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In the present study, we propose a Reynolds analogy model for compressible wall
turbulence. This model is demonstrated to be able to alleviate the defects of the
generalized Reynolds analogy model (GRA) (Zhang et al., J. Fluid Mech., vol. 739, 2014,
pp. 392–420), and maintains its success in describing the mean velocity–temperature
relation. Furthermore, the present model is superior to the GRA in depicting the
relationship between their fluctuating fields and also bridges the gap between the
phenomenological model and the mathematical representation of the Reynolds analogy.
The key points of the present model are validated by analysing the data of compressible
wall-bounded turbulence with different Mach numbers, Reynolds numbers and wall
thermal conditions.
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1. Introduction

On the surfaces of high-speed flying vehicles, the generated compressible wall-bounded
turbulence would bring about non-negligible heat transfer, which is as crucial as the
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aerodynamic force for safe flight. To achieve a precise design of future high-speed aircraft,
it is thus essential to accurately predict both the thermal and aerodynamic force effects
in compressible wall turbulence. One research approach is to delineate the similarities
between the temperature and velocity fields, and further seek the velocity–temperature
relationship in compressible wall turbulence, which is generally called the Reynolds
analogy. This type of research has undergone a long period of development and achieved a
satisfactory answer in the past decade with the help of direct numerical simulations (DNS).
The deduced relations have also been deployed for modelling purposes (Griffin, Fu &
Moin 2023; Song, Zhang & Xia 2023; Chen, Gan & Fu 2024; Cheng & Fu 2024a; Cheng
et al. 2024; Hasan et al. 2024). As early as the 1930s, Busemann (1931) and Crocco
(1932) independently deduced the first velocity–temperature relation for laminar flows by
assuming that the Prandtl number (Pr) of fluid is unity. This relation was then extended
by van Driest (1951) for turbulent boundary layers. Within their frameworks, a very strong
analogy between these two instantaneous fluctuating fields is made, which reads as

H′ = Uwu′, (1.1)
where H and u denote the total enthalpy and the streamwise velocity, respectively, and ξ ′
represents the fluctuating component of a variable ξ , which is the difference between the
instantaneous value of ξ and its Reynolds averaged statistic ξ̄ . Here Uw is a constant for a
boundary layer. For the mean fields, the relation is

H̄ − H̄w = Uwū, (1.2)
where the subscript ‘w’ denotes the wall quantity. Regarding an adiabatic boundary layer,
the exact relationship between the instantaneous u′ and T ′ can be deduced from (1.1),
i.e. T ′ = −ūu′/Cp, where Cp and T denote the specific heat at constant pressure and the
temperature field, respectively. Based on this relation, Morkovin (1962) further proposed
several derivative inferences, which are dubbed as the strong Reynolds analogy (SRA).

The assumption Pr = 1 in the Crocco–Busemann relation is too idealized, because for
air, Pr ≈ 0.7. This deviation results in differences between the DNS results and the SRA
predictions in later studies. To circumvent this deficiency, Walz (1962) hypothesized that
a mixed Prandtl number, Prm = Cp(μ̄ + μ̄t)/(k̄ + k̄t), is a constant, where μ, μt, k and
kt denote the viscosity, the eddy viscosity, the thermal conductivity and the eddy thermal
conductivity, respectively. Meanwhile, the mean temperature is considered to be only a
function of ū, and thus the Walz equation is derived. Its equivalent form is

H̄r − H̄w = Uwū, (1.3)
where H̄r = Cp[T̄ + rū2/(2Cp)] is called the local recover enthalpy, and r is the recovery
factor. Compared with (1.2), (1.3) suggests that the local excess recovery enthalpy is in
direct proportion to the magnitude of mean velocity field. Walz’s equation improves the
Crocco–Busemann relation and agrees with DNS well in adiabatic turbulent boundary
layers (Pirozzoli, Grasso & Gatski 2004; Duan & Martin 2011; Fu et al. 2021). However,
for diabatic flows, its performance is not that good (Duan & Martin 2011; Zhang, Duan &
Choudhari 2018; Huang, Duan & Choudhari 2022).

