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Generalized Jordan Semiderivations in
Prime Rings

Vincenzo De Filippis, Abdellah Mamouni, and Lahcen Oukhtite

Abstract. Let R be a ring and let g be an endomorphism of R. The additive mapping d:R — R is
called a Jordan semiderivation of R, associated with g, if

d(x*) = d(x)x + g(x)d(x) = d(x)g(x) +xd(x) and d(g(x)) =g(d(x))
for all x € R. The additive mapping F: R — R is called a generalized Jordan semiderivation of R,
related to the Jordan semiderivation d and endomorphism g, if

F(x*) = F(x)x + g(x)d(x) = F(x)g(x) + xd(x) and F(g(x)) = g(F(x))
forall x € R. In this paper we prove that if R is a prime ring of characteristic different from 2, g an en-
domorphism of R, d a Jordan semiderivation associated with g, F a generalized Jordan semideriva-
tion associated with d and g, then F is a generalized semiderivation of R and d is a semiderivation
of R. Moreover, if R is commutative, then F = d.

1 Introduction

Throughout this paper R will be an associative prime ring of characteristic different
from 2, and Z(R) will denote the center of R. We will write [x, y] for xy — yx. An
additive mapping d:R — R is called a derivation of R, if d(xy) = d(x)y + xd(y)
holds for all pairs x, y € R. The additive mapping d on R is called a Jordan derivation if
d(x*) = d(x)x+xd(x), forall x € R. Obviously, any derivation is a Jordan derivation;
the converse is not true in general. A well-known result of Herstein states that every
Jordan derivation on a prime ring of characteristic different from 2 is a derivation [4].
Later, Bresar [2] gives a generalization of Herstein’s result. More precisely, he proves
that every Jordan derivation on a 2-torsion free semiprime ring is a derivation.

Moreover, the reader can find similar results in literature regarding other types of
additive mappings. For instance, an additive map F:R — R is called a generalized
derivation if there exists a derivation d of R such that F(xy) = F(x)y + xd(y) holds
for all x, y € R. The additive map F is called a generalized Jordan derivation if there
exists a Jordan derivation d of R such that F(x?) = F(x)x + xd(x) for all x € R.
Of course any generalized derivation is a generalized Jordan derivation . In [5] Jing
and Liu prove that any generalized Jordan derivation on a prime ring of characteristic
different from 2 is a generalized derivation (Theorem 2.5).

In this paper we will extend previous results to a class of additive mappings whose
concept covers the ones of derivations and generalized derivations. We first recall that
in [1] Bergen introduces the following definition.
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Definition 1.1  Let g be an endomorphism of R. An additive mapping d of R into
itself is called a semiderivation (associated with g) if, for all x, y € R,

d(xy)=d(x)y+g(x)d(y) =d(x)g(y) +xd(y) and d(g(x))=g(d(x).

In [3] we introduced generalized semiderivations, defined as follows.

Definition 1.2 Let d be a semiderivation of R associated with endomorphism g.
The additive map F on R is a generalized semiderivation of R if, for all x, y € R,

F(xy) = F(x)y +g(x)d(y) = F(x)g(y) + xd(y) and F(g(x))=g(F(x)).

Motivated by the concepts of Jordan derivations and generalized Jordan deriva-
tions, we initiate the concepts of Jordan semiderivations and generalized Jordan semi-
derivation as follows.

Definition 1.3 Let R be a ring, and let g be an endomorphism of R. The additive
mapping d: R — Ris called a Jordan semiderivation of R associated with g if, for x € R,

d(x*) = d(x)x + g(x)d(x) = d(x)g(x) + xd(x) and d(g(x)) = g(d(x))-

Definition 1.4 Let Rbe aring, let g be an endomorphism of R, and let d be a Jordan
semiderivation of R associated with g. The additive mapping F:R — R is called a
generalized Jordan semiderivation of R associated with d and g if, for x € R,

F(x*) = F(x)x + g(x)d(x) = F(x)g(x) + xd(x) and F(g(x)) = g(F(x)).

In this paper we prove the following theorem following the line of investigation of
previous cited results.

Theorem  Let R be a prime ring of characteristic different from 2, let g be an endomor-
phism of R, let d be a Jordan semiderivation associated with g, and let F be a generalized
Jordan semiderivation associated with d and g. Then F is a generalized semiderivation
of R and d is a semiderivation of R. Moreover, if R is commutative, then F = d.

2  Proof of Theorem

In all that follows we will assume R has characteristic different from 2.

Remark 2.1 In order to prove our result we must show the following
(2.1) F(xy) =F(x)y+g(x)d(y), Vx,yeR,
(2.2) F(xy) = F(x)g(y) +xd(y), Vx,y€R.

