ∈ Fe ∩

L2(E;μ〈M〉), we set

https://doi.org/10.1215/00277630-3335905 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-3335905


STOCHASTIC CALCULUS WITH TIME REVERSAL 105∫ t

0
f(Xs)dΓ(M)s

:= Γ(f ∗M)t −
1

2
〈Mf,c +Mf,j ,M c +M j +K〉t for t ∈ [0,∞[

Px-a.s. for q.e. x ∈E. For general f ∈ Ḟloc and M ∈ (M[[0,ζ[[
loc )∗ with ek and

{Ek} as noted above, we set∫ t

0
f(Xs)dΓ(M)s :=

∫ t

0
(fek)(Xs)dΓ(M)s for t ∈ [0, τEk

[(3.5)

for each k ∈ N Px-a.s. for q.e. x ∈E. Note that fek ∈ Fb ∩ L2(E;μ〈M〉) for

each k ∈ N. We call Γ defined over (M[[0,ζ[[
loc )∗ an extended Nakao operator,

and we call the integral in the left-hand side of (3.5) an extended Nakao

integral. These are well defined for all t ∈ [0, ζ[ Px-a.s. for q.e. x ∈E in view

of [13, Lemma 3.3] as noted above and are elements in Nc,loc.

For f ∈ Ḟloc and M ∈ (M[[0,ζ[[
loc )∗, we see that∫ t

0
f(Xs)dΓ(M

c)s =Γ(f ∗M c)t −
1

2
〈Mf,c,M c〉t(3.6)

for all t ∈ [0, ζ[ Px-a.s. for q.e. x ∈ E, where Γ(f ∗M c)t can be defined by

way of [13, Lemma 3.2]. Moreover, from [13, Corollary 4.1], we have that∫ t

0
f(Xs)dΓ(K)s = 0

holds for all t ∈ [0, ζ[ Px-a.s. for q.e. x ∈E. In particular, Γ(K)t = 0 for all

t ∈ [0, ζ[ Px-a.s. for q.e. x ∈E. Here K ∈ (M[[0,ζ[[
loc )∗ is the purely discontin-

uous local MAF associated to −1E×E(ϕ+ϕ) ∈ J .

§4. Progressively additive functionals in the strong sense

In this section, we shall refine the notion of additive functionals called

progressively additive functionals in the strong sense. We begin with some

details on the completion of filtrations. Let P(E) be the family of all

probability measures on E. For each ν ∈ P(E), let F ν
∞ (resp., F ν

t ) be

the Pν -completion of F 0
∞ (resp., Pν -completion of F 0

t in F ν
∞), and set

F∞ :=
⋂

ν∈P(E) F
ν
∞ and Ft :=

⋂
ν∈P(E) F

ν
t . Further, we introduce F ∗

∞ :=⋂
ν∈S00,ν �=0 F ν̂

∞ and F ∗
t :=

⋂
ν∈S00,ν �=0 F ν̂

t , where S00 := {μ ∈ S0 | μ(E) <
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∞ and U1μ ∈ L∞(E;m)} and ν̂ := ν/ν(E). Here S0 denotes the family of

measures of finite energy, and U1μ denotes its 1-potential (see [8]). Clearly,

F∞ ⊂ F ∗
∞ and Ft ⊂F ∗

t for each t ∈ [0,∞[.

First we recall the definition of additive functionals.

Definition 4.1 (additive functional). An (Ft)-adapted (resp., (F ∗
t )-

adapted) process A= (At)t≥0 with values in [−∞,∞] is said to be an addi-

tive functional (resp., relaxed additive functional (AF∗)) if there exist a

defining set Ξ ∈ F∞ (resp., Ξ ∈ F ∗
∞) and an exceptional set N satisfying

the following conditions:

(1) Px(Ξ) = 1 for all x ∈E \N ;

(2) θtΞ ⊂ Ξ for all t ≥ 0; in particular, ω∂ ∈ Ξ and P∂(Ξ) = 1, because of

ω∂ = θζ(ω)(ω) for all ω ∈ Ξ;

(3) for all ω ∈ Ξ, A·(ω) is right-continuous and has a left limit on [0, ζ(ω)[,

A0(ω) = 0, |At(ω)|<∞ for t < ζ(ω), and At+s(ω) =At(ω)+As(θtω) for

all t, s≥ 0; and

(4) for all t ≥ 0, At(ω∂) = 0; in particular, under the additivity in (3),

At(ω) =Aζ(ω)(ω) for all t≥ ζ(ω) and ω ∈ Ξ.

An additive functional A is called right-continuous with left limits (rcll-AF )

if t �→At(ω) is right-continuous on [0,∞[ and has a left limit on ]0,∞[ for

each ω ∈ Ξ. An additive functional A is said to be a finite (resp., continuous

additive functional (CAF )) if |At(ω)|<∞, for all t ∈ [0,∞[ (resp., t �→At(ω)

is continuous on [0,∞[) for each ω ∈ Ξ. A [0,∞]-valued CAF is called a

positive continuous additive functional (PCAF ). Two additive functionals

A and B are called equivalent if there exist a common defining set Ξ ∈ F∞
and an exceptional set N such that At(ω) = Bt(ω) for all t ∈ [0,∞[ and

ω ∈ Ξ. We call A= (At)t≥0 an additive functional on [[0, ζ[[ or a local additive

functional if A is (Ft)-adapted and satisfies (1), (2), (4), and the property

(3′) in which (3) is modified so that the additivity condition is required

only for t+ s < ζ(ω). The notions of rcll-AF, CAF, and PCAF on [[0, ζ[[ are

similarly defined. Two additive functionals on [[0, ζ[[, A and B, are called

equivalent if there exist a common defining set Ξ ∈ F∞ and an exceptional

set N such that At(ω) = Bt(ω) for all t ∈ [0, ζ[ and ω ∈ Ξ. These notions

can be formulated for AF∗ by replacing Ξ ∈ F∞ with Ξ ∈ F ∗
∞.

Definition 4.2 (multiplicative functional). An (Ft)-adapted (resp.,

(F ∗
t )-adapted) processM = (Mt)t≥0 with values in [0,∞] is said to be amul-

tiplicative functional (MF ) (resp., relaxed multiplicative functional (MF ∗))
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if there exist a defining set Ξ ∈ F∞ (resp., Ξ ∈ F ∗
∞) and an exceptional set

N satisfying conditions (1) and (2) in Definition 4.1 and

(3) for all ω ∈ Ξ, M·(ω) is right-continuous and has a left limit on [0, ζ(ω)[,

M0(ω) = 1 and Mt+s(ω) =Mt(ω)Ms(θtω) for all t, s≥ 0; and

(4) for all t≥ 0, Mt(ω∂) = 1; in particular, under the multiplicativity in (3),

Mt(ω) =Mζ(ω)(ω) for all t≥ ζ(ω) and ω ∈ Ξ.

An MF on [[0, ζ[[ is similarly defined.

Definition 4.3. For any t > 0, we say that two sample paths ω and ω′

are t-equivalent if ω(s) = ω′(s) for all s ∈ [0, t]. We say that two sample

paths ω and ω′ are pre-t-equivalent if ω(s) = ω′(s) for all s ∈ [0, t[.

The following lemma is proved in [4, Lemma 2.15]. Recall that {θt, t > 0}
denotes the time-shift operators on the path space for the process X.

Lemma 4.1 (see [4, Lemma 2.15]). For t, s > 0,

(1) θtrt+sω is s-equivalent to rsω if t+ s < ζ(ω) or s≥ ζ(ω); and

(2) rtθsω is pre-t-equivalent to rt+sω; moreover, if ω is continuous at s,

then rtθsω is t-equivalent to rt+sω.

For an rcll-AF (or rcll-AF∗) At of X adapted to (F 0
t )t≥0, At(ω) =At(ω

′)
if ω and ω′ are t-equivalent, and At−(ω) = At−(ω′) if ω and ω′ are pre-t-

equivalent. If the measurability is lifted, it does not necessarily hold. In [4,

Definition 2.1], we introduced the following notion of progressively additive

functional in order to justify the stochastic calculus discussed in [4].

Definition 4.4 (PrAF). A process A = (At)t≥0 with values in R :=

[−∞,∞] is said to be a progressively additive functional (PrAF ) (resp.,

relaxed progressively additive functional (PrAF ∗)) if A is (Ft)-adapted

(resp., (F ∗
t )-adapted) and there exist defining sets Ξ ∈ F∞, Ξt ∈ Ft (resp.,

Ξ ∈ F ∗
∞, Ξt ∈ F ∗

t ) for each t > 0 and an exceptional set N satisfying the

conditions

(1) Px(Ξ) = 1 for all x ∈ E \N , and Ξ ⊂ Ξt ⊂ Ξs for every t > s > 0, and

Ξ =
⋂

t>0Ξt;

(2) θsΞ ⊂ Ξ for all s ≥ 0 and θs(Ξt) ⊂ Ξt−s for all s ∈ ]0, t[; in particular,

ω∂ ∈ Ξ⊂ Ξt and P∂(Ξ) =P∂(Ξt) = 1 under (1);

(3) for all ω ∈ Ξt, A·(ω) is defined on [0, t[, and it is right-continuous on

[0, t∧ ζ(ω)[ and has a left limit on ]0, t]∩ ]0, ζ(ω)[ such that A0(ω) = 0,

|As(ω)|<∞ for s ∈ [0, t∧ ζ(ω)[, and Ap+q(ω) =Ap(ω)+Aq(θpω) for all

p, q ≥ 0 with p+ q < t;
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(4) for all t≥ 0, At(ω∂) = 0; and

(5) for any t > 0 and pre-t-equivalent paths ω,ω′ ∈ Ω, ω ∈ Ξt implies that

ω′ ∈ Ξt, As(ω) =As(ω
′) for any s ∈ [0, t[.

Furthermore, A is called an rcll-PrAF if, for each t > 0 and ω ∈ Ξt, s �→
As(ω) is right-continuous on [0, t[ and has left limits on ]0, t], and a PrAF

is said to be finite (resp., continuous) if |As(ω)|<∞, for all s ∈ [0, t[ (resp.,

continuous on [0, t[) for every ω ∈ Ξt.

An R-valued process A is called a PrAF on [[0, ζ[[ if A is (Ft)-adapted,

and there exist Ξ ∈ F∞, Ξt ∈ Ft for each t > 0 and an exceptional set N

such that (1′), (2), (3′), (4), and (5′) hold:
(1′) Px(Ξ) = 1 for all x ∈ E \N , Ξ ⊂ Ξt for all t > 0, Ξ =

⋂
t>0Ξt, and

Ξt ∩{t < ζ} ⊂ Ξs ∩{s < ζ} for s < t; (3′) for each ω ∈ Ξt ∩{t < ζ}, the same

conclusion as in (3) holds; and

(5′) for any t > 0 and pre-t-equivalent paths ω,ω′ ∈Ω∩{t < ζ}, the same

conclusion as in (5) holds.

The notion of rcll-PrAF on [[0, ζ[[ is similarly defined, and all notions can

be formulated for PrAF∗ (on [[0, ζ[[) by replacing Ξ ∈ F∞, Ξt ∈ Ft with

Ξ ∈ F ∗
∞, Ξt ∈ F ∗

t .

Definition 4.5 (progressively multiplicative functional). An (Ft)-

adapted (resp., (F ∗
t )-adapted) process M = (Mt)t≥0 with values in [0,∞]

is said to be a progressively multiplicative functional (PrMF ) (resp., relaxed

progressively multiplicative functional (PrMF ∗)) if A is (Ft)-adapted (resp.,

(F ∗
t )-adapted) and there exist defining sets Ξ ∈ F∞, Ξt ∈ Ft (resp., Ξ ∈

F ∗
∞, Ξt ∈ F ∗

t ) for each t > 0 and an exceptional set N satisfying conditions

(1) and (2) in Definition 4.4 and

(3) for all ω ∈ Ξt, M·(ω) is defined on [0, t[, and it is right-continuous on

[0, t ∧ ζ(ω)[ and has a left limit on ]0, t]∩]0, ζ(ω)[ such that M0(ω) = 1,

and Mp+q(ω) =Mp(ω)Mq(θpω) for all p, q ≥ 0 with p+ q < t;

(4) for all t≥ 0, Mt(ω∂) = 1; and

(5) for any t > 0 and pre-t-equivalent paths ω,ω′ ∈ Ω, ω ∈ Ξt implies that

ω′ ∈ Ξt, Ms(ω) =Ms(ω
′) for any s ∈ [0, t[.

Furthermore, M is called an rcll-PrMF if, for each t > 0 and ω ∈ Ξt, s �→
Ms(ω) is right-continuous on [0, t[ and has left limits on ]0, t].

The notion of PrMF on [[0, ζ[[ is similarly defined, and all notions can

be formulated for PrMF∗ (on [[0, ζ[[) by replacing Ξ ∈ F∞, Ξt ∈ Ft with

Ξ ∈ F ∗
∞, Ξt ∈ F ∗

t .
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The next notion is stronger than PrAF and suitable to describe our main

theorem.

Definition 4.6 (PrAFS). A process A = (At)t≥0 with values in R :=

[−∞,∞] is said to be a progressively additive functional in the strong sense

(PrAFS ) (resp., relaxed progressively additive functional in the strong sense

(PrAFS ∗)) if A is (Ft)-adapted (resp., (F ∗
t )-adapted) and there exist defin-

ing sets Ξ ∈ F∞, Ξt ∈ Ft (resp., Ξ ∈ F ∗
∞, Ξt ∈ F ∗

t ) for each t > 0 and an

exceptional set N satisfying the following conditions:

(1) Px(Ξ) = 1 for all x ∈ E \N , for every t > s > 0 Ξ⊂ Ξt ⊂ Ξs, and Ξ =⋂
t>0Ξt;

(2) θsΞ ⊂ Ξ for all s ≥ 0 and θs(Ξt) ⊂ Ξt−s for all s ∈]0, t[; in particular,

ω∂ ∈ Ξ⊂ Ξt and P∂(Ξ) =P∂(Ξt) = 1 under (1):

(3) for all ω ∈ Ξt, A·(ω) is defined on [0, t], and it is right-continuous on

[0, t] ∩ [0, ζ(ω)[ and has a left limit As−(ω) on ]0, t]∩]0, ζ(ω)[ such that

A0(ω) = 0, |As(ω)|<∞ for s ∈ [0, t]∩ [0, ζ(ω)[, and Ap+q(ω) =Ap(ω) +

Aq(θpω) for all p, q ≥ 0 with p+ q ≤ t;

(4) for all t≥ 0, At(ω∂) = 0; and

(5) for any t > 0 and t-equivalent paths ω,ω′ ∈Ω, ω ∈ Ξt implies that ω′ ∈
Ξt, As(ω) =As(ω

′) for any s ∈ [0, t].

Further, A is called an rcll-PrAFS if, for each t > 0 and ω ∈ Ξt, s �→As(ω)

is right-continuous on [0, t] and a has left-hand limit on ]0, t], and a PrAFS

is said to be finite (resp., continuous) if |As(ω)|<∞, for all s ∈ [0, t] (resp.,

continuous on [0, t]) for every ω ∈ Ξt.