For the relationship between the fluctuating fields, the most vital modification is the
celebrated Huang’s strong Reynolds analogy (HSRA) (Huang, Coleman & Bradshaw
1995), incorporating the phenomenological model of Gaviglio (1987), which takes the
form of

PrtT ′
rms/∂yT̄ = u′

rms/∂yū, (1.4)

where Prt ≡ (ρv′u′/ρv′T ′)(∂T̄/∂ ū) is the turbulent Prandtl number (ρ and v denote the
fluid density and the wall-normal velocity, respectively) and the subscript ‘rms’ represents
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the root mean square value (r.m.s.). This relation works well for wall turbulence with
different wall thermal conditions (Pirozzoli et al. 2004; Duan & Martin 2011; Huang et al.
2022).

The first empirical relation of mean fields which performs well for distinct wall thermal
conditions was proposed by Duan & Martin (2011). They introduced a non-dimensional
recovery enthalpy, which is defined as H̄∗

r = (H̄r − H̄w)/(H̄rδ − H̄w), and found that H̄∗
r

is a unique function of ū/ūδ for all DNS data, where the subscript ‘δ’ refers to the
quantities evaluated at the boundary edge. When calorically perfect gas is assumed, a new
velocity–temperature relation can be obtained.

Thereafter, the most systematic model is the generalized Reynolds analogy
theory (GRA) proposed by Zhang et al. (2014). They generalized the velocity–enthalpy
relation by introducing a general recovery enthalpy Hg,

H̄g − H̄w = Uwū, (1.5)

where Hg = CpT + rgu2/2, and rg is an extended form of r. Simultaneously, a residual
temperature φ′ is also introduced to build a loose analogy between the fluctuating velocity
and temperature fields, namely,

H′
g + Cpφ

′ = Uwu′. (1.6)

Multiplying (1.6) by (ρv)′ and averaging, rg can be solved as

rg = Cp

ū

[
∂T̄
∂ ū

∣∣∣∣
w

− 1

Pre

∂T̄
∂ ū

]
, (1.7)

where Pre is called the effective Prandtl number by Zhang et al. (2014), whose definition
is

Pre ≡ Prt

1 + ε
, Prt ≡ (ρv)′u′

(ρv)′T ′
∂T̄
∂ ū

, ε ≡ (ρv)′φ′

(ρv)′T ′ . (1.8a–c)

Herein Prt is a new definition of the turbulent Prandtl number, and its value is only a little
different from that of Prt in the outer layer of a boundary layer at a high Mach number
(Zhang et al. 2014). Substitution of (1.7) into (1.5) yields a differential equation for the
mean fields,

T̄ − ū
2

[
∂T̄
∂ ū

∣∣∣∣
w

+ 1

Pre

∂T̄
∂ ū

]
= T̄w. (1.9)

Simultaneously, for the fluctuating fields, their relation can be also deduced by substituting
(1.7) into (1.6):

T ′ + φ′ = 1

Pre

∂T̄
∂ ū

u′. (1.10)

Zhang et al. (2014) further adopted the simplest model for Pre and assumed Pre = 1, and
thus (1.9) becomes solvable. The deduced mean velocity–temperature relation is

T̄
T̄δ

= T̄w

T̄δ

+ T̄rg − T̄w

T̄δ

ū
ūδ

+ T̄δ − T̄rg

T̄δ

(
ū
ūδ

)2

, (1.11)

where T̄rg = T̄δ + rgū2
δ/(2Cp). Interestingly, through introducing the well-known

Reynolds analogy factor and treating it as a constant, (1.11) can recover the empirical
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relation of Duan & Martin (2011). For the fluctuating fields, Zhang et al. (2014) modelled
φ′ as ((ρv)′φ′/(ρv)′u′)u′, and the HSRA can be restored with Prt in (1.4) replaced by Prt.
Hereafter, we name this modified form as MHSRA.