Notice that proofs of (2.1) and (2.2) are analogous to each other. Thus, without loss of
generality, we will show only that (2.1) holds.

Remark 2.2 We notice that if g is the identity map on R, then F is a Jordan gen-
eralized derivation. In this case, by [5, Theorem 2.5], F is an ordinary generalized
derivation of R, and a fortiori F is a generalized semiderivation of R.
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Lemma 2.3 (F(x)y+g(x)d(y)—F(xy))[x,y]=0forallx,y€cR.

Proof Letx, y € R; then by the definition of F we have
(23) F((x+y)?) =F(x+y)(x+y)+g(x+y)d(x+y)
= F(x*) + F(y*) + F(x)y + g(x)d(y) + F(y)x + g(y)d(x).

On the other hand,

(2.4) F((x+y)2) = F(x*) + F(y*) + F(xy + yx).

Equations (2.3) and (2.4) imply

(2.5) F(xy+yx)=F(x)y+g(x)d(y) + F(y)x + g(y)d(x).

If we replace y with xy + yx in (2.5), we have

G(x,y) = F(x(xy +yx) + (xy+ yx)x)
= F(x)(xy +yx) + g(x)d(xy + yx) + F(xy + yx)x + g(xy + yx)d(x)

and using (2.5),

(2.6) G(x,y) = F(x)(xy+ yx) + g(x)d(x)y + g(x)g(x)d(y)
+g(x)d(y)x + g(x)g(y)d(x) + F(x)yx + g(x)d(y)x
+F(y)x® + g()d(x)x + g(xy + yx)d(x).

Moreover, we can also write

G(x,y) = F(x*y + yx*) + 2F (xyx),
and again using (2.5),
27) G(x,y) = F(x)xy+g(x)d(x)y + g(x)*d(y) + F(y)x*
+g(y)d(x)x + g(y)g(x)d(x) +2F (xyx).

Comparing (2.6) with (2.7) and since char(R) # 2, it follows that

(2.8) F(xyx) = F(x)yx + g(x)d(y)x + g(x)g(y)d(x).

Now replace x with x + z in (2.8), for any z € R, so that

(2.9) F(xyz+zyx)=F(x)yz+g(x)d(y)z+g(x)g(y)d(z)

+F(z)yx + g(z)d(y)x + g(z)g(y)d(x).
In particular, for z = xy,
H(x,y) = F((xy)(xy) + (xy)(yx)),
and using (2.9) we get
(210) H(x,y) =F(x)yxy+g(x)d(y)xy + g(x)g(y)d(xy)
+F(xy)yx +g(xy)d(y)x + g(xy)g(y)d(x).
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On the other hand
(2.11) H(x,y) = F((xy)?) + F(xy*x)
= F(xy)xy + g(xy)d(xy) + F(x)y*x + g(x)d(y)yx
+g(x)g(nd(y)x + g(x)g(y*)d(x).
Comparing (2.10) with (2.11), one has
(212) (F(x)y+g(x)d(y) = F(xy)) (xy - yx) = 0. u

Lemma 2.4  Assume that R is not commutative and let x, y € R be such that [x, y] = 0.
Then F(xy) = F(x)y + g(x)d(y).

Proof We start from (2.12) and replace x with x + z, for any z € R; then

(213) (F(x)y+g(x)d(y)-F(xy))[z y]+(F(2)y+g(2)d(y) - F(zy)) [x, y] = 0.
Analogously, replacing y with y + z in (2.12), it follows that

(2.14) (F(x)y+g(x)d(y) —F(xy)) [x,z]+ ( F(x)z+g(x)d(z) —F(xz)) [x,y]=0
for any x, y,z € R. Now let x, y be such that [x, y] = 0; therefore, by (2.13) we have

(F(x)y+g(x)d(y) - F(xy))[2y1=0, VzeR.
The primeness of R implies easily that if y ¢ Z(R), then F(x)y+g(x)d(y)-F(xy) =
0, as required by the conclusion Lemma 2.4.
Similarly, by (2.14) and [x, y] = 0, one has
(F(x)y+g(x)d(y) - F(xy))[x,2] =0, VzeR,
and if x ¢ Z(R), then F(x)y + g(x)d(y) — F(xy) = 0 follows again.

Thus, we consider the case both x € Z(R) and y € Z(R). Since R is not commuta-
tive, there exists r € Rsuch thatr ¢ Z(R). Hencex+r ¢ Z(R) and [y, x+r] = [y,r] =
0. By the previous argument, we have that

F(x+r)y+g(x+r)d(y)-F((x+r)y)=0
and

E(r)y +¢(r)d(y) - F(ry) =0,
implying that F(x)y + g(x)d(y) — F(xy) = 0. Therefore, in any case

[x,y] =0 == F(xy) = F(x)y + g(x)d(y).