An R-valued process A is called a PrAFS on [[0, ζ[[ if A is (Ft)-adapted

and there exist Ξ ∈ F∞, Ξt ∈ Ft for each t > 0 and an exceptional set N

such that (1′), (2), (3′′), (4), and (5′′) hold:
(3′′): for each ω ∈ Ξt ∩ {t < ζ}, the same conclusion as in (3) holds;

(5′′): for any t > 0 and t-equivalent paths ω,ω′ ∈ Ω ∩ {t < ζ}, the same

conclusion as in (5) holds.

The notion of rcll-PrAFS on [[0, ζ[[ is similarly defined, and all notions

can be formulated for PrAFS∗ (on [[0, ζ[[) by replacing Ξ ∈ F∞, Ξt ∈ Ft

with Ξ ∈ F ∗
∞, Ξt ∈ F ∗

t .

Definition 4.7 (PrMFS). An (Ft)-adapted (resp., (F ∗
t )-adapted) pro-

cess M = (Mt)t≥0 with values in [0,∞] is said to be a progressively

multiplicative functional in the strong sense (PrMFS ) (resp., relaxed pro-

gressively multiplicative functional in the strong sense (PrMFS ∗)) if M is

(Ft)-adapted (resp., (F ∗
t )-adapted) and there exist defining sets Ξ ∈ F∞,

https://doi.org/10.1215/00277630-3335905 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-3335905


110 K. KUWAE

Ξt ∈ Ft (resp., Ξ ∈ F ∗
∞, Ξt ∈ F ∗

t ) for each t > 0 and an exceptional set N

satisfying conditions (1), (2), (3), and (4) in Definition 4.5 and

(5) for any t > 0 and t-equivalent paths ω,ω′ ∈Ω, ω ∈ Ξt implies that ω′ ∈
Ξt, Ms(ω) =Ms(ω

′) for any s ∈ [0, t].

The notions of rcll-PrMF and PrMFS on [[0, ζ[[ are similarly defined, and

all notions can be formulated for PrMFS∗ (on [[0, ζ[[) by replacing Ξ ∈ F∞,

Ξt ∈ Ft with Ξ ∈ F ∗
∞, Ξt ∈ F ∗

t .

Remark 4.1.

(1) Our notions of PrAF and PrAFS are different from what is found in

Walsh [22]. In [22], the notion of only positive PrAF is treated, and (Gt)-

adaptedness for the positive PrAF is required, which is very restrictive

for our purpose. Here, Gt =
⋂

μ∈P(E) G
μ
t , and G μ

t is the Pμ-completion

of F 0
t smaller than Fμ

t . Moreover, the definition of the time reversal

operator in [22] is slightly different from ours.

(2) Any PrAF (or PrAFS) (on [[0, ζ[[) is an additive functional (on [[0, ζ[[).

Note that any PrAFS (on [[0, ζ[[) cannot be regarded as a PrAF (on

[[0, ζ[[) with the same defining sets. But every PrAFS A with defining

sets Ξt, Ξ can be regarded as a PrAF with larger defining sets Ξ−
t :=

{ω ∈
⋂

s∈]0,t[Ξs |At−(ω) exists in R}, Ξ− :=
⋂

t>0Ξ
−
t .

(3) Every PCAF A can be regarded as a continuous PrAFS (hence PrAF)

(see Lemma 6.1 below or [4, Lemma 2.14 with Remark 2.13]). But it may

not be a positive PrAF treated in [22] for the strict (Gt)-adaptedness.

(4) The MAF Mu and the CAF Nu of 0-energy appearing in the Fukushima

decomposition (2.6) can be regarded as finite rcll-PrAFSs in view of

[8, proof of Theorem 5.2.2] or Lemma 6.2 below. Hence, an MAF of

stochastic integral type
∫ t
0 g(Xs−)dMu

s (g,u ∈ F with g ∈ L2(E;μ〈u〉))
can be regarded as a finite rcll-PrAFS in view of [10, Proposition 4.44].

Consequently, any M ∈
◦

M also can be regarded as an rcll-PrAFS in

view of the assertion of [8, Lemma 5.6.3] and Lemma 4.4 below. Recall

the orthogonal decomposition

M =M c +Md

in the Hilbert space (
◦

M,e), where M c ∈
◦

Mc (resp., Md ∈
◦

Md). M c is

the unique element as the minimizer of

◦
Mc �N �→ e(M,N).
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Hence, both M c and Md can be regarded as rcll-PrAFSs in view of the

assertion of [8, Lemma 5.6.3] and Lemma 4.4 below.

(5) Every M ∈ M[[0,ζ[[
loc can be regarded as an rcll-PrAFS on [[0, ζ[[ from

Theorem 5.1 below.

We recall the time reversal operator rt on the rcll path space Ω. It is

shown in [4, Lemma 2.10] that for A ∈ Fm
t we have r−1

t (A) ∈ Fm
t and (2.3)

holds, where Fm
t is the Pm-completion of F 0

t in Fm
∞.

Definition 4.8 (reversible defining set). Let A be a PrAF (or PrAFS)

on [[0, ζ[[. For each t > 0, the defining set Ξt for A is said to be rt-reversible

or simply reversible if ω ∈ Ξt with t < ζ(ω) implies that rtω ∈ Ξt. It is easy

to see that the reversibility of Ξt is equivalent to Ξt ⊂ r−1
t (Ξt), because of

r−1
t (Ξc

t) ∩ {t ≥ ζ} = ∅. A PrAF (or PrAFS) on [[0, ζ[[, or its defining sets

(Ξt)t>0, is called time-reversible, or simply reversible, if for every t > 0, Ξt

is reversible. The notion of reversibility for PrMF (or PrMFS) on [[0, ζ[[ is

similarly defined.

Remark 4.2. For an ω ∈ Ω with t < ζ(ω), rt(rtω) �= ω even if on [0, t].

Indeed, t < ζ(ω) implies that t < ζ(rtω) and rt(rtω)(s) = ω(s) if s ∈ [0, t[

and that rt(rtω)(s) = ω(t−) if s≥ t. Then the reversibility of the defining

set Ξt of a PrAF on [[0, ζ[[ is equivalent to that under t < ζ(ω), ω ∈ Ξt if and

only if rtω ∈ Ξt; that is, if Ξt ∩ {t < ζ}= r−1
t (Ξt)∩ {t < ζ}. If Ω consists of

continuous paths up to the lifetime, then the reversibility of the defining set

Ξt of a PrAFS on [[0, ζ[[ is equivalent to that under t < ζ(ω), ω ∈ Ξt if and

only if rtω ∈ Ξt.

Lemma 4.2. Let (Ξt)t>0 be the family of reversible defining sets of a

PrAFS on [[0, ζ[[. Then r−1
t (Ξt) ∈ F ∗

t for each t > 0. If Px(Ξt) = 1 for all

x ∈ E, we have r−1
t (Ξt) ∈ Ft for each t > 0. Moreover, if (Ξt)t>0 is the

defining set of a PrAF on [[0, ζ[[, or if Ω consists of continuous paths up to

the lifetime, then r−1
t (Ξt) ∈ Ft for each t > 0.

Proof. By the definition of Ξt, we have r−1
t (Ξc

t) ∩ {t < ζ} ⊂ Ξc
t ∩ {t <

ζ}; hence, r−1
t (Ξc

t) ⊂ Ξc
t , because r−1

t (Ξc
t) ∩ {t ≥ ζ} = ∅. This implies that

r−1
t (Ξc

t) ∈ F ν
t holds for any ν ∈ S00 and that it holds for any ν ∈ P(E)

provided that Px(Ξt) = 1 for all x ∈ E. Next, suppose that (Ξt)t>0 is the

defining set of a PrAF or that Ω consists of continuous paths up to the

lifetime. By Remark 4.2, r−1
t (Ξt)∩{t < ζ}=Ξt ∩{t < ζ}. Hence, r−1

t (Ξt) =

(Ξt ∩ {t < ζ})∪ {t≥ ζ} ∈ Ft.
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Hereafter, we will use the convention that X0−(ω) :=X0(ω). For nota-

tional simplicity, we use the following convention for additive functionals: for

an additive functional A and each path ω, we write At
s(ω) :=At(ω)−As(ω)

for 0≤ s≤ t, and we write At−
s−(ω) :=At−(ω)−As−(ω) for 0< s≤ t.

The following lemma is needed for the present article and can be proved

in the same way of the proof of [4, Theorem 2.18]. Its proof is complicated

by measurability issues, but the idea behind it is fairly transparent.

Lemma 4.3 (dual PrAF). Let A be an rcll-PrAF on [[0, ζ[[ with defining

sets Ξ− ∈ F∞, Ξ−
t ∈ Ft obtained from a reversible PrAFS A with reversible

defining sets Ξt, Ξ; that is, Ξ
−
t := {ω ∈

⋂
s∈]0,t[Ξs |At−(ω) exists in R} and

Ξ− :=
⋂

t>0Ξ
−
t . Suppose that there is a Borel function ϕ on E × E with

ϕ(x,x) = 0 for x ∈E such that ϕ(Xs−(ω),Xs(ω)) =As(ω)−As−(ω), for all
s ∈]0, t[∩ ]0, ζ[ and all ω ∈ Ξ−

t . For ω ∈ r−1
t (Ξ−

t ), we set{
Ât(ω) :=At(rt(ω)) +ϕ(Xt(ω),Xt−(ω)) for t ∈ [0, ζ(ω)[,

Ât(ω) := 0 for t ∈ [ζ(ω),∞[.
(4.1)

Suppose that At ◦ rt is F ∗
t -measurable for each t > 0. Then Â is a finite

rcll-PrAF ∗ on [[0, ζ[[ with defining sets Ξ̂t := r−1
t (Ξ−

t ) and Ξ̂ :=
⋂

t>0 Ξ̂t such

that

Ât =At− ◦ rt +ϕ(Xt,Xt−) and Ât − Ât− = ϕ(Xt,Xt−)

for all t ∈]0, ζ[, Px-a.s. for q.e. x ∈E.

Remark 4.3.

(1) The reversibility of the PrAFS A in Lemma 4.3 is necessary to obtain

the PrAF∗ Â. This is one of the key points of our results.

(2) The assumption on the F ∗
t -measurability of At ◦ rt in Lemma 4.3 is

satisfied provided that A is (F 0
t )-adapted by [4, Lemma 2.10]. If there

exist a set {Ai | i = 1, . . . ,m} of finite rcll reversible PrAFSs with the

common reversible defining sets (Ξt)t>0 and a Borel function f : R
 →
R such that As(rtω) = f((A1)t−(t−s)−(ω), . . . , (A


)t−(t−s)−(ω)) for ω ∈ Ξt ∩
{t < ζ} and s ∈ [0, t], then At ◦ rt is F ∗

t -measurable. Indeed, for C ∈
B(R), we see that r−1

t (A−1
t (C))∩Ξt∩{t < ζ} ∈ Ft from the expression

At(rtω) = f(A1
t−(ω), . . . ,A



t−(ω)) for ω ∈ Ξt ∩ {t < ζ}, and

r−1
t

(
A−1

t (C)
)
∩Ξt ∩ {t≥ ζ}=

{
∅ if 0 /∈C,

Ω if 0 ∈C.
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Since any subset of Ξc
t belongs to F ∗

t , we have the desired F ∗
t -

measurability.

Proof of Lemma 4.3. The first statement follows from Remark 4.1(2).

The proof of the middle part is quite similar to [4, proof of Theorem 2.18],

which is complicated by measurability issues, so we omit it. We should check

that Ξ̂t ∈ F ∗
t and Px(Ξ̂t) = 1, x ∈E \N for some exceptional set N . These

follow from the reversibility of Ξt, because of Ξt ⊂ r−1
t (Ξt)⊂ Ξ̂t and because

any subset of Ξc
t is F ∗

t -measurable. Therefore, the F ∗
t -measurability of Ât

completes the proof.

Lemma 4.4. Let {(An,i)∞n=1 | i = 1, . . . , �} be a finite set of sequences of

finite rcll-PrAFSs with common defining sets Ξn ∈ F∞, Ξn
t ∈ Ft. For each

t > 0, set

Ξt :=
{
ω ∈
⋂
n∈N

Ξn
t

∣∣∣ for each i= 1,2, . . . , �,

An,i(ω) converges uniformly on [0, t]
}

∈ Ft

and

Ξ :=
{
ω ∈
⋂
n∈N

Ξn
∣∣∣ for each i= 1,2, . . . , �,

An,i(ω) converges uniformly on [0, t] for every t ∈ [0,∞[
}

∈ F∞.

Suppose that there exists an exceptional set N such that Px(Ξ) = 1 for

x ∈E \N . If we define Ai
t := limn→∞An,i

t on Ω, then all Ai are finite rcll-

PrAFSs (resp., PrAFs) with the defining sets Ξ, Ξt (resp., Ξ
−, Ξ−

t ), where

Ξ−
t := {ω ∈

⋂
s∈]0,t[Ξs | all Ai

t−(ω) exist in R} and Ξ− :=
⋂

t>0Ξ
−
t . If, fur-

ther, all An,i are finite continuous PrAFSs, then all Ai constructed above are

finite continuous. Moreover, suppose that, for each n ∈ N, Ξn
t is reversible

and that there exists a continuous function f = (f1, f2, . . . , f
) :R

 →R
 such

that, for each i = 1, . . . , � and ω ∈ Ξn
t with t < ζ(ω), An,i

s (rtω) =

fi((A
n,1)t−(t−s)−(ω), . . . , (A

n,
)t−(t−s)−(ω)) for s ∈ [0, t]. Then Ξt is reversible.
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Proof. The proof of the first part is quite similar to the proof of [4,

Lemma 2.14], so all Ai (i = 1, . . . , �) are PrAFSs with defining sets Ξ, Ξt

as claimed. As noted in Remark 4.1(2), those are also PrAFs with defining

sets Ξ−, Ξ−
t . Now we prove the second statement. Suppose that each Ξn

t is

reversible for each n ∈N. The reversibility of Ξt is clear from the expressions

for An,i
s ◦ rt on Ξt ∩ {t < ζ} for s ∈ [0, t].

§5. Main theorems

In this section, we give our main theorem. Recall that, for M ∈ (M[[0,ζ[[
loc )∗

with its jump function ϕ ∈ J∗, there exists K ∈ (Md
loc)∗ (resp., K
 ∈

(Md
loc)∗) such that its jump function is given by −1E×E(ϕ+ϕ) ∈ J∗ (resp.,

−1E×E(ϕ
 + ϕ
) ∈ J∗). We write (f ∗ Γ(M))t instead of
∫ t
0 f(Xs)dΓ(M)s

for M ∈ (Mloc)∗ and f ∈ Ḟloc.

Theorem 5.1. Let Y ∈ M[[0,ζ[[
loc . Then Y can be extended to be an rcll

reversible PrAFS on [[0, ζ[[ with reversible defining sets (Ξt)t>0. Moreover,

Y can be extended to be an rcll-PrAF on [[0, ζ[[ with some defining sets Ξ−
t ,

Ξ− containing Ξt,Ξ, respectively, and Ŷ defined as in (4.1) is a PrAF ∗ on

[[0, ζ[[ with defining sets Ξ̂t := r−1
t (Ξ−

t ), Ξ̂ :=
⋂

t>0 Ξ̂t.