Although the deductions of the GRA are successful in depicting the ū–T̄ relation, we
want to remember some points that are not clearly clarified in previous work. Firstly, the
GRA is an overdetermined system. For a given flow, the unknown functions are rg and
φ′. However, there are three related equations, i.e. (1.5), (1.6) and the assumption Pre = 1.
Secondly, the physical meaning of φ′ is not clearly identified. The core assumptions of the
GRA are the existence of the residual temperature φ′ and the constant value of Pre. The
latter is also associated with the existence of φ′, because the extra wall-normal heat flux
transfer originating from φ′ in the definition of Pre (i.e. ε) acts as an effective correction
to Prt, making up its systematic deviation from unity. So we may ask two questions. What
is the physical significance of φ′? Is it a physically real field that exists independently of
T ′, or is it just a component of T ′? Thirdly, if −φ′ is a component of T ′, (1.10) implies
that the whole velocity fluctuating field shares a duality relation with just a portion of the
temperature fluctuating field. This scenario is kind of counterintuitive.

Motivated by these confusions, we try to propose a new Reynolds analogy theory. We
find that this model might provide a good solution to each issue, and shed light on some
subtle details of the u–T coupling. Meanwhile, the newly introduced residual quantities
(temperature and velocity) in our model are of clear physical significance, which bridge
the gap between the phenomenological model and the mathematical representation of the
Reynolds analogy.

2. A Reynolds analogy model

We begin with the key point proposed by Zhang et al. (2014), that it is the local recovery
enthalpy, rather than the total enthalpy, that remains constant in the shear region for air
flow over an adiabatic wall. Also, we also adopt rg to account for the effects of Pr /= 1 in
flows over diabatic walls. However, we hypothesize that it is not u, but a new velocity ue,
named the local effective velocity, which constitutes the local effective recovery enthalpy
(He), i.e. He = CpT + rgu2

e/2. The local effective velocity can be decomposed into two
components,

ue = u + χ ′, (2.1)

where χ ′ can also be regarded as a residual velocity with zero mean value but
non-negligible fluctuation, and thus ūe = ū. On the other hand, the generalized mean
enthalpy–velocity relation is

H̄e − H̄w = Uwūe, (2.2)

and Uw can be determined to be Uw = (Cp∂T̄/∂ ūe)w. Equation (2.2) can be expanded as

CpT̄ + 1
2 rgu2 + 1

2 rgχ
′2 + rgu′χ ′ − CpT̄w = Uwū. (2.3)

For the relationship between the fluctuating local effective enthalpy and velocity, the
following formula can be introduced:

H′
e + Cpφ

′ = Uwu′
e, (2.4)

where H′
e = CpT ′ + rgūeu′

e. In our model, the residual temperature φ′ is still included to
describe the temperature fields of flows over adiabatic walls. Following Zhang et al. (2014),
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rg can be solved after multiplying (2.4) by (ρv)′ and averaging, that is,

rg = Cp

ūe

[
Uw

Cp
− (ρv)′(T ′ + φ′)

(ρv)′(u′ + χ ′)

]
. (2.5)

Gaviglio (1987) observed that, for a compressible boundary layer, the intensities of the
velocity and temperature fluctuations carried by large-scale eddies are in direct proportion
to the gradients of their mean quantities, respectively. And their corresponding ratios are
positively related to the velocity length scale and the temperature length scale, respectively.
In our model, we treat T ′ + φ′ and u′ + χ ′ as the pure temperature and velocity fluctuations
that are directly determined by the mean fields, and thus, carried by the large-scale
eddies (see more detailed analyses in § 3). In this regard, combining our propositions
and the phenomenological model of Gaviglio (1987), we can directly link the ratio of
the wall-normal momentum and heat flux transfers in the right-hand side of (2.5) with the
gradients of the mean fields,

(ρv)′(T ′ + φ′)
(ρv)′(u′ + χ ′)