Lemma 2.5 Assume that R is a non-commutative domain. Then F(xy) = F(x)y +
g(x)d(y) forallx,y €R.

Proof By Lemma 2.3, we have that (F(x)y + g(x)d(y) - F(xy))[x, y] = 0 for all
x,y € R. Since R is a domain, for all x, y € R, either F(xy) = F(x)y + g(x)d(y) or
[x, y] = 0. But in this last case, F(xy) = F(x)y + g(x)d(y) follows from Lemma 2.4,
and we are done. [ |
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Convention 2.6 In all that follows, if R is not commutative, then we always assume
that R is not a domain.

Remark 2.7  Assume that d is a Jordan semiderivation of R. Then d(xyx) =
d(x)yx + g(x)d(y)x + g(x)g(y)d(x) forall x, y € R.

Proof This follows by (2.8), with F = d. [ |

Lemma 2.8 Assume that R is not commutative and let x, y € R be such that xy = 0.
Then 0 = F(xy) = F(x)y + g(x)d(y).

Proof In the case where yx = 0, [x, y] = 0, and we conclude by Lemma 2.4. Let
yx # 0. Right multiplying (2.14) by y, since xy = 0, we have

(F(x)y+g(x)d(y))xzy =0 VzeR,

and by the primeness of R we have

(F(x)y+g(x)d(y))x=0.
Replace y with yry, for any r € R, so that

(F(x)yry +g(x)d(yry)) x =0,

and by Remark 2.7 we have
(F(x)y+g(x)d(y))ryx=0 VreR.
Once again by the primeness of R we get F(x)y + g(x)d(y) =0 = F(xy). [ |

Corollary 2.9  Assume that R is not commutative and let x, y € R be such that xy = 0.
Then F(yx) = F(y)x + g(y)d(x).

Proof ByLemma 2.8, F(xy) = F(x)y+g(x)d(y) = 0. On the other hand, by using
equation (2.5),

F(yx) =F(xy+yx) =F(y)x + g(y)d(x). ]

Remark 2.10 Assume that R is not commutative, let d be a Jordan semiderivation
of R, and let x, y € R be such that xy = 0. Then 0 = d(xy) = d(y)x + g(y)d(x).

Proof This follows by Lemma 2.8, with F = d. ]

Lemma 2.11  Assume R is not commutative and let x, y € R be such that xy = 0. Then
F(yxr) = F(yx)r+ g(yx)d(r), forallr € R.

Proof By using equation (2.9), for xy = 0 and for all r € R,

F(rxy+yxr) = F(yxr) = g(r)d(x)y + g(r)g(x)d(y)
+F(y)xr+g(y)d(x)r+g(y)g(x)d(r),
and by Corollary 2.9

F(yxr) = g(r)(d(x)y + g(x)d(y)) + g(y)g(x)d(r) + F(yx)r.
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Hence, applying Remark 2.10, d(x)y + g(x)d(y) = 0, and we conclude that
E(yxr) = g(y)g(x)d(r) + F(yx)r. u
Remark 2.12  Define the following subset of R:
S={aeR:F(ax)=F(a)x+g(a)d(x), VxeR}.

We remark that by Lemma 2.6 one has that ab = 0, which implies ba € S.

Here we fix an element b € R, and introduce the following map ¢,:R — R such
that ¢ (x) = F(xb) — F(x)b — g(x)d(b) for all x € R. We notice that the following
hold:

Gbrc(x) = dp(x) + ¢ (x) Vb,c,x € R;
$p(c) =—¢c(b) Vb,ceR.

We need a few lemmas to prove the main theorem. These results are contained in
the classical paper of Herstein [4], but we prefer to state them for sake of completeness.

Lemma 2.13 LetteS, t¢ Z(R). If y € Rsuch that [t,y] =0, then y € S.
Proof The proofis contained in [4, Lemma 3.8]. [ |
Lemma 2.14 Let x € R such that x> = 0. Then x € S.

Proof Of course we assume x # 0, if not we are done, in particular x ¢ Z(R) Since
x(xr) = 0 for any r € R, then by Lemma 2.11, F(xrx) = F(xr)x + g(xr)d(x). More-
over by Remark 2.12 we also have xrx € S. Finally, since x ¢ Z(R), there exists r € R
such that xrx ¢ Z(R). Hence by [xrx,x] = 0 and Lemma 2.13, it follows x € S.  H

Lemma 2.15 Letx,y € S; then ¢p(a)[x,y] =0, foralla,b e R.
Proof Thisis [4, Lemma 3.10]. [ |
We are now ready to prove our result.