Theorem 5.2. Take M ∈ (M[[0,ζ[[
loc )∗, and take f ∈ Ḟloc. Then additive

functionals f ∗ M,f ∗ K, [f(X),M + K], f ∗ Γ(M), and f ∗ Γ(K) can

be extended to be rcll reversible PrAFSs on [[0, ζ[[ with common reversible

defining sets (Ξt)t>0 such that, for ω ∈ ΞT , T < ζ(ω), and t ∈ [0, T ],

(f ∗ Γ(K))t(ω) = 0 and

(f ∗M)t(rTω) =−
(
f ∗ (M +K)

)T−
(T−t)−(ω)

−
[
f(X),M +K

]T−
(T−t)−(ω)− 2

(
f ∗ Γ(M)

)T
T−t

(ω).
(5.1)

In particular, there exist reversible defining sets (Ξt)t>0 of f ∗K such that

for ω ∈ ΞT , T < ζ(ω), and t ∈ [0, T ],

(f ∗K)t(rTω) = (f ∗K)T−
(T−t)−(ω) +

[
f(X),K

]T−
(T−t)−(ω).(5.2)

Moreover, the same assertion as in Theorem 5.1 for PrAFSs including f ∗K,

[f(X),M +K], f ∗ Γ(M), and f ∗ Γ(K) holds.
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Remark 5.1. The conclusions of Theorems 5.1 and 5.2 also include the

assertion that, for each t > 0, Ξt ⊂ Ξ̂t holds for the defining set Ξt of the

given PrAFS on [[0, ζ[[ and the defining set Ξ̂t of the constructed PrAF∗ on

[[0, ζ[[.

One of the consequences of Theorem 5.2 is the following refinement of

the Lyons–Zheng decomposition.

Theorem 5.3 (Lyons–Zheng decomposition for the Fisk–Stratonovich

integral). Take M ∈ (M[[0,ζ[[
loc )∗, and take f ∈ Ḟloc. Set M̌ :=M + 1

2K, and

set A :=A+ (1/2)K = M̌ +Γ(M̌). Then for q.e. x ∈E, the following holds

Px-a.s. on {T < ζ}: for all t ∈ [0, T ]∫ t

0
f(Xs) ◦ dAs =

1

2

∫ t

0
f(Xs−)dM̌s

(5.3)

− 1

2

∫ T−

(T−t)+
f(XT−s)d(M̌s ◦ rT ),

At =
1

2
M̌t −

1

2
(M̌T− ◦ rT − M̌(T−t)− ◦ rT ).(5.4)

Here
∫ t
0 f(Xs) ◦ dAs is the Stratonovich-type integral defined for t ∈ [0, ζ[ in

[13, Definition 4.1] (see also [14]).

Proof. Let (Ξt)t>0 be the common reversible defining sets that appeared

in Theorem 5.2. By (5.1) and (5.2), we see that, for ω ∈ ΞT , T < ζ(ω),

t ∈ [0, T ],

right-hand side of (5.3)

=
1

2
(f ∗ M̌)t(ω)−

1

2

(
(f ∗ M̌)T−(rTω)− (f ∗ M̌)(T−t)−(rTω)

)
=

1

2
(f ∗M)t(ω)−

1

2

(
(f ∗M)T−(rTω)− (f ∗M)(T−t)−(rTω)

)
+

1

4
(f ∗K)t(ω)−

1

4

(
(f ∗K)T−(rTω)− (f ∗K)(T−t)−(rTω)

)
(5.1),(5.2)

=
1

2
(f ∗M)t(ω) +

1

2

{(
f ∗ (M +K)

)
t
(ω) +

[
f(X),M +K

]
t
(ω)

+ 2
(
f ∗ Γ(M)

)
t
(ω)
}

+
1

4
(f ∗K)t(ω)−

1

4

(
(f ∗K)t(ω) +

[
f(X),K

]
t
(ω)
)
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=
(
f ∗
(
M +

1

2
K
))

t
(ω) +

1

2

[
f(X),M +

1

2
K
]
t
(ω)

+
(
f ∗ Γ(M)

)
t
(ω)

=

∫ t

0
f
(
Xs(ω)

)
◦ dAs(ω).

The following corollaries are consequences of Theorem 5.3.

Corollary 5.1 (Lyons–Zheng decomposition for the Fisk–Stratonovich

integral by A := M + Γ(M), M ∈ (M[[0,ζ[[
loc )as). Take M ∈ (M[[0,ζ[[

loc )as, and

take f ∈ Ḟloc. Set A :=M +Γ(M). Then for q.e. x ∈E, the following holds

Px-a.s. on {T < ζ}: for all t ∈ [0, T ],∫ t

0
f(Xs) ◦ dAs =

1

2

∫ t

0
f(Xs−)dMs

(5.5)

− 1

2

∫ T−

(T−t)+
f(XT−s)d(Ms ◦ rT ),

At =
1

2
Mt −

1

2
(MT− ◦ rT −M(T−t)− ◦ rT ).(5.6)

Here
∫ t
0 f(Xs) ◦ dAs is the Stratonovich-type integral defined for t ∈ [0, ζ[ in

[13, Definition 4.1] (see also [14]).

Corollary 5.2 (Lyons–Zheng decomposition for the Fisk–Stratonovich

integral by Au,d, u ∈ Ḟ†
loc). Take f ∈ Ḟloc, and take u ∈ Ḟ†

loc. We set Au,d :=

Mu,d+Γ(Mu,d). Here Mu,d is an element in (Md,[[0,ζ[[
loc )as such that ΔMu,d

t =

u(Xt) − u(Xt−) t ∈]0, ζ[ Px-a.s. for q.e. x ∈ E. Then for q.e. x ∈ E, the

following holds Px-a.s. on {T < ζ}: for all t ∈ [0, T ]∫ t

0
f(Xs) ◦ dAu,d

s =
1

2

∫ t

0
f(Xs−)dM

u,d
s

(5.7)

− 1

2

∫ T−

(T−t)+
f(XT−s)d(M

u,d
s ◦ rT ),

Au,d
t =

1

2
Mu,d

t − 1

2
(Mu,d

T− ◦ rT −Mu,d
(T−t)− ◦ rT ).(5.8)

Here
∫ t
0 f(Xs) ◦ dAu,d

s is the Stratonovich-type integral defined for t ∈ [0, ζ[

in [13, Definition 4.1] (see also [14]).
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Corollary 5.3 (Lyons–Zheng decomposition for Au, u ∈ Ḟ†
loc). Take

u ∈ Ḟ†
loc. For q.e. x ∈E, the following holds Px-a.s. on {T < ζ}, respectively:

for all t ∈ [0, T ],

u(Xt)− u(X0) =
1

2
Mu

t − 1

2
(Mu

T− ◦ rT −Mu
(T−t)− ◦ rT ),(5.9)

where we regard X0− =X0 and M0− := 0.

Corollary 5.4 (Lyons–Zheng decomposition for M ∈ Mc,[[0,ζ[[
loc ). Take

M ∈ Mc,[[0,ζ[[
loc . Set At := Mt + Γ(M)t. Then for q.e. x ∈ E, the following

holds Px-a.s. on {T < ζ}: for all t ∈ [0, T ],

At =
1

2
Mt −

1

2
(MT ◦ rT −MT−t ◦ rT ).(5.10)

Corollary 5.5 (Lyons–Zheng decomposition for the Fisk–Stratonovich

integral by Au,c). Take u ∈ Ḟloc, f ∈ L2
loc({Gn};μ〈Mu,c〉) for some nest

{Gn} ∈ Θ, and take {un} ⊂ Fb such that u = un m-a.e. on Gn for each

n ∈N. Then for q.e. x ∈E, the following holds Px-a.s. on {T < ζ}, respec-
tively: for all t ∈ [0, T ],∫ t

0
f(Xs) ◦ dAu,c

s =
1

2

∫ t

0
f(Xs−)dM

u,c
s

(5.11)

− 1

2

∫ T

T−t
f(XT−s)d(M

u,c
s ◦ rT ),

Au,c
t =

1

2
Mu,c

t − 1

2
(Mu,c

T ◦ rT −Mu,c
T−t ◦ rT ).(5.12)

Here
∫ t
0 f(Xs) ◦ dAu,c

s is the Stratonovich-type integral defined for t ∈ [0, ζ[

in [13, Definition 4.1] (see also [14]).

Remark 5.2. Corollary 5.5 strengthens Lyons–Zheng decompositions on

Fisk–Stratonovich-type integrals by Nakao [18], Lyons and Zheng [16], and

Lyons and Zhang [15] formulated under the condition that J = κ= 0. Actu-

ally, [15, (2.1.6)] essentially proves that (5.11) holds for every t ∈ [0, T ] Pm-

a.e. under the condition that X is a conservative diffusion process having

no inside killing and the associated Dirichlet form admits the square-field

operator.
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As another consequence of Theorem 5.2, we can connect two kinds of

extensions of Nakao operators and Nakao integrals defined in [4] and [13].

More precisely, as in [4, Definition 3.3], we can define Λ(M) forM ∈ (M[[0,ζ[[
loc )∗

having jump function ϕ ∈ J∗: Λ(M)0 := 0 and

Λ(M)t :=−1

2

(
Mt +Mt ◦ rt +ϕ(Xt,Xt−) +Kt

)
, t ∈]0, ζ[

Pm-a.e. The stochastic integral
∫ t
0 f(Xs)dΛ(M)s for M ∈ (Mloc)∗ and f ∈

Ḟ†
loc is now defined in the following way:∫ t

0
f(Xs)dΛ(M)s := Λ(f ∗M)t

− 1

2
〈Mf,c +Mf,j ,M c +M j +K〉t t ∈ [0, ζ[

Pm-a.e. Here Mf,j is the locally square integrable MAF of purely discontin-

uous type such that ΔMf,j
t = (f(Xt)− f(Xt−))1{t<ζ} t ∈]0,∞[ Px-a.s. for

q.e. ∈E.

Theorem 5.4. For M ∈ (M[[0,ζ[[
loc )∗, Λ(M)t t ∈ [0, ζ[ can be defined Px-a.s.

for q.e. x ∈E and

Γ(M)t =Λ(M)t t ∈]0, ζ[ Px-a.s. for q.e. x ∈E.

Moreover, for f ∈ Ḟ†
loc and also for M ∈ (Mloc)∗, it holds that the stochastic

integral
∫ t
0 f(Xs)dΛ(M)s t ∈ [0, ζ[ can be defined Px-a.s. for q.e. x ∈E and∫ t

0
f(Xs)dΓ(M)s

=

∫ t

0
f(Xs)dΛ(M)s for all t ∈ [0, ζ[ Px-a.s. for q.e. x ∈E.

Proof. For ω ∈ ΞT with T < ζ(ω) and t ∈ [0, T ], we have ω ∈ Ξt; hence,

by applying (5.1) to ω ∈ Ξt with t < ζ(ω),(
f ∗ Γ(M)

)
t
(ω) =−1

2

((
f ∗ (M +K)

)
t−(ω)

+ [Mf ,M +K]t−(ω) + (f ∗M)t(rtω)
)
;

(5.13)

in particular, if f = 1E , we then have
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Γ(M)t(ω) =−1

2

(
Mt−(ω) +Mt(rtω) +Kt−(ω)

)
=−1

2

(
Mt(ω) +Mt(rtω) +ϕ

(
Xt(ω),Xt−(ω)

)
+Kt(ω)

)
=Λ(M)t(ω).

Let K be the local MAF of purely discontinuous type such that ΔKt =

−(f(Xt−)ϕ(Xt−,Xt) + f(Xt)ϕ(Xt,Xt−))1{t<ζ} for all t ∈]0,∞[ Px-a.s. for

q.e. x ∈E (see [4, Lemma 3.2(ii)]); K can be also regarded as a PrAFS with

reversible defining sets. Indeed, let (Ξ̂

t)t>0 be the time-reversible defining

sets for the CAF
∫ t
0 N(1E×E(fϕ
 + fϕ
))(Xs)dHs. Then

Ξ

T :=

{
ω ∈ Ξ̂


T

∣∣∣ ∑
0<s≤t

(fϕ
 + fϕ
)(Xs−,Xs)1{s<ζ}

absolutely converges on [0, T ]
}

is the time-reversible defining set for the purely discontinuous local MAF

K

 ∈ (Md

loc)∗ whose jump function is given by −1E×E(fϕ
 + fϕ
). Since

fϕ
+ fϕ
 = f(ϕ
+ϕ
)+ (f − f)ϕ
, we can see that 1Gn ∗K

 ∈

◦
M and that

{1Gn ∗(K

−K

1
)}
 forms an e-Cauchy sequence in

◦
M. Taking a subsequence

{�k} of {�}, we see that K

k uniformly converges to K on each compact

interval Px-a.s. for q.e. x ∈ E. Then one can construct an adequate time-

reversible common defining set ΞT for K and f ∗M . We define, for ω ∈ ΞT

with T < ζ(ω) and t ∈ [0, T ],

Λ(f ∗M)t(ω) :=−1

2

(
(f ∗M)t−(ω) + (f ∗M)t(rtω) +Kt(ω)

)
.

This means that Λ(f ∗M) defined under Pm in [4, Definition 3.3] can be

redefined Px-a.s. for q.e. x ∈E. Putting M
j
:=−(M j +K) and f ∗M j :=

−(f ∗M j +K), we see that ω ∈ ΞT with T < ζ(ω) and t ∈ [0, T ]∫ t

0
f
(
Xs(ω)

)
dΛ(M)s(ω)

= Λ(f ∗M)t(ω)−
1

2
〈Mf,c +Mf,j ,M c −M

j〉t(ω)

=−1

2

(
(f ∗M)t−(ω) + (f ∗M)t(rtω)− (f ∗M j)t(ω)
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− (f ∗M j)(ω) + 〈Mf,c,M c〉t(ω)− 〈Mf,j ,M
j〉t(ω)

)
=−1

2

(
f ∗ (M +K)

)
t−(ω) + [Mf ,M +K]t−(ω) + (f ∗M)t(rtω)

=
(
f ∗ Γ(M)

)
t
(ω),

which implies the desired assertion.

Example 5.1 (d-dimensional Brownian motion). Let X= (Ω,Xt,Px) be

the d-dimensional Brownian motion. We take a measurable vector field b :

Rd →Rd, and we assume that the measure |b(x)|2 dx is a smooth measure.

We consider the Itô integral Mt :=
∫ t
0 b(Xs)dXs. Then M ∈ Mc

loc =
◦

Mc
loc

and N := Γ(M) ∈Nc,loc. Note that if we assume that b ∈C1(Rd →Rd), then

we have the expression Nt =
∫ t
0 (div b)(Xs)ds. By Theorem 5.2, for each

f ∈H1
loc(R

d), M , N , f ∗M and f ∗N can be regarded as finite continuous

PrAFSs with a common time-reversible defining set (Ξt)t>0 such that, for

T > 0, ω ∈ ΞT and t ∈ [0, T ],

Mt(rTω) =−MT
T−t(ω)− 2NT

T−t(ω), Nt

(
rT (ω)

)
=NT

T−t(ω),

(f ∗M)t(rTω) =−(f ∗M)TT−t(ω)− 2(f ∗N)TT−t(ω),

(f ∗N)t
(
rT (ω)

)
= (f ∗N)TT−t(ω).