= α
∂T̄
∂ ū

, (2.6)

where α is a constant. Hence, (2.5) can further be deduced as

rg = Cp

ū

[
∂T̄
∂ ū

∣∣∣∣
w

− α
∂T̄
∂ ū

]
, (2.7)

where the relation ūe = ū is used. The differential equation for the mean temperature can
be obtained by substituting (2.7) into (2.3) and using u2 ≈ ū2, which reads as

T̄ − ū
2

[
∂T̄
∂ ū

∣∣∣∣
w

+ α
∂T̄
∂ ū

]
+

rg

(
χ

′2 + 2u′χ ′
)

2Cp
= T̄w, (2.8)

and the u′–T ′ relation can be derived by substituting (2.7) into (2.4), namely,

T ′ + φ′ = α
∂T̄
∂ ū

(
u′ + χ ′) . (2.9)

It can be seen that if we take α to be 1/Pre(= 1) and ignore the effect of χ ′, the present
model can restore to the GRA. It is particularly noteworthy that the present model is
well-posed, because the number of the unknown functions (χ ′, rg and φ′) is the same as
that of the relevant equations ((2.2), (2.4) and (2.6)) for a given flow (α is not an unknown
quantity, see the related discussion in § 4). Furthermore, following the procedures outlined
in Zhang et al. (2014), it can be mathematically proved that the similarity between the
Reynolds averaged momentum and energy equations permits the solution expressed by
(2.2) and (2.4).

As the temperature fluctuation can be recognized as a passive scalar even in
compressible wall turbulence (Cheng & Fu 2024b), we can consider the u–T coupling
through the lens of a control system. The fluctuating velocity and temperature fields can
be treated as the input and output, respectively, whereas the related transfer function is
determined by the mean profiles of these two fields. The fluctuating temperature field
is essentially the response of the temperature field to the velocity field. If this response
is perfect, their coherence, which can be appraised by their correlated function, would be
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tight. Under these circumstances, the duality relation between u′ and T ′ is well-established.
In the parlance of this view, within the framework of the SRA, the magnitude of the
transfer function is |ū/Cp|. However, the relation is built in an instantaneous sense,
and thus the SRA is generally poorly agreed with the real flows. For the HSRA, the
corresponding transfer function is |(1/Prt)(∂T̄/∂ ū)|, which is only valid for the r.m.s.
values of T ′ and u′. For the MHSRA, the counterpart is |(1/Prt)(∂T̄/∂ ū)|, if φ′ is modelled
as ((ρv)′φ′/(ρv)′u′)u′. As can be seen, the duality relation between u′ and T ′ is partially
broken in the GRA due to the inclusion of φ′.

However, the present model suggests that the input–output relation cannot be completely
built between u′ and T ′ without considering the influences of φ′ and χ ′. In other words,
the duality relation between u′ and T ′ is more seriously broken in our model than in the
GRA. Besides, the differential equation (2.8) cannot be explicitly solved, as the statistical
characteristic of the term rg(χ

′2 + 2u′χ ′)/2Cp is unknown. In the next section, we will
analyse the physical significance of χ ′, and assess its role in determining the distributions
of mean fields.

3. Physical significance of χ ′ and φ′

Up to now, it is natural to ask two questions. What is the physical significance of χ ′ and
φ′? Are they introduced as temporary variables to alleviate the theoretical crisis of the
SRA, or are they physically meaningful quantities with genuine physical implications?
We conjecture that the answers are hidden in the physical meanings of (2.6) and (2.9).
These two equations suggest that T ′ + φ′ and u′ + χ ′ are the pure temperature and velocity
fluctuations that are directly controlled by the mean fields, and carried by the large-scale
eddies. That is to say, −φ′ and −χ ′ are the components of T ′ and u′ that are not
manipulated by the mean gradients. Because the mean shear is typically believed to be the
energy source of the large-scale motions in shear flows (Jiménez 2018), it implies that −φ′
and −χ ′ must