Theorem  Let R be a prime ring of characteristic different from 2, let g be an endomor-
phism of R, let d be a Jordan semiderivation associated with g, and let F be a generalized
Jordan semiderivation associated with d and g. Then F is a generalized semiderivation
of R and d is a semiderivation of R. Moreover, if R is commutative, then F = d.

Proof Our target is to show that ¢,(s) =0 forall s € R.

First, we consider the case where R is not commutative. In light of Lemma 2.5
we also assume R is not a domain. Let z € R be such that z2 = 0. By Lemma 2.14
it follows that z € S. Therefore, for any ¢ € R such that t* = 0, Lemma 2.15 implies
$a(b)[z, t] = 0 for all a, b € R. Right multiplying by z, we get

(2.15) ¢a(b)ztz=0

for all a, b € R and for all square-zero elements z, t € R.
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Moreover, by Lemma 2.3, ¢, (x)[x, y] = 0 holds for all x, y € R. This means that
([x, y]r¢,(x))* = 0, so that [x, y]r¢,(x) € S, for all x, y, r € R. Applying equation
(2.15) yields that, for all a, b, x, y,7,s,t,z € R,

$a(0)([x: 11y (x)) ([2: ts:(2)) ([x: 7]rgy (x)) = 0;
that is,
¢:(2)[x, y]rdy (x)[2 t]RG:(2) [x, y]rey (x) = (0).

By the primeness of R, either ¢,(z)[x, y] = 0 or ¢, (x)[2,t] = 0. In particular, for
z = y one has either 0 = ¢,(y)[x, y] = —¢,(t)[x, y] or ¢, (x)[, t] = 0. On the other
hand, by (2.13), ¢, (t)[x, y] + ¢,(x)[t, ] = 0, and this implies both ¢,(t)[x, y] =
0 and ¢,(x)[t,y] = 0. Therefore, in any case for all x, y,t € R, ¢, (x)[t,y] = 0.
Replacing t with rx, for any r € R, we have ¢,(x)r[x,y] = 0. We recall that, if
[x,y] = 0, then ¢, (x) = 0 follows from Lemma 2.4. Thus ¢, (x)r[x, y] = 0 and the
primeness of R imply ¢, (x) = 0 for all x, y € R.

Finally we consider the case where R is commutative. We recall that, by Remark
2.2, if g is the identity map on R, then we are done. Therefore here we assume again
g is not the identity map on R.

Since d is a generalized Jordan semiderivation associated with d and g, (2.5) yields

2d(xy) =d(x)y+ g(x)d(y) +d(y)x + g(y)d(x) forallx,yeR.
Replacing y by yz, we get
(2.16) 2d(xyz) =d(x)yz+ g(x)d(yz) + d(yz)x + g(yz)d(x) forallx,y,zeR.
On the other hand, (2.9) yields

(217) 2d(xyz) =d(x)yz+g(x)d(y)z + g(x)g(y)d(z)
+d(x)g(y)g(2) +xd(y)g(2) +xyd(z).
Comparing (2.16) with (2.17) we obtain
(x)d(y)z + g(x)g(Y)d(z) + xd(y)g(2) + xyd(2) = g(x)d(yz) + xd(y2)
forall x, y,z € R, so that
(g(x) - x)(d(yz) —d(y)z - g(y)d(z)) =0 forallx,y,zeR.
Since R is a domain and g is not the identity map on R, we conclude that d(yz) =
d(y)z+ g(y)d(z) forall y,z€R.
Now, to prove that F = d, rewriting equation (2.5), we get
2F(xy) = F(x)(y + 8(7)) + (x+ (%)) d(»),
and in particular
(218)  2F(x’y) = F(x*)(y +g(»)) + (x* +g(x*))d(y)
= (F(x)x +g(x)d(x)) (y + () + (2 + g(x*)) d ().
Moreover, by equation (2.8),
(2.19) 2F(x%y) = 2F(x) yx + 2g(x)d(y)x + 2g(x)g(y)d(x).
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Comparing (2.18) with (2.19) it follows that
(2200 F(x)x(g(y) ~y) +d(x)g(x)(y-g(») +d(»)(x-g(x))" =0,

and for x = y,

(F(x)-d(x))x(g(x)-x) =0 VxeR.

Therefore, for any x € R, either F(x) = d(x) or g(x) = x. Assume that g(x) = x;
moreover, since g is not the identity map, there exists y € R such that g(y) # y. Thus
by (2.20) we get (F(x) — d(x))x = 0; that is, F(x) = d(x) holds in any case. [ |
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