That is, these hold for Px-a.s. for q.e. x ∈ Rd (for all x ∈ R provided that

d= 1).

Example 5.2 (symmetric Lévy process on Rd). Let X = (Ω,Xt, ζ,

Px)x∈Rd be the symmetric Lévy process. That is, X is a time-homogeneous

additive process determined by a family {νt} of probability measures on Rd

satisfying [8, (4.17), (4.18), (4.19)]. Let (E ,F) be the corresponding Dirichlet

form on L2(Rd). Then (E ,F) is given by{
E(u, v) =

∫
Rd û(ξ)v̂(ξ)ψ(ξ)dξ,

F = {u ∈ L2(Rd) |
∫
Rd |û(ξ)|2ψ(ξ)dξ <∞},

where û(ξ) := (1/(2π)d/2)
∫
Rd e

i〈ξ,x〉u(x)dx and where ψ(x) is the function

determined by E0[e
i〈ξ,Xt〉] = e−tψ(ξ). We assume that X is purely discontin-

uous, namely, that ψ has the expression

ψ(ξ) =

∫
Rd

(
1− cos〈ξ, η〉

)
ν(dη),
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where ν is a symmetric measure on Rd\{0} such that
∫
Rd\{0}(|ξ|2∧1)ν(dξ)<

∞, which is called the Lévy measure of X. We see that CLip
0 (Rd)⊂H1(R

d)⊂
F ; hence, CLip

loc (R
d)⊂H1

loc(R
d)⊂Floc, because of

1 +ψ(ξ)≤ c
(
1 + |ξ|2

) ∀ξ ∈Rd

for some constant c > 0 (see [1, Corollary 7.16]). Here CLip
0 (Rd) (resp.,

CLip
loc (R

d)) is the family of Lipschitz continuous functions with compact sup-

port (resp., locally Lipschitz continuous functions), and Floc is the space

of functions locally in F in the ordinary sense (see [8]). Further, (E ,F)

is a regular Dirichlet form having C∞
0 (Rd) as its core (see [21]). Define

N(x,A) := ν(A− x), N(x,{∂}) = 0 for A ∈ B(Rd), x ∈Rd, and Ht = t. By

[19, Theorem 19.2(i)], we have

N(x,A) =Ex

[ ∑
0<s≤1

1A(Xs −Xs−)
]

A ∈ B(Rd);

hence, (N,H) becomes a Lévy system ofX. Further, we assume that ν(dy) =

f(|y|)dy, where f is a Borel function satisfying∫ ∞

c
f(r)rd+1 dr <∞ for some c > 0.(5.14)

Equation (5.14) is not satisfied for f(r) = A(d,−α)
2 r−d−α, where α ∈]0,2[,

A(d,−α) :=
α2d+αΓ( d+α

2
)

2d+1πd/2Γ(1−α
2
)
, the case of symmetric α-stable processes, but is

satisfied for processes with finite range jumps, or processes with jumps expo-

nentially decayed, and so on. More concretely, (5.14) is satisfied for relativis-

tic symmetric α-stable processes with mass m > 0 by setting

f(r) = A(d,−α)
2 r−d−αΨ(m1/αr), where Ψ(r) := I(r)/I(0) with I(r) :=∫∞

0 s
d+α
2

−1e−
s
4
− r2

s ds satisfies Ψ � e−r(1 + rd+α−1) at r = ∞. Let u ∈
CLip(Rd). Then under (5.14),

sup
x∈K

∫
Gc

(
u(x)− u(y)

)2
f
(
|x− y|

)
dy <∞(5.15)

for any compact set K and its relatively compact open neighborhood G;

hence, u ∈ F†
loc (equivalently, (u(·) − u)2 ∈ J ). Then there exists Mu ∈

(M[[0,ζ[[
loc )as such that Mu

t − Mu
t− = u(Xt) − u(Xt−) t < ζ Px-a.s. for q.e.

x ∈ Rd. We set Nu := Γ(Mu) ∈ Nc,loc. By Theorem 5.2, for each f ∈ Floc,
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Mu, Nu, f ∗ Mu and f ∗ Nu can be regarded as PrAFSs with common

reversible defining sets (Ξt)t>0 such that for T > 0, ω ∈ ΞT with T < ζ(ω)

and t ∈ [0, T ],

Mu
t (rTω) =−(Mu)T−

(T−t)−(ω)− 2(Nu)TT−t(ω),

Nu
t (rTω) = (Nu)TT−t(ω),

(f ∗Mu)t(rTω) =−(f ∗Mu)T−
(T−t)−(ω)− 2(f ∗Nu)TT−t(ω)

−
∑

T−t≤s<T

f
(
Xs(ω)

)
− f
(
Xs−(ω)

)(
u
(
Xs(ω)

)
− u
(
Xs−(ω)

))
,

(f ∗Nu)t(rTω) = (f ∗Nu)TT−t(ω).

Under (5.14), each coordinate function ui(x) := xi (i = 1,2, . . . , d) satis-

fies (5.15). We set Mt := (Mu1
t , . . . ,Mud

t ), and we set Nt := (Nu1
t , . . . ,Nud

t ).

Then we have a Fukushima decomposition by [13, Theorem 4.2] (see also

[14, Theorem 1.2]):

Xt −X0 =Mt +Nt for all t ∈ [0, ζ[

Px-a.s. for q.e. x ∈Rd; and a Lyons–Zheng decomposition by Corollary 5.3:

Xt −X0 =
1

2
Mt −

1

2
(MT− ◦ rT −M(T−t)− ◦ rT ) for all t ∈ [0, T ]

Px-a.s. on {T < ζ} for q.e. x ∈Rd.

§6. Proofs of Theorems 5.1 and 5.2

Recall that Ω consists of rcll paths. First we show that any PCAF can

be regarded as a continuous reversible PrAFS.

Lemma 6.1. Every PCAF A can be regarded as a continuous reversible

PrAFS with reversible defining sets (Ξt)t>0 and for ω ∈ ΞT with T < ζ(ω),

At(rTω) =AT
T−t(ω) for all t ∈ [0, T ]. If the Revuz measure μ of A has finite

total mass, then A can be taken to be a finite continuous reversible PrAFS.

Moreover, A can be extended to be a continuous PrAF with some defining

sets Ξ−
t (⊃ Ξt), Ξ

−(⊃ Ξ), and Â defined as in (4.1) is a PrAF ∗ with defining

sets Ξ̂t := r−1
t (Ξ−

t ), Ξ̂ :=
⋂

t>0 Ξ̂t.
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Corollary 6.1. For M,N ∈
◦

M (resp., M,N ∈M[[0,ζ[[
loc ), 〈M,N〉 can be

regarded as a finite continuous (resp., continuous) reversible PrAFS having

a family of reversible defining sets (Ξt)t>0, and for ω ∈ ΞT with T < ζ(ω),

〈M,N〉t(rTω) = 〈M,N〉TT−t(ω) for all t ∈ [0, T ]. Moreover, 〈M,N〉 can be

extended to be a continuous PrAF with some defining sets Ξ−
t (⊃ Ξt), Ξ

−(⊃
Ξ), and ̂〈M,N〉 defined as in (4.1) is a PrAF ∗ with defining sets Ξ̂t :=

r−1
t (Ξ−

t ), Ξ̂ :=
⋂

t>0 Ξ̂t.

Proof of Lemma 6.1. The last assertion follows from Lemma 4.3 with

Remark 4.3. So we prove only the first assertion of Lemma 6.1. First, we

suppose that A is a PCAF whose Revuz measure μ belongs to S0. We can

reconstruct A as a PrAFS having reversible defining sets in the following

way. As in [8, proof of Theorem 5.5.1], let u be a nonnegative finite Borel

E -quasicontinuous m-version of U1μ such that nRn+1u(x) ↑ u(x), n→∞ for

x ∈E \N3, and u(x) = 0 x ∈N3 for some properly exceptional set. We set

An
t (ω) :=

∫ t
0 gn(Xs(ω))ds, and set Ãn

t (ω) :=
∫ t
0 e

−s dAn
s (ω) for ω ∈Ω, where

gn(x) := n(u(x)− nRn+1u(x))(≥ 0), x ∈E \N3, and gn(x) := 0, x ∈N3. In

view of [20, Proposition 4.22(iv)], there exists an exceptional set N1 such

that

Px

({
s ∈]0, ζ[

∣∣Xs �=Xs−
}
is at most countable

)
= 1

for x ∈E \N1. Taking a common properly exceptional set N including N3

and N1, we can set

Ωt :=
{
ω ∈Ω

∣∣Xs(ω) ∈E \N for s ∈]0, t [ and

Xs−(ω) ∈E \N for s ∈ ]0, t[
}
.

(6.1)

Then Ωt ∈ Ft is an rt-reversible set. Since N is properly exceptional, we

have Px(Ωt) = 1 for x ∈E \N . Further, we set

Ξt(A
n) :=

{
ω ∈Ωt

∣∣∣ ∫ t

0
gn
(
Xs(ω)

)
ds <∞ and

{
s ∈]0, t[

∣∣Xs(ω) �=Xs−(ω)
}
is countable

}
.

Then An is a finite continuous PrAFS with the reversible defining set Ξt(A
n)

of An, and for ω ∈ ΞT (A
n) with T < ζ(ω), An

t (rTω) = (An)TT−t(ω) for t ∈
[0, T ]. We observe that the (pre-)t-equivalence between ω1 and ω2 together

with ω1 ∈ Ξt(A
n) implies that ω2 ∈ Ξt(A

n). In the same way as [8, proof of

Theorem 5.2.2], there exists a subsequence {nk} such that Ank converges
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uniformly on each compact interval Px-a.s. for x ∈ E \ Ñ , where Ñ is an

adequate properly exceptional set. Note that uniform convergence for Ãn

is equivalent to that for An, because Ãn
t = e−tAn

t +
∫ t
0 e

−sAn
s ds and An

t =

etÃn
t −
∫ t
0 e

sÃn
s ds. We further set

Ξt(A) :=
{
ω ∈

∞⋂
k=1

Ξt(A
nk)
∣∣∣Ank(ω) converges uniformly on [0, t]

}
,

and we set At(ω) := limk→∞Ank
t (ω) for ω ∈ Ω. Then, by Lemma 4.4, A is

a PrAFS having the reversible defining set Ξt(A), and for ω ∈ ΞT (A) with

T < ζ(ω), At(rTω) =AT
T−t(ω) for t ∈ [0, T ]. Next we prove the general case.

Let A be a PCAF with Revuz measure μ ∈ S. Then there exists an E -nest
{Fn} of closed sets such that 1Fnμ ∈ S0. Let A

(n) be a PCAF which is also

a finite continuous PrAFS having a reversible defining set Ξt(A
(n)) with an

exceptional set Nn whose Revuz measure is 1Fnμ ∈ S0. We know that for

n < � there is an exceptional set Nn,
 such that A
(n)
t =A

(
)
t for all t < τFn ,

Px-a.s. for x ∈E \Nn,
. Note that

Px

(
lim
n→∞

σE\Fn
≥ ζ
)
=Px

(
lim
n→∞

σ̂E\Fn
≥ ζ
)
= 1

holds for x ∈ E \ N0 for some properly exceptional set N0 in view of [8,

Theorem A.2.3].

Choose a properly exceptional set N containing all Nn, n ∈N ∪ {0} and

Nn,
, n, � ∈N with n < �. We set

Ξt(A) :=
{
ω ∈Ωt ∩

∞⋂
n=1

Ξt(A
(n))
∣∣∣ there exists n ∈N such that

t < σE\Fn
(ω)∧ σ̂E\Fn

(ω),A(n)
s (ω) =A(
)

s (ω)

holds for all s ∈ [0, t] and n < �
}
,

where Ωt is the set for N as in (6.1), and for ω ∈ ΞT (A) we reset At(ω) :=

A
(n)
t (ω), t ∈ [0, T ] if σE\Fn−1

(ω) ≤ t < σE\Fn
(ω), n ∈ N, and At(ω) :=

Aσ(ω)−(ω) if t ≥ σ(ω) := limn→∞ σE\Fn
(ω). Note that, for ω ∈ Ξt(Y ), t <

σE\Fn
(ω) (resp., t < σ̂E\Fn

(ω)) implies that t < σ̂E\Fn
(rtω) (resp., t <

σE\Fn
(rtω)). Then A is a continuous PrAFS having the reversible defin-

ing set Ξt(A), and for ω ∈ ΞT (A) with T < ζ(ω), At(rTω) = AT
T−t(ω) for

t ∈ [0, T ].
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Finally, suppose that the Revuz measure μ of A has total mass. Then

Ex[At]<∞ for each t ∈ [0,∞[ for q.e. x ∈E; hence, Px(At <∞ for all t ∈
[0,∞[) = 1 for q.e. x ∈ E. So Ξ̃t(A) := {ω ∈ Ξt(A) | At(ω) < ∞} forms a

reversible defining set for A. This implies that A is a finite continuous

PrAFS.

Next we show that any MAF of finite energy and CAF of zero energy

appearing in the Fukushima decomposition can be regarded as finite rcll

reversible PrAFSs with reversible defining sets.

Lemma 6.2. Take u ∈ Fe, let Mu ∈
◦

M be the MAF of finite energy,

and let Nu ∈ Nc be the CAF of zero energy appearing in the Fukushima

decomposition for u. Then Mu (resp., Nu) can be regarded as a finite

rcll (resp., finite continuous) reversible PrAFS with a family of common

reversible defining sets (Ξt(u))t>0 such that, for ω ∈ ΞT (u) with T < ζ(ω),

Mu
t (rTω) = −(Mu)T−

(T−t)−(ω) − 2(Nu)TT−t(ω) and Nu
t (rTω) = (Nu)TT−t(ω).

Moreover, for f,u ∈ Fe with f ∈ L2(E;μ〈Mu〉), f ∗Mu (resp., Γ(f ∗Mu))

can be regarded as a finite rcll (resp., finite continuous) reversible PrAFS

with a family of common reversible defining sets (Ξt(f,u))t>0 such that, for

ω ∈ ΞT (f,u) with T < ζ(ω),

(f ∗Mu)t(rTω) =−(f ∗Mu)T−
(T−t)−(ω)

− [Mf ,Mu]T−
(T−t)−(ω)− 2

(
f ∗ Γ(Mu)

)T
T−t

(ω)
(6.2)

and Γ(f ∗Mu)t(rTω) = Γ(f ∗Mu)TT−t(ω).

Corollary 6.2. Take M ∈
◦

M, and take f ∈ Fe ∩ L2(E;μ〈M〉). Then

Γ(M), f ∗Γ(M), Γ(f ∗M), and 〈Mf,c+Mf,j ,M c+M j+K〉 can be regarded

as finite continuous reversible PrAFSs with a family of common reversible

defining sets (Ξt(u))t>0 such that, for ω ∈ ΞT (u) with T < ζ(ω)

and t ∈ [0, T ], Γ(M)t(rTω) = Γ(M)TT−t(ω) and (f ∗ Γ(M))t(rTω) =

(f ∗ Γ(M))TT−t(ω).

