SPIRALLING IN PLANE RANDOM WALK
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(received June 10, 1964)

1. A particle is initially at the origin in the (X,Y) plane
and each successive step it takes is of unit length and parallel
either to the X-axis or to the Y-axis. Its path of n steps is
called a spiral if (i) the particle never occupies the same posi-
tion twice, (ii) any turns the path makes are all counter-clockwise
or all clockwise and (iii) for every m > n, the path can be con-
tinued to m steps without violating (i) or (ii). The condition
(iii) is designed to exclude a path such as (0,0) - (1,0) - (1,1)

- (1,2) - (0,2) - (0,1).

Let s be the number of n-step spirals and p(n) be the

number of unrestricted partitions of n. In [2] Melzak used
generating functions to prove that

n-1
(1) s =4{1+2 T p(m)} .
n m=1

Here we give a direct '"geometrical' proof of this result which
makes (1) fairly transparent. We add a proof by generating
functions, alternative to Melzak's, using a well-known identity
due to Jacobi, and suggest an unsolved problem, which seems
more difficult.

We call each successive straight part of the spiral a
straight i. e. the set of steps in the same direction between the
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origin and the first turn, between one turn and the next, between
the last turn and the end, or between the origin and the end (the
last in the case in which the spiral has no turns). A spiral is
characterised (i) by the direction in which its tail, i. e. its last
straight, points, (ii) if it is not simply a single straight, by
whether its turns are all counter-clockwise or all clockwise and

(iii) by the finite sequence bo,b1 , ... of the number of steps in

each of its k + 1 straights, starting with the tail of b0 steps.

The b must satisfy

2 1 <b_< s

(2) <b,<n

3 = b+,

(3) n bOT‘l

4 >b_>... >b > 1 > > L >

(4) b1 3 Zv-i_i’ bz b4 bzvz1’

1 1
where V:V:Zk if k isevenand V=v - 1 :E(k- 1) if k is

odd. Of these, (2) and (3) are obvious, while (4) expresses the
essential spiral property, viz. that each straight (except the tail)
must be longer than the next parallel straight.

We call a spiral whose tail points downwards (i.e. in the
negative Y-axis direction) an S'. An S' which has at least

one counter-clockwise turn is called an S". Let s' and s
n n

be the number of n-step S' and S'" respectively.

There is an equal probability of the tail of a spiral pointing

in any one of the four directions and so s =4s'. Again, s'
n n n

enumerates one straight spiral and otherwise equal numbers of
counter-clockwise and clockwise spirals. Hence

(5) s = 4s' = 4(1 + 2s") .
n n n

The spiral which we can obtain by removing the tail from

an S'" we calla T. The successive straights of a T (going
inwards) contain bi’bZ" .. steps, where (4) is satisfied. Let
t(n) be the number of different n-step T. Since every n-step S"

has at least one turn, its tail has bO steps, where
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and so

(6) s; = T t(n- bo) = t{m) .

Hence, by (5) and (6). we have only to prove that

(7) t(n) = p(n)
to have (1).

2. We now dissect an n-step T. The successive horizontal
traight i b taini b,b_,b ,...,b t
straights (v in number) containing LT 9yq S eps

respectively, are placed under one another at unit distance, the
left-hand end of each being one step to the right of the left-hand
end of the one above. In view of the first part of (4), the right-
hand end of any straight does not project beyond the right-hand
end of the one above. The vertical straights (V in number,

v = - ’ ini 9 Yoot 0y
where v or v - 1), containing b2 b4 bZV steps

respectively, are arranged as shown in Figure 1. Again the
bottom end of one of these straights cannot project below the
bottom end of the one to its left. The left hand diagram in
Figure 1 shows a case in which V =v - 1, the right hand
diagram a case in which V =v.

Now replace each horizontal step by its left-hand end- point
and each vertical step by its lower end-point. The result is
shown in Figure 2. We now have the usual node diagram of a
partition of n. We observe that, whether V=v or v -1,

2

the Durfee square of the partition contains v“ nodes.

The above process is unique and can obviously be reversed
uniquely. Thus we have established a (1,1) correspondence

between the n-step T and partitions of n. Hence (7).

This method is related to the ideas of [3].
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3. As an alternative method, we write

0 o o
v .n
T (1+2X) = < = Mv,n2zZ X,
r=1 v=0 n=0
where M(v,n) is the number of solutions of
= Ce s > > L. > >
n b1 + b3 + + b2v-1 (b1 b3 va-1 0)

for the particular v in question. Now t(n) is the number of
solutions of

= +b_+...+Db
n o= b, b, vV

satisfying (4), where v takes any positive value and V =v -1
or v. Hence

v

tin) = = = = hﬂv,n”kﬂv,nz),
v> 1 V=v-1 n1+n2:n

0
which is the coefficient of Z Xn in
o0
r -1 . r
A=A(Z,X) =(1+2) T (1+2X)Y1+2Z X)) .
r=1

0_2 2
Hence t(n) is the coefficient of W Y n in A(WY, Y ).
By Jaccbi' s well-known identity (Theorem 352 of [1]), we see

that
2 ® 2r-1 1
- - r
AWY, YY) = I {(1+wY T hH+w 'y )}
r=1
00 kZ 00 2 1
- T Wiy T (1-vY°%)
k=-00 s=1
® ‘2 2n
- T Wy 1+ = pn)y
k=-00 n=1
5
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and (7) follows.

4. The next stage of complexity is to consider random
walks on a lattice consisting of congruent equilateral triangles.

It can be shown that, in this case, the number s of n-step
n

spirals is
s = 6{1+2 = t(m)} ,
m=1

where t(n) is the number of solutions in non-negative integers
of the equation

n:ai+a + ... + a

for any k such that
0<a1<a +a <a,+a_<...,

3 4 6 7

0 < + < + < < ...,
a1 az a aS a7+a8

But I cannot relate this t(n) to any known partition function.
It would be interesting if this were possible.
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