Proof. Applying Lemma 6.2 to (3.2), we first obtain the assertion for

Γ(M). The second assertion is clear from the first assertion with (3.4) and

Corollary 6.1.

Proof of Lemma 6.2. We prove only the latter assertion. The proof of

the former one is easy. We first prove for the case u = R1g with Borel

https://doi.org/10.1215/00277630-3335905 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-3335905


126 K. KUWAE

measurable g ∈ L2(E;m) and f ∈ (Fe)b. In this case, Nu =Γ(Mu) is a CAF

of locally bounded variation. In particular, from [18, Theorem 3.1], the Fisk–

Stratonovich integral∫ t

0
f(Xs) ◦ dAu

s =

∫ t

0
f(Xs−)dA

u
s +

1

2
[Mf ,Mu]t

is a semimartingale on [0,∞[ under Px for q.e. x ∈ E. Set tni := iT/2n,

i = 0,1, . . . ,2n. Then {tni } forms a subdivision of [0, T ]. For simplicity, we

write ti = tni . We may assume that Xti = Xti− (hence, Mu
ti = Mu

ti−), i =
0,1, . . . ,2n, n ∈N, Px-a.s. for q.e. x ∈E.

By [10, Proposition 4.44 and Theorem 4.47 in Chapter I], we see that

sup
t∈[0,T ]

∣∣∣2n−1∑
i=0

(
f(Xti+1∧t)− f(Xti∧t)

)
(Mu

ti+1∧t −Mu
ti∧t)− [Mf ,Mu]t

∣∣∣,
sup

t∈[0,T ]

∣∣∣2n−1∑
i=0

(
f(Xti+1∧t)− f(Xti∧t)

)
(Nu

ti+1∧t −Nu
ti∧t)
∣∣∣,

sup
t∈[0,T ]

∣∣∣2n−1∑
i=0

f(Xti)(M
u
ti+1∧t −Mu

ti∧t)−
∫ t

0
f(Xs−)dM

u
s

∣∣∣,
and

sup
t∈[0,T ]

∣∣∣2n−1∑
i=0

f(Xti)(N
u
ti+1∧t −Nu

ti∧t)−
∫ t

0
f(Xs)dN

u
s

∣∣∣
converge to 0 in Px-probability for q.e. x ∈ E. Note that s �→ f(Xs−) is

bounded left-continuous. In particular,

t �→
2n−1∑
i=0

f(Xti+1∧t) + f(Xti)

2
(Au

ti+1∧t −Au
ti∧t)

uniformly converges to
∫ t
0 f(Xs−)dAu

s + 1
2 [M

f ,Mu]t on [0, T ] in Px-

probability for q.e. x ∈E. By way of the usual diagonal argument, we can

construct a suitable subsequence {nk} (we write it {n} again for simplicity)

such that the above Riemann sums uniformly converge on [0, T ] Px-a.s. for

q.e. x ∈E. Let (Ξt)t>0 be the common reversible defining sets of Mu, Nu,

and 〈Mf,c+Mf,j ,Mu,c+Mu,j〉, which admits an exceptional set. Let ΩT be
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the set analogously defined as in (6.1) for an adequate properly exceptional

set N containing all exceptional sets that appeared so far in this proof. Set

ΞT (f,u) :=
{
ω ∈ΩT ∩ΞT (u)

∣∣∣
2n−1∑
i=0

f
(
Xti+1∧t(ω)− f

(
Xti∧t(ω)

))(
Mu

ti+1∧t(ω)−Mu
ti∧t(ω)

)
,

2n−1∑
i=0

f
(
Xti+1∧t(ω)− f

(
Xti∧t(ω)

))(
Nu

ti+1∧t(ω)−Nu
ti∧t(ω)

)
,

2n−1∑
i=0

f
(
Xti(ω)

)(
Mu

ti+1∧t(ω)−Mu
ti∧t(ω)

)
, and

2n−1∑
i=0

f
(
Xti(ω)

)(
Nu

ti+1∧t(ω)−Nu
ti∧t(ω)

)
uniformly converge on [0, T ];

Mu
t (ω)

(
resp., Mu

t−(ω)
)
is right-continuous

(resp., left-continuous); and Nu
t (ω) is continuous on [0, T ]

}
.

Then (ΞT (f,u))T>0 is a family of reversible defining sets. Indeed, by setting

it := [2nt/T ] and jt := 2n − it and noting that tj = T − t2n−j , we see that

tit ≤ t < tit+1 and tjt−1 < T − t ≤ tjt . We then have that, for ω ∈ ΞT with

T < ζ(ω),(2n−1∑
i=0

f
(
Xti(ω)

)(
Mu

ti+1∧t(ω)−Mu
ti∧t(ω)

))
◦ rT

=

2n−1∑
i=0

f
(
X(T−ti)−(ω)

)(
Mu

ti+1∧t(rTω)−Mu
ti∧t(rTω)

)
=

it−1∑
i=0

f
(
X(T−ti)−(ω)

)(
Mu

ti+1
(rTω)−Mu

ti(rTω)
)

+ f
(
X(T−tit )−(ω)

)(
Mu

t (rTω)−Mu
tit
(rTω)

)
=

it−1∑
i=0

f
(
X(T−ti)−(ω)

)(
Mu

(T−ti+1)−(ω)−Mu
(T−ti)−(ω)

)
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+ 2

it−1∑
i=0

f
(
X(T−ti)−(ω)

)(
Nu

T−ti+1
(ω)−Nu

T−ti(ω)
)

+ f
(
X(T−tit )−(ω)

)(
Mu

(T−t)−(ω)−Mu
(T−tit )−

(ω)
)

+ 2f
(
X(T−tit )−(ω)

)(
Nu

T−t(ω)−Nu
T−tit

(ω)
)

=

2n−1∑
j=jt

f
(
Xtj+1−(ω)

)(
Mu

tj−(ω)−Mu
tj+1−(ω)

)

+ 2
2n−1∑
j=jt

f
(
Xtj+1−(ω)

)(
Nu

tj (ω)−Nu
tj+1

(ω)
)

+ f
(
Xtjt−(ω)

)(
Mu

(T−t)−(ω)−Mu
tjt−(ω)

)
+ 2f

(
Xtjt−(ω)

)(
Nu

(T−t)(ω)−Nu
tjt
(ω)
)

=

2n−1∑
j=0

f
(
Xtj+1−(ω)

)(
Mu

tj−(ω)−Mu
tj+1−(ω)

)

+ 2
2n−1∑
j=0

f
(
Xtj+1−(ω)

)(
Nu

tj (ω)−Nu
tj+1

(ω)
)

−
2n−1∑
j=0

f
(
Xtj+1∧(T−t)−(ω)

)(
Mu

tj∧(T−t)−(ω)−Mu
tj+1∧(T−t)−(ω)

)

− 2

2n−1∑
j=0

f
(
Xtj+1∧(T−t)−(ω)

)(
Nu

tj∧(T−t)(ω)−Nu
tj+1∧(T−t)(ω)

)
+
(
f
(
Xtjt−(ω)

)
− f
(
X(T−t)−(ω)

))(
Mu

tjt−1−(ω)−Mu
(T−t)−(ω)

)
+ 2
(
f
(
Xtjt−(ω)

)
− f
(
X(T−t)−(ω)

))(
Nu

tjt−1
(ω)−Nu

T−t(ω)
)
,

which uniformly converges to

−(f ∗Mu)T−
(T−t)−(ω)− 2(f ∗Nu)TT−t(ω)− [Mf ,Mu]T−

(T−t)−(ω).

We will explain why the last two terms uniformly converge to 0. Since

t �→ Mu
t−(ω) (M0−(ω) := Mu

0 (ω) = 0) is left-continuous on [0, T ], we can

extend Mt−(ω) as a left-continuous function on [0,∞[ by putting Mu
s−(ω) :=
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Mu
t−(ω) for s≥ t. Then we see that Mu

t−(ω) is uniformly left-continuous on

[0, T ] in the following sense: for any ε > 0, there exists δ > 0 such that

sup
t∈[0,T ]

sup
s∈]t−δ,t[∩[0,T ]

∣∣Mu
t−(ω)−Mu

s−(ω)
∣∣< ε.

The proof of this uniform left-continuity is the same as in the proof of the

uniform continuity of continuous functions on compact sets. Noting that

0< (T − t)− tjt−1 < T/2n and 0< tjt − (T − t)< T/2n, the last two terms

in the right-hand side uniformly converge to 0 with respect to t ∈ [0, T ].

The uniform convergences of

t �→
(2n−1∑

i=0

f
(
Xti(ω)

)(
Nu

ti+1∧t(ω)−Nu
ti∧t(ω)

))
◦ rT ,

t �→
(2n−1∑

i=0

(
f
(
Xti+1∧t(ω)

)
− f
(
Xti∧t(ω)

))(
Mu

ti+1∧t(ω)−Mu
ti∧t(ω)

))
◦ rT ,

t �→
(2n−1∑

i=0

(
f
(
Xti+1∧t(ω)

)
− f
(
Xti∧t(ω)

))(
Nu

ti+1∧t(ω)−Nu
ti∧t(ω)

))
◦ rT

are similarly confirmed. Hence we, have the rT -reversibility of ΞT (f,u).

Then, for such ω ∈ ΞT (f,u) with T < ζ(ω), we have (6.2) for all t ∈ [0, T ].

Therefore, we obtain the desired formula (5.1).

Next we prove the case for u ∈ F , f ∈ (Fe)b. Taking un = R1gn, gn :=

n(u − nRn+1u) ∈ L2(E;m) ∩ B(E). We know that f ∗ Mun ∈
◦

M is e-

convergent to f ∗Mu in
◦

M. Moreover, let un,k := un − uk, and for ν ∈ S00,

we see that

Eν

[
sup

t∈[0,T ]

∣∣∣ ∑
0<s≤t

(
f(Xs)− f(Xs−)

)(
un,k(Xs)− un,k(Xs−)

)∣∣∣]
≤Eν

[ ∑
0<s≤T

(
f(Xs)− f(Xs−)

)2]1/2
×Eν

[ ∑
0<s≤T

(
un,k(Xs)− un,k(Xs−)

)2]1/2
≤Eν

[
〈Mf,d〉T

]1/2
Eν

[
〈Mun,k,d〉T

]1/2
≤ (1 + T )‖U1ν‖∞e(Mf,d)1/2e(Mun,k,d)1/2 → 0 as n,k→∞.
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Then one can construct a common subsequence {nk} such that f ∗Munk

(resp., [Mf ,Munk ], f ∗ Γ(Munk )) uniformly converges to f ∗ Mu (resp.,

[Mf ,Mu], f ∗Mu) on [0, T ], Px-a.s. for q.e. x ∈E. We can take a common

subsequence so that both convergences hold. Set

ΞT :=
{
ω ∈

∞⋂
k=1

ΞT (f,unk
)∩ΞT

(
f ∗ Γ(Munk )

) ∣∣∣ (f ∗Munk )·(ω),

f ∗ Γ(Munk )·(ω) and [Mf ,Munk ]·(ω) uniformly converge on [0, T ]
}
,

where Ξt(f ∗ Γ(Munk )) is the reversible defining set of f ∗ Γ(Munk ). Then

(ΞT )T>0 is a family of reversible defining sets. Indeed, by use of Corol-

lary 6.1, we have Γ(f ∗Munk )(rTω) = Γ(f ∗Munk )TT−t(ω) and

f ∗Munk
t (rTω) =−(f ∗Munk )T−

(T−t)−(ω)

− 2
(
f ∗ Γ(Munk )

)T
T−t

(ω)− [Mf ,Munk ]T−
(T−t)−(ω),

which means that rTω ∈ ΞT and that (6.2) holds for ω ∈ ΞT with T < ζ(ω).

The strategy of the proof for the case f ∈ (Fe)b, u ∈ Fe is similar to this

proof by E -approximating un ∈ F . For general f ∈ Fe ∩ L2(E;μ〈Mu〉) with

u ∈ Fe, we can approximate f by fn := (−n)∨ f ∧ n ∈ (Fe)b. Then fn ∗Mu

is e-convergent to f ∗Mu. The rest is similar.

Proofs of Theorems 5.1 and 5.2.

(Step 1): Proof of Theorem 5.2 with (5.1) for M ∈
◦

Md, f ∈ Fe ∩
L2(E;μ〈M〉).

In this case, M =Md. For any ν ∈ S0, we have

Eν

[ ∑
0<s≤t

∣∣∣f(Xs) + f(Xs−)

2
1E×Eϕ
(Xs−,Xs)

∣∣∣]
≤ 1

2
Eν

[ ∑
0<s≤t

∣∣(f(Xs)− f(Xs−)
)
1E×Eϕ
(Xs−,Xs)

∣∣]
+Eν

[ ∑
0<s≤t

∣∣f(Xs−)1E×Eϕ
(Xs−,Xs)
∣∣]

≤ 1

2
Eν

[ ∑
0<s≤t

(
f(Xs)− f(Xs−)

)2]1/2
Eν

[ ∑
0<s≤t

ϕ2(Xs−,Xs)1{s<ζ}
]1/2
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+ �Eν

[∫ t

0

∣∣f(Xs)
∣∣ ∫

E
ϕ2(Xs, y)N(Xs,dy)dHs

]
≤ 1

2
Eν

[
〈Mf,j〉t

]1/2
Eν

[
〈M j〉t

]1/2
+ �Eν

[〈
|f | ∗M j ,M j

〉
t

]
<∞

and, by [8, Lemma 5.1.9],

Eν

[ ∑
0<s≤t

∣∣∣f(Xs) + f(Xs−)

2
1E×Eϕ
(Xs−,Xs)

∣∣∣]
≤ 1

2
Eν

[ ∑
0<s≤t

∣∣(f(Xs−)− f(Xs)
)
1E×Eϕ
(Xs−,Xs)

∣∣]
+Eν

[ ∑
0<s≤t

∣∣f(Xs)1E×Eϕ
(Xs−,Xs)
∣∣]

≤ 1 + t

2
‖U1ν‖∞e(Mf,j)1/2e(M j)1/2 + �(1 + t)‖U1ν‖∞e

(
|f | ∗M j ,M j

)
<∞.

By [13, Lemma 4.1(2)], we have that Γ(K
)t = f ∗Γ(K
)t = 0 holds for all t ∈
[0, ζ[ Px-a.s. for q.e. x ∈E. In particular, Γ(K
) and f ∗ Γ(K
) are PCAFs

by setting Γ(K
)t = f ∗Γ(K
)t = 0 for t≥ ζ. Hence, they can be regarded as

PrAFS with the common reversible defining set ΞT (Γ(K

))∩ΞT (f ∗Γ(K
))

in view of Lemma 6.1; in particular, ω ∈ ΞT (Γ(K

))∩ΞT (f ∗Γ(K
)) implies

that Γ(K
)t(ω) = f ∗ Γ(K
)t(ω) = 0 for all t ∈ [0, T ]. Then

ΞT (f, �) :=
{
ω ∈ΩT ∩ΞT

(
Γ
(
f ∗ (Md,
 +K
)

))
∩ΞT

(
〈Mf ,Md,
 +K
〉

)
∩ΞT

(
Γ(K
)

)
∩ΞT

(
f ∗ Γ(K
)

) ∣∣∣{
s ∈]0, T ]

∣∣Xs(ω) �=Xs−(ω)
}
is countable,

t �→
∑

0<s≤t

f
(
Xs−(ω)

)
1E×Eϕ


(
Xs−(ω),Xs(ω)

)
, and

t �→
∑

0<s≤t

f
(
Xs−(ω)

)
1E×Eϕ


(
Xs−(ω),Xs(ω)

)
are absolutely uniformly convergent on [0, T ]

}
is an rT -reversible defining set of f ∗ (Md,
 +K
), f ∗ Γ(Md,
 +K
), and

[Mf ,Md,
+K
]. Here ΩT is analogously defined as in (6.1) for an adequate
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properly exceptional set N containing all exceptional sets that appeared so

far in this proof. Then for ω ∈ ΞT (f, �) with T < ζ(ω) and t ∈ [0, T ], we have

f ∗ Γ(K
)t(ω) = 0, rTω ∈ ΞT (f, �), and

(f ∗Md,
)t(rTω) =−
(
f ∗ (Md,
 +K
)

)T−
(T−t)−(ω)− 2

(
f ∗ Γ(Md,
)

)T
T−t

(ω)

− [Mf ,Md,
 +K
]T−
(T−t)−(ω).

Since f ∗Md,
 (resp., f ∗K
, Md,
, K
) is e-convergent to f ∗Md (resp.,

f ∗K, Md, K), by [18, Theorem 3.2] there exists a common subsequence

{�k} such that f ∗Md,
k , K
k , and f ∗ Γ(Md,
k) uniformly converge to f ∗
Md, f ∗K, and f ∗ Γ(Md), and [Mf ,Md,
k +K
k ] uniformly converges to

[Mf ,Md +K] on each compact subinterval of [0,∞[ Px-a.s. for q.e. x ∈E.

Then for such subsequence {�k} we can define the following defining set with

an adequate properly exceptional N containing all countable exceptional

sets that appeared so far in the proof:

ΞT (f ∗Md) :=
{
ω ∈ΩT ∩

∞⋂
k=1

ΞT (f, �k)
∣∣∣ all f ∗ (Md,
k +K
k)(ω),

f ∗ Γ(Md,
k +K
k)(ω) and

[Mf ,Md,
k +K
k ](ω) uniformly converge on [0, T ]
}
,

where ΩT is the set defined for N as in (6.1). We see that ΞT (f ∗Md) is

an rT -reversible set. Then, for ω ∈ ΞT (f ∗Md) with T < ζ(ω), we have, for

t ∈ [0, T ], f ∗ Γ(K)t(ω) = 0 and

(f ∗Md)t(rTω) =−
(
f ∗ (Md +K)

)T−
(T−t)−(ω)

− 2
(
f ∗ Γ(Md)

)T
T−t

(ω)− [Mf ,Md +K]T−
(T−t)−(ω),

which shows (5.1).

(Step 2): Proof of Theorem 5.2 with (5.1) for M ∈
◦

Mc and f ∈ Fe ∩
L2(E;μ〈M〉).

In this case, M =M c. Consider a subfamily

◦
Mc

0:=
{
f ∗Mu,c ∈

◦
Mc
∣∣ f ∈ F ∩C0(E), u ∈ F

}

https://doi.org/10.1215/00277630-3335905 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-3335905


STOCHASTIC CALCULUS WITH TIME REVERSAL 133

of
◦

Mc. In view of [8, proof of Lemma 5.6.1], we have that
◦

Mc
0 is dense in

(
◦

Mc,e). Hence, for any M ∈
◦

Mc, we can take an e-convergent sequence

{Mn} ⊂
◦

Mc
0 to M . Note that Mn = fn ∗Mun,c for some fn ∈ F ∩ C0(E),

un ∈ F . Then there exists a subsequence {nk} such that Mnk
t uniformly

converges on [0, T ], Px-a.s. for q.e. x ∈ E. By [18, Theorem 3.2], we have

that there exists a subsequence {nk} such that Γ(Mnk)t uniformly converges

to Γ(M)t on [0, T ], Px-a.s. for q.e. x ∈ E. Take a common subsequence so

that both convergences hold. Set

ΞT (f ∗M c) :=
{
ω ∈

∞⋂
k=1

ΞT (fnk
, unk

)∩ΞT

(
Γ(Mnk)

) ∣∣∣Mnk(ω) and

Γ(Mnk)(ω) uniformly converge on [0, T ]
}
,

where ΞT (fnk
, unk

) is the intersection of the reversible defining sets of fnk
∗

Munk and fnk
∗Munk

,d, which are defined in the proof of Lemma 6.2 and in

the proof for the case that M ∈
◦

Md and ΞT (Γ(M
nk)) is the reversible defin-

ing set of Γ(Mnk). Then (ΞT (f ∗M c))T>0 is a family of common reversible

defining sets of M and Γ(M). Indeed, by use of Corollary 6.2, we have

Γ(Mnk)(rTω) = Γ(Mnk)TT−t(ω) and

Mnk
t (rTω) =Ank

t (rTω)− Γ(Mnk)t(rTω)

=−(Ank)TT−t(ω)− Γ(Mnk)TT−t(ω)

=−(Mnk)TT−t(ω)− 2Γ(Mnk)TT−t(ω),

which means that rTω ∈ ΞT , Mt(rTω) = −MT
T−t(ω) − 2Γ(M)TT−t(ω), and

Γ(M)t(rTω) = Γ(M)TT−t(ω).

Therefore, we obtain the formula (5.1) for the case M ∈
◦

Mc and f =

1E . Replacing M ∈
◦

Mc with f ∗M ∈
◦

Mc, f ∈ L2(E;μ〈M〉), we obtain the

formula (5.1) for all t ∈ [0, T ].

(Step 3): Proof of Theorem 5.2 with (5.1) for M ∈
◦

M and f ∈ Fe ∩
L2(E;μ〈M〉).

In this case, we have M = M c +Md, and we employ the rT -reversible

defining set ΞT (f ∗M) := ΞT (f ∗Md)∩ΞT (f ∗M c). We easily get (5.1) for

all t ∈ [0, T ].

(Step 4): Finally, we prove Theorems 5.1 and 5.2 for the general case.
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Proof of Theorem 5.1. Take a Y ∈ M[[0,ζ[[
loc and its corresponding jump

function ϕ ∈ J . Let {Gn} be a nest of q.e. finely open Borel sets satisfying

1Gn×Eϕ ∈
◦
J , and set Y

(n)
t := 1Gn ∗Y ∈

◦
M. Recall that Px(limn→∞ σE\Gn

≥
ζ) = Px(limn→∞ σ̂E\Gn

≥ ζ) = 1 holds for x ∈ E \ N0 for some properly

exceptional set N0 in view of [8, Theorem A.2.3].

Take the reversible defining sets (Ξt(Y
(n))) and Ξ(Y (n)) =

⋂
t>0Ξt(Y

(n))

of Y (n). Note that those are still defining sets for Γ(Y (n)) as shown in Steps

1–3; that is, Γ(Y (n)) is a PrAFS with defining sets Ξt(Y
(n)), Ξ(Y (n)).

Let Nn be the exceptional set for Ξ(Y (n)). Then for n < � there exists

an exceptional set Nn,
 such that Y
(n)
t = Y

(
)
t for all t < τGn Px-a.s. for

x ∈ E \Nn,
. Choose a properly exceptional set N containing all Nn, n ∈
N∪ {0}, and Nn,
 (1≤ n < �). We set

ΞT (Y ) :=
{
ω ∈ΩT ∩

∞⋂
n=1

ΞT (Y
(n))
∣∣∣ there exists n ∈N such that

T < σE\Gn
(ω)∧ σ̂E\Gn

(ω),

Y
(n)
t (ω) = Y

(
)
t (ω) holds for all t ∈ [0, T ] and � > n

}
,

where ΩT is the set for N as in (6.1). Note that, for ω ∈ ΞT (Y ) with T <

ζ(ω),

Y
(n)
t (rTω) =−(Y (n))T−

(T−t)−(ω)− 2
(
Γ(Y (n))

)T
T−t

(ω),

Γ(Y (n))t(rTω) = Γ(Y (n))TT−t(ω).

For ω ∈ ΞT (Y ) with T < ζ(ω), there is an n with T < τGn(ω), and set

Yt(ω) := Y
(n)
t (ω) for all t ∈ [0, T ]. Next we prove the rT -reversibility of

ΞT (Y ). First note that, for ω ∈ ΞT (Y ), T < σE\Gn
(ω) (resp., T < σ̂E\Gn

(ω))

implies that T < σ̂E\Gn
(rTω) (resp., T < σE\Gn

(rTω)). Then, we see that

ΞT (Y ) is the reversible defining set for Y .

Finally, we prove the F ∗
t -measurability of Yt ◦ rt. Take C ∈ B(R). Since

ζ(rtω) =∞ for t < ζ(ω),

(Yt ◦ rt)−1(C)∩Ξt(Y )∩ {t < ζ}

=

∞⋃
n=1

(Yt ◦ rt)−1(C)∩Ξt(Y )∩ {t < ζ} ∩ {t < τGn ◦ rt}
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=

∞⋃
n=1

(Y
(n)
t ◦ rt)−1(C)∩Ξt(Y )∩ {t < ζ} ∩ {t < τGn ◦ rt}

=

∞⋃
n=1

(Y
(n)
t ◦ rt)−1(C)∩Ξt(Y )∩ {t < ζ} ∩ {t < σ̂E\Gn

} ∈ F ∗
t .

As noted before, we have (Yt ◦ rt)
−1(C) ∩ Ξt(Y ) ∩ {t ≥ ζ} = ∅, or = Ω

and any subset of Ξt(Y )c is F ∗
t -measurable. Therefore, we obtain the F ∗

t -

measurability of Yt ◦ rt.

Proof of Theorem 5.2 with (5.1). Take an M ∈ (M[[0,ζ[[
loc )∗, and take f ∈

Ḟloc. Let {Gn} be a nest of q.e. finely open Borel sets satisfying 1Gn×Eϕ ∈
◦
J ,

1E×Gnϕ ∈
◦
J and M

(n)
t := 1Gn ∗M ∈

◦
M, and take {fn} ⊂ Fb such that, for

each n ∈ N, f = fn q.e. on Gn. Recall that M
j
:= −K −M j . We see that

1Gn ∗M j ∈
◦

M for each n ∈ N. Let K(n) ∈
◦

M be the purely discontinuous

locally square integrable MAF whose jump function is given by −1Gn×E(ϕ+

ϕ). We then see that Kt =K
(n)
t t < τGn Px-a.s. for q.e. x ∈E.

Take the rT -reversible defining set ΞT (fn ∗ M (n)) ∩ ΞT (fn ∗ K(n)) and

the defining set Ξ(fn ∗ M (n)) ∩ Ξ(fn ∗ K(n)) of fn ∗ (M (n) + K(n)). Note

that ΞT (fn ∗ (M (n) +K(n))) := ΞT (fn ∗M (n)) ∩ ΞT (fn ∗K(n)) and Ξ(fn ∗
(M (n)+K(n))) := Ξ(fn ∗M (n))∩Ξ(fn ∗K(n)) are still common defining sets

for fn ∗ Γ(M (n)), fn ∗ Γ(K(n)), and [Mfn ,M (n) +K(n)].

Let Nn be the exceptional set for Ξ(fn ∗M (n)) ∩ Ξ(fn ∗K(n)). Then for

n < � there exists an exceptional set Nn,
 such that (fn ∗ (M (n) +K(n)))t =

(f
∗(M (
)+K(
)))t, fn∗Γ(M (n))t = f
∗Γ(M (
))t, and [Mfn ,M (n)+K(n)]t =

[Mf� ,M (
)+K(
)]t for all t < τGn Px-a.s. for x ∈E \Nn,
. Choose a properly

exceptional set N containing all Nn, n ∈N and Nn,
, n < �. We set

ΞT (f ∗M) :=
{
ω ∈ΩT ∩

∞⋂
n=1

ΞT

(
fn ∗ (M (n) +K(n))

) ∣∣∣
there exists n ∈N such that T < σE\Gn

(ω)∧ σ̂E\Gn
(ω), and(

fn ∗ (M (n) +K(n))
)
t
(ω) =

(
f
 ∗ (M (
) +K(
))

)
t
(ω),(

fn ∗ Γ(M (n))
)T
T−t

(ω) =
(
f
 ∗ Γ(M (
))

)T
T−t

(ω) and

[Mfn ,M (n) +K(n)]t(ω) = [Mf� ,M (
) +K(
)]t(ω)

hold for all t ∈ [0, T ] and � > n
}
,
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where ΩT is the set for N as in (6.1). Note that, for ω ∈ ΞT (f ∗M) with

T < ζ(ω),⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(fn ∗M (n))t(rTω) =−(fn ∗ (M (n) +K(n)))T−
(T−t)−(ω)

− [Mfn ,M (n) +K(n)]T−
(T−t)−(ω)

− 2(f ∗ Γ(M (n)))TT−t(ω),

[Mfn ,M (n) +K(n)]t(rTω) =−[Mfn ,M (n) +K(n)]
T−
(T−t)−(ω),

f ∗ Γ(M (n))t(rTω) = f ∗ Γ(M (n))TT−t(ω).

(6.3)

For ω ∈ ΞT (f ∗M) with T < ζ(ω), there is an n with T < τGn(ω), and

set (f ∗M)t(ω) := (fn ∗M (n))t(ω), (f ∗K)t(ω) := (fn ∗K(n))t(ω), [M
f ,M +

K]t(ω) := [Mfn ,M (n)+K(n)]t(ω), and (f ∗Γ(M))t(ω) := (fn ∗Γ(M (n)))t(ω)

for all t ∈ [0, T ]. Then from (6.3) we see that ΞT (f ∗M) is the reversible

defining set for f ∗M . We obtain the desired formula (5.1) for all t ∈ [0, T ].

The proof of F ∗
t -measurability of At ◦ rt for each A = f ∗M , f ∗ Γ(M),

f ∗ Γ(K), [f(X),M +K] is similar to the proof of Theorem 5.1.

Proof of (5.2). It suffices to substitute K for M . Recall that K ∈
(M[[0,ζ[[

loc )∗, Γ(K) = 0, and M
j
:=−K −M j . Put M̃ j := 1

2(M
j +M

j
). Then

K =−2M̃ j . Since the jump function of K is symmetric on E ×E, we have

K̃j = K, which implies that the purely discontinuous locally square inte-

grable MAF K̂ from K, which is analogously defined like K obtained from

M , is given by −2K. Hence, K + K̂ =−K. Therefore, we obtain (5.2).

§7. Application: Boundary value problem for infinitesimal gener-

ator of perturbed semigroup

A smooth measure μ is said to be of Kato class if its associated PCAF A

satisfies ‖E·[At]‖∞ → 0 as t→ 0. Denote by K(X) the family of all smooth

measures of Kato class, and set K0(X) := {μ ∈K(X) | μ(E)<∞}. Let M

and M̂ be two locally square integrable local MAFs on [[0, ζ[[, that is,M,M̂ ∈
M[[0,ζ[[

loc , and let A be a CAF locally of bounded variation with (signed)

Revuz measure μ. More precisely, A has a representation A = A1 − A2,

where A1 and A2 are PCAFs with Revuz measures μ1 and μ2, respectively.

We set μ := μ1−μ2. Then the signed smooth measure μ has a Jordan–Hahn

decomposition μ= μ+−μ−, and set |μ| := μ++μ−. Similarly to [3, proof of

Theorem 3.1], there is a nest {Fk} such that 1Fk
(μ〈M〉+μ〈M̂〉+ |μ|) ∈K0(X)

for all n.
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Our main results in this section concern the form perturbation Q of (E ,F)

defined on
⋃

kFFk
by

Q(f, g) = E(f, g)−
∫
E
f(x)μ〈Mg,M̂〉(dx)

−
∫
E
g(x)μ〈Mf ,M〉(dx)−

∫
E
f(x)g(x)μ(dx)(7.1)

−
∫
E×E

f(y)g(x)ϕ(x, y)ψ(y,x)N(x,dy)μH(dx).

Here ϕ ∈ J and ψ ∈ J are Borel functions defined on E∂ ×E∂ , vanishing

on the diagonal and on (E × {∂}) ∪ ({∂} × E), and ϕ,ψ > −1 on E × E;

these are the “jump functions” associated with M and M̂ :

Mt −Mt− = ϕ(Xt−,Xt), M̂t − M̂t− = ψ(Xt−,Xt) for every t ∈]0, ζ[,

Px-a.s. for q.e. x ∈E by [14, Theorem 1.1] (see [13, Theorem 2.1]).

Now define, for 0≤ t < ζ,

(7.2) Zt =Exp
(
Mt +Aμ

t + 〈M c, M̂ c〉t
)
·Exp(M̂t) ◦ rt ·

(
1 +ψ(Xt,Xt−)

)
,

wherein Exp denotes the familiar Doléans–Dade stochastic exponential: if

Y is a semimartingale on [[0, ζ[[ with Y0 = 0, then L=Exp(Y ) is the unique

solution of the stochastic differential equation

Lt = 1+

∫ t

0
Ls− dYs, t < ζ

and is given explicitly by the formula

Exp(Yt) = exp
(
Yt −

1

2
〈Y c, Y c〉t

) ∏
s∈]0,t]

(1 +ΔYs)e
−ΔYs , t ∈ [0, ζ[.

Now, we define

(7.3) Qtf(x) :=Ex

[
Ztf(Xt)

]
.

The statement of Theorem 5.1 yields the following.

Lemma 7.1. Let Y ∈M[[0,ζ[[
loc be a locally square integrable MAF on [[0, ζ[[,

and let φ ∈ J be its corresponding jump function. Suppose that φ is bounded

above and that φ >−1 on E ×E. Then Lt := Exp(Yt) is an rcll-PrMFS on

[[0, ζ[[, and Lt ◦ rt(1 + φ(Xt,Xt−)) is an rcll-PrMF ∗ on [[0, ζ[[.
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Corollary 7.1. The functional Zt is a PrMF ∗ on [[0, ζ[[. In particular,

Zt+s = Zt(Zs ◦ θt) holds for all s, t > 0 with t+ s < ζ Px-a.s. for q.e. x ∈E.

Remark 7.1. In [4] we deduce only that Zt is an rcll-PrMF admitting

an m-null set, which is derived from [4, Theorem 2.18]. The content of

Corollary 7.1 is a refinement of this observation.

Proof of Lemma 7.1. It suffices to prove the case for −1+ ε≤ φ≤ 1/ε on

E × E for some ε ∈]0,1[. Note that there exists C(ε) ∈ [1/2,∞[ such that

|x − log(1 + x)| ≤ C(ε)x2 for x ∈ [−1 + ε,1/ε]. Then we see that N(|φ −
log(1 + φ)|)μH ∈ S and that N((φ− log(1 + φ))2)μH ∈ S. In particular,

M
(φ)
t :=

∑
0<s≤t

{
φ(Xs−,Xs)− log

(
1 + φ(Xs−,Xs)

)}
−
∫ t

0
N
(
φ− log(1 + φ)

)
(Xs)dHs

is a locally square integrable MAF on [[0, ζ[[. Let At := logLt. Theorem 5.1

and Corollary 6.1 together imply that

At = Yt −
1

2
〈Y c〉t −M

(φ)
t −

∫ t

0
N
(
φ− log(1 + φ)

)
(Xs)dHs

can be regarded as an rcll reversible PrAFS with At−At− = log(1+φ(Xt−,
Xt)) for all t > 0 Px-a.s. for q.e. x ∈ E. Applying Lemma 4.3 to A, Ât =

At ◦ rt + log(1 + φ(Xt,Xt−)) is an rcll-PrAF∗ on [[0, ζ[[; hence, Lt ◦ rt(1 +
φ(Xt,Xt−)) = exp Ât is an rcll-PrMF∗ on [[0, ζ[[.

Proof of Corollary 7.1. The assertion follows from Lemma 7.1, provided

that ϕ and ψ are bounded above and below away from −1. Next we prove

the assertion for general ϕ > −1 and ψ > −1. For � ≥ 2, we set ϕ
 :=

1[−1+1/
,
](ϕ)1]−1/
,1/
[c(ϕ)ϕ (resp., ψ
 := 1[−1+1/
,
](ψ)1]−1/
,1/
[c(ψ)ψ), and

let Md,
 (resp., M̂d,
) be its corresponding purely discontinuous locally

square integrable MAF on [[0, ζ[[. We can define Z

t , as well as Zt, by replac-

ing Md, M̂d, ϕ, ψ with Md,
, M̂d,
, ϕ
, ψ
, respectively. Recall that we

can construct a subsequence {�k} of {�} such that Md,
k (resp., M̂d,
k) uni-

formly converges to Md (resp., M̂d) on each compact subinterval of [0, ζ[

Px-a.s. for q.e. x ∈E. Consequently, Z
k uniformly converges to Z on each

compact subinterval of [0, ζ[ Px-a.s. for q.e. x ∈E. Therefore, the assertion

follows from this observation.
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Recall that a signed smooth measure ν is said to be of Hardy class

(denoted by ν ∈H(X)) if there are constants δ > 0 and γ ≥ 0 such that∫
E
u(x)2|ν|(dx)≤ δ · E(u,u) + γ · (u,u)m for every u ∈ F ,(7.4)

where |ν| := ν+ + ν− denotes the total variation measure of ν. Note that

every ν ∈H(X) is a Radon measure. It is known thatK(X)⊂H(X), and for

ν ∈K(X) the constant δ satisfying (7.4) can be taken to be arbitrarily small.

Also, we write Fb for the class of (m-essentially) bounded elements of F .

For μ〈M〉, μ〈M̂〉, |μ| ∈H(X), there exists C > 0 depending on μ〈M〉, μ〈M̂〉, μ

such that |Q(f, g)| ≤CE1(f, f)1/2E1(g, g)1/2 for any f, g ∈ F .

The following theorem is proved in [3].

Theorem 7.1 ([3, Theorem 3.1]). Assume that μ〈M〉, μ〈M̂〉 and |μ| are all

in the Hardy class H(X), and that there are constants α> 0 and c > 1 such

that

c−1E1(u,u)≤Qα(u,u)≤ cE1(u,u) for u ∈ Fb.

Then Qtf(x), f ∈ L2(E;m) ∩ B(E) defined by (7.6) coincides with the

strongly continuous semigroup in L2(E;m) associated with (Q,F).

As a consequence of the above result, the following result is also estab-

lished in [3, Theorem 3.1] and [5, Theorem 1.7].

Theorem 7.2 (special case of [5, Theorem 1.7]). Suppose that M ∈
(M[[0,ζ[[

loc )∗ is a locally square integrable local MAF on [[0, ζ[[ of X with jump

function ϕ ∈ J∗ such that μ〈M〉 ∈H(X). Define

Q(f, g) := E(f, g) + 1

2
μ〈Mfg+Mfg,κ,M〉(E) for f, g ∈ Fb.

Suppose that there are constants α> 0 and c > 1 so that

c−1E1(u,u)≤Qα(u,u)≤ cE1(u,u) for u ∈ Fb.

Then P tf(x) := Ex[e
Λ(M)tf(Xt)], f ∈ L2(E;m) ∩ B(E) is the symmetric

semigroup associated with (Q,F), where

Λ(M)t :=−1

2

(
Mt +Mt ◦ rt +ϕ(Xt,Xt−)

)
, 0< t < ζ.
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For u ∈ Fe, M
u is an MAF of X having finite energy with antisymmetric

jump function u(y)− u(x) and Λ(Mu) =Nu. The following corollary is an

immediate consequence of Theorem 7.2.

Corollary 7.2. Suppose that u ∈ Fe with μ〈Mu〉 ∈H(X). Define

Q(f, g) := E(f, g) + E(fg,u) for f, g ∈ Fb.

Suppose that there are constants α> 0 and c > 1 so that

c−1E1(u,u)≤Qα(u,u)≤ cE1(u,u) for u ∈ Fb.

Then P tf(x) :=Ex[e
Nu

t f(Xt)], f ∈ L2(E;m) ∩B(E) is a strongly continu-

ous symmetric semigroup in L2(E;m) associated with (Q,F).

Our first main theorem in this section is the following.

Theorem 7.3. For f ∈ L2(E;m) ∩ B(E), all semigroups Qtf and P tf

that appeared in Theorems 7.1 and 7.2 and Corollary 7.2 are E-quasicon-
tinuous.

To prove Theorem 7.3, we need the following lemma.

Lemma 7.2. Suppose that μ〈M〉, μ〈M̂〉, μ ∈K0(X) hold. Then we have

sup
s∈[0,t]

Zs <∞ Px-a.s. on {t < ζ} for q.e. x ∈E.

Proof. It suffices to show that sups∈[0,t]Exp(M
d
s )Exp(M̂

d
s )◦rs(1+ψ(Xs−,

Xs)) < ∞ Px-a.s. for q.e. x ∈ E. First, we assume that |ϕ| and |ψ| are

bounded below by ε > 0. Under this lower bound, we have M,M̂ ∈
◦

M and

N(|ϕ|)μH ,N(|ψ|)μH ∈K0(X), because of ε|ϕ| ≤ ϕ2, ε|ψ| ≤ ψ2. Moreover,

since
∫
E N(ψ̄2)dμH =

∫
E N(ψ2)dμH = 2e(M̂) < ∞, there exists an MAF

M̂
d

∈
◦

M such that ΔM̂
d

t = ψ̄(Xt−,Xt) and 〈M̂
d

〉t =
∫ t
0 N(ψ̄2)(Xs)dHs for

all t ∈ [0,∞[ Px-a.s. for q.e. x ∈E. Since

Exp(Md
t )≤ exp(Md

t ) = exp
(∑
s≤t

ϕ(Xs−,Xs)−
∫ t

0
N(ϕ)(Xs)dHs

)
,

we have sups∈[0,t]Exp(M
d
s ) < ∞ Px-a.s. for q.e. x ∈ E. Let {Fn} be an

E -nest such that 1FnN(ψ̄2)μH ∈K0(X) for each n ∈N. Similarly, by Theo-

rem 5.2, the following holds Px-a.s. on for {t < ζ} for q.e. x ∈E:

Exp(M̂d
t ) ◦ rt

(
1 +ψ(Xt,Xt−)

)
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≤ exp(M̂d
t ◦ rt)

(
1 +ψ(Xt,Xt−)

)
= exp

(
M̂

d

t− − 2Γ(M̂d)t
)(
1 + ψ(Xt,Xt−)

)
≤ exp

(
−2Γ(M̂d)t +

∑
s≤t

ψ̄(Xs−,Xs)−
∫ t

0
N(ψ̄)(Xs)dHs

)
.

Then we see that sups∈[0,t]Exp(M̂
d
s ) ◦ rs(1 + ψ(Xs,Xs−)) < ∞ Px-a.s. on

{t < τFn} for q.e. x ∈E for each n ∈ N, because of 1FnN(|ψ̄|)μH ∈K0(X).

Consequently, we have

sup
s∈[0,t]

Exp(M̂d
s )◦rs

(
1+ψ(Xs,Xs−)

)
<∞ Px-a.s. on {t < ζ} for q.e. x ∈E.

Finally, we prove the assertion without the boundedness for ϕ, ψ. Set

ϕ
 := 1]−1/
,1/
[c(ϕ)ϕ, and set ψ
 := 1]−1/
,1/
[c(ψ)ψ. Let M (
) ∈
◦

M (resp.,

M̂ (
) ∈
◦

M) be an MAF of finite energy whose continuous part and killing

part coincide with M c, Mκ (resp., M̂ c, M̂κ), respectively, and its jump

function is given by ϕ
 (resp., ψ
). Let M̂
d

∈
◦

M (resp., M̂
d,(
)

∈
◦

M) be an

MAF of finite energy whose continuous part and killing part coincide with

M̂ c, M̂κ and its jump function is given by ψ̄ (resp., ψ̄
). Note that e(M (
)−
M) = 1

2

∫
E N((ϕ
 − ϕ)2)(x)μH(dx)→ 0, that e(M̂ (
) − M̂) = 1

2

∫
E N((ψ
 −

ψ)2)(x)μH(dx) = 1
2

∫
E N((ψ̄
− ψ̄)2)(x)μH(dx) = e(M̂

d,(
)

−M̂
d

)→ 0 as �→
∞, and that there exists a subsequence {�k} such that M (
k) →M , M̂ (
k) →
M̂ , M̂

d,(
)

→ M̂
d

uniformly converge on each compact interval Px-a.s. for

q.e. x ∈ E. Moreover, by [18, Theorem 3.2], Γ(M̂ (
k)) → Γ(M̂) uniformly

converges on each compact interval Px-a.s. for q.e. x ∈ E. These conver-

gences imply that sups∈[0,t]Exp(Ms) <∞ Px-a.s. for q.e. x ∈ E and that

sups∈[0,t]Exp(M̂s) ◦ rs(1 + ψ(Xs,Xs−))<∞ Px-a.s. on {t < ζ} for q.e. x ∈
E. Therefore, we obtain the assertion.

Proof of Theorem 7.3. The proof of the E -quasicontinuity of P tf is sim-

ilar to the proof of that for Qtf , so we prove only for the case Qtf .

(Step 1): We first assume that μ〈M〉, μ〈M̂〉, μ ∈K0(X).

Set Sαf(x) :=Ex[
∫∞
0 e−αtZtf(Xt)dt] for α> 0 and f ∈ L2(E;m)∩B(E),

and take α0 > 0 with Qα0(u,u)≥ c−1E1(u,u) for u ∈ F . From Theorem 7.1

([3, Theorem 3.1]), we know that Sαf ∈ F and Qα(Sαf, g) = (f, g)m for
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α > α0 and g ∈ F . We first prove the E -quasicontinuity of Sαf under the

condition f ∈ L2(E;m) ∩Bb(E) and α > α0. By Corollary 7.1, for nonneg-

ative f ∈ L2(E;m)∩Bb(E), the following holds under Px for q.e. x ∈E:

e−αtZtSαf(Xt) =EXt

[∫ ∞

0
e−α(t+s)ZtZsf(Xs)ds

]
=Ex

[∫ ∞

0
e−α(t+s)Zt(Zs ◦ θt)f(Xt+s)ds

∣∣∣Ft

]
=Ex

[∫ ∞

t
e−αsZsf(Xs)ds

∣∣∣Ft

]
=Ex

[∫ ∞

0
e−αsZsf(Xs)ds

∣∣∣Ft

]
−
∫ t

0
e−αsZsf(Xs)ds.

Owing to Lemma 7.2, the second term of the right-hand side is finite Px-

a.s. on {t < ζ} for q.e. x ∈E; hence, the right-hand side is right-continuous

at t ∈ [0, ζ[ under Px for q.e. x ∈ E. Consequently, Sαf(Xt) is so at all

t ∈ [0,∞[, provided that α> α0.

The right continuity of t �→ Sαf(Xt) under Px for q.e. x ∈ E implies

that Sαf is [0,∞]-valued q.e. finely continuous; hence, it is [0,∞]-valued

E -quasicontinuous for α> α0. Since Sαf has an E -quasicontinuous m-version

S̃αf , we see that Sαf = S̃αf q.e.; hence, Sαf is q.e. finite and E -quasicon-
tinuous.

Next we prove the E -quasicontinuity of Sαf for f ∈ L2(E;m)∩B(E) and

α > α0. We may assume that f ≥ 0 on E. Set fn := f ∧ n for n ∈ N. Then

{Sαfn}n∈N is E -bounded. Indeed, for α> α0,

c−1E1(Sαfn, Sαfn)≤Qα(Sαfn, Sαfn) = (fn, Sαfn)m ≤ ‖fn‖2‖Sαfn‖2
≤ ‖fn‖22/(α− α0)≤ ‖f‖22/(α− α0),

because (α−α0)‖Sαfn‖22 ≤Qα(Sαfn, Sαfn) = (fn, Sαfn)m ≤ ‖fn‖2‖Sαfn‖2.
We easily see that Sαfn converges to Sαf as n→∞ q.e. Then Lemma 2.2

yields the E -quasicontinuity of Sαf for α> α0.

(Step 2): Finally, we prove the assertion for the general case.

We can construct an E -nest {Fn} of closed sets such that 1Fn(μ〈M〉 +

μ〈M̂〉+ |μ|) ∈K0(X), and there exists ρn ∈ F such that Γ(1FnM̂
c)t =Nρn

t −∫ t
0 ρn(Xs)ds for t ∈ [0, τFn [ Px-a.s. for q.e. x ∈ E, ρn|Fn ∈ C(Fn) and

1Fnμ〈ρn〉 ∈ K0(X) for each n ∈ N (see [3, proof of Theorem 3.1]). Let En
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be the fine interior of Fn. Then 1En(μ〈M〉 + μ〈M̂〉 + |μ|) ∈ K0(X
En). The

conclusion of [3, proof of Theorem 3.1] tells us that, for all α > α0, S
(n)
α f

defined by S
(n)
α f(x) :=Ex[

∫ τEn
0 e−αtZtf(Xt)] for f ∈ L2(E;m) ∩ B(E) sat-

isfies S
(n)
α f ∈ FEn and Qα(S

(n)
α f, g) = (f, g)m for g ∈ FEn . By Step 1, S

(n)
α f

is EEn -quasicontinuous on En, hence E -quasicontinuous on En for each

n ∈ N; consequently, it is E -quasicontinuous on Ek for all n > k in view

of Lemma 2.1.

Noting the E -boundedness of S(n)
α f with respect to n for each f ∈ L2(E;

m)∩B(E), Lemma 2.2 implies the E -quasicontinuity of Sαf , f ∈ L2(E;m)∩
B(E). The proof of the E -quasicontinuity of Qtf for f ∈ L2(E;m) ∩B(E)

is similar to [8, proof of Theorem 4.2.3(ii)], so we omit it.

Finally, we show the second main theorem of this section. From now on,

we assume that X is a transient strong Feller process, μ〈M〉, μ〈M̂〉, |μ| ∈
K∞(X), and that (E ,F) is irreducible (see [8, p. 171] for the definition of

irreducibility). Here K∞(X) := {ν ∈K(X) | limn→∞ ‖R1Kc
n
ν‖∞ = 0 for any

increasing sequence of compact sets {Kn}} is the family of Green-tight

measures of Kato class. It is known that ν ∈K∞(X) satisfies ‖Rν‖∞ <∞.

We suppose that√
2‖Rμ〈M〉‖∞ +

√
2‖Rμ〈M̂〉‖∞ +

∥∥R|μ|
∥∥
∞

+ 2
√∥∥RN(ϕ2)μH

∥∥
∞

√∥∥RN(ψ2)μH

∥∥
∞ < 1.

Here Rν(x) := Ex[A
ν
ζ ], where Aν is a PCAF associated with the smooth

measure ν. Then Q can be extended to Fe×Fe, and there exists c > 1 such

that {
E(u,u)≤ cQ(u,u),

|Q(u, v)| ≤ cE(u,u)1/2E(v, v)1/2
for any u, v ∈ Fe.(7.5)

In particular, (Q,F) is a strongly sectorial coercive closed form on L2(E;m)

with lower bound 0. If Γ is a nonempty closed subspace of F (resp., Fe for

α= 0), then [17, Chapter I, Theorem 2.6] tells us that, for any u ∈ F (resp.,

u ∈ Fe) and each α > 0 (resp., α= 0), there exists unique Πα
Γu ∈ F (resp.,

Π0
Γu ∈ Fe) such that Qα(u−Πα

Γu,w) = 0 (resp., Q(u−Π0
Γu,w) = 0) for any

w ∈ Γ. Let D be a nonempty open subset of E such that E \D is non-m-

polar, and we set B := E \D. For u ∈ F (resp., u ∈ Fe), we write uαB :=

u−Πα
FD

u (resp., uB := u−Π0
(FD)e

u) and call it the α-reduced function of u
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on B. Since Qα(u
α
B, u

α
B) ≤ 2Qα(u,Π

α
FD

u) + 2Qα(u,u) (resp., Q(uB, uB) ≤
2Q(u,Π(FD)eu)+2Q(u,u)) for u ∈ F (resp., u ∈ Fe), we have Qα(u

α
B, u

α
B)≤

CQα(u,u), where C is the constant independent of α ∈ [0,1]. In the same

way as [17, Chapter III. Proposition 1.5(iii)], uαB is the smallest function v

such that e−αtQt(v ∧ uαB)≤ v ∧ uαB m-a.e. for all t > 0 and v ≥ u q.e. on B.

For q.e.-defined Borel function u, we set Qα
Bu(x) :=Ex[e

−ατDZτDu(XτD) :

τD < ζ] for α≥ 0 if its expectation has meaning, and we write QBu :=Q0
Bu.

Lemma 7.3. For each u ∈ F and α > 0, Qα
Bu is an E-quasicontinuous

m-version of uαB. In particular,

Qα(Q
α
Bu, v) = 0 for any v ∈ FD.

Moreover, for u ∈ Fe, QBu is an E-quasicontinuous m-version of uB. In

particular,

Q(QBu, v) = 0 for any v ∈ (FD)e.

Proof. First we assume that u = Sαf ∈ F for f ∈ L2(E;m) ∩ B(E) for

α> 0. We may assume that f ≥ 0 on E. From this, we see that e−αtQtQ
α
Bu≤

Qα
Bu m-a.e. for all t > 0. It suffices to prove that

Qα
Bu≤ uαB m-a.e.,(7.6)

Qα
Bu= u q.e. on B.(7.7)

Indeed, under (7.6) we have e−αtQt(Q
α
Bu ∧ uαB) ≤ Qα

Bu ∧ uαB m-a.e. for all

t > 0, and we have Qα
Bu≥ u q.e. on B, which implies that Qα

Bu≥ uαB m-a.e.,

as mentioned above; consequently, Qα
Bu = uαB m-a.e. The proof of (7.7) is

easy, and the proof of (7.6) is similar to the proof for [8, (4.3.3)], so we omit

it.

Next, we only assume that u ∈ F ∩ B(E). Fix α > 0. For n ∈ N and

gn := n(I − nSn+α)u ∈ L2(E;m) ∩ B(E), we have un := Sαgn = nSn+αu (∈
F)→ u as n→∞ in Qα, and equivalently in Qβ for β > 0, hence in E1. By
taking a subsequence, we have the convergence un → u as n→∞ q.e., so

Qα
Bun →Qα

Bu as n→∞ q.e. Putting un,k := un−uk and gn,k := gn− gk, we

then have that

Qα(Q
α
Bun,k,Q

α
Bun,k) =Qα(Sαgn,k − SD

α gn,k, Sαgn,k − SD
α gn,k)

= (gn,k, Sαgn,k − SD
α gn,k)m

≤ (gn,k, Sαgn,k)m =Qα(un,k, un,k)→ 0
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as n,k→∞. Here SD
α f(x) :=Ex[

∫ τD
0 e−αsZsf(Xs)ds]. Therefore, we obtain

Qα
Bu ∈ F and Qα(Q

α
Bu, v) = 0 for v ∈ FD for each α > 0. The E -quasicon-

tinuity of Qα
Bu follows from that e−αtQtQ

α
Bu → Qα

Bu as t → 0 q.e. and

{e−αtQtQ
α
Bu} is E1-bounded.

We now prove the latter assertion. Suppose first that u ∈ F . We then have

that Q(Qα
Bu,Q

α
Bu) ≤ Qα(Q

α
Bu,Q

α
Bu) ≤ CQα(u,u), where C is a constant

independent of α ∈]0,1]. From this, we have limα→0 ‖αQα
Bu‖2 = 0 and

c−1E(u−Qα
Bu,u−Qα

Bu)≤Q(u−Qα
Bu,u−Qα

Bu)

≤Qα(u−Qα
Bu,u−Qα

Bu)≤ 2CQα(u,u),

which implies that u − QBu ∈ (FD)e and Q(QBu, v) = 0 for v ∈ FD by

use of the Banach–Saks theorem with limα→0(αQ
α
Bu, v)m = 0. The proof of

the assertion for u ∈ Fe is similar to [8, proofs of Lemma 4.3.2 and Theo-

rem 4.3.2], so we omit it.

Theorem 7.4. Suppose that u ∈ Fe is Q-harmonic on D in the sense

that Q(u, v) = 0 for any v ∈ FD. Then we have

u(x) =Ex

[
ZτDu(XτD)

]
q.e. x ∈D.(7.8)

Proof. We easily see that Q(u − QBu, v) = 0 for any v ∈ (FD)e. Since

u−QBu ∈ (FD)e, we have E(u−QBu,u−QBu) = 0; hence, u=QBu q.e.

on D under (7.5).

Corollary 7.3. Suppose that (E ,F) is a local Dirichlet form on L2(E;m)

and that u ∈ Floc is Q-harmonic on D in the sense that Q(u, v) = 0 for

v ∈ FD ∩C0(D). Then we have (7.8).

Proof. Let G be an open set such that D ⊂ G ⊂ G ⊂ E. We can take

uG ∈ F with u= uG m-a.e. on G. Then Q(u, v) =Q(uG, v) = 0 for v ∈ FD ∩
C0(D) implies that uG(x) =Ex[ZτDuG(XτD)] q.e. x ∈D. Since Px(XσDc /∈
∂D,σDc <∞) = 0 q.e. x ∈D, we obtain the assertion.

Corollary 7.4. Suppose that (E ,F) is a local Dirichlet form on L2(E;

m). Then Ex[ZτD : τD < ζ]<∞ for q.e. x ∈D.

Proof. Let G be an open set such that D ⊂ G ⊂ G ⊂ E. Taking eG ∈
F with eG = 1 q.e. on G, we have Ex[ZτD : τD < ζ] = QBeG(x) < ∞ q.e.

x ∈D.
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Remark 7.2. In [7], the Dirichlet boundary value problem for an ellip-

tic operator on Euclidean space associated with a quadratic form obtained

from lower-order perturbations is solved for bounded Lipschitz domains.

Our condition (7.5), which can be regarded as conditions for coefficients of

the elliptic operator in the framework of [7], is different from what is treated

in [7].

Example 7.1. Let X be the d-dimensional Brownian motion, and let

(E ,H1(Rd)) be the associated Dirichlet form on L2(Rd). Here H1(Rd) is

the 1-order Sobolev space, and E(f, g) := (1/2)D(f, g) = (1/2)
∫
Rd ∇f(x) ·

∇g(x)dx for f, g ∈H1(Rd). Assume that d≥ 3, and fix a bounded domainD.

Let b, b̂ :Rd →Rd be measurable vector fields, and let c :Rd →R be a mea-

surable function such that |b|2, |̂b|2, |c| ∈ Lp(Rd)∩L1(Rd) for p > d/2. Then

|b|2(x)dx, |̂b|2(x)dx, |c|(x)dx ∈ K(X) ∩ L1(Rd) ⊂ K∞(X), where K∞(X)

is the family of Green-tight measures of Kato class (see [23]). Since any

ν ∈K∞(X) is Green-bounded by [2, Proposition 2.2], we have

sup
x∈Rd

Ex

[∫ ∞

0

(
|b|2 + |̂b|2 + |c|

)
(Xs)ds

]
<∞.

By scaling if necessary, we can take b, b̂, c so that√
2
∥∥∥E·
[∫ ∞

0
|b|2(Xs)ds

]∥∥∥
∞

+

√
2
∥∥∥E·
[∫ ∞

0
|̂b|2(Xs)ds

]∥∥∥
∞

+
∥∥∥E·
[∫ ∞

0
|c|(Xs)ds

]∥∥∥
∞

< 1.

Define Mt :=
∫ t
0 b(Xs)dXs, M̂t :=

∫ t
0 b̂(Xs)dXs, and At :=

∫ t
0 c(Xs)ds. Then

the Revuz measures associated with 〈M〉, 〈M̂〉, and A are given by

μ〈M〉(dx) = |b|2(x)dx, μ〈M̂〉(dx) = |̂b|2(x)dx, and μ(dx) = c(x)dx. Consider

the quadratic from (Q,H1(Rd)) obtained by

Q(f, g) =
1

2
D(f, g)−

∫
Rd

f(x)
〈
∇g(x) · b̂(x)

〉
dx

−
∫
Rd

g(x)
〈
∇f(x) · b(x)

〉
dx−

∫
Rd

f(x)g(x)c(x)dx

for f, g ∈H1(Rd). We obtain that, if u ∈H1
loc(R

d) satisfies Q(u, v) = 0 for

any v ∈ C∞
0 (D), then u(x) = Ex[ZτDu(XτD)] q.e. x ∈D by Corollary 7.3.
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Here Zt (t ∈ [0,∞[) is defined by Zt := exp(At +Mt − 1
2〈M〉t) exp(M̂t ◦ rt −

1
2〈M̂〉t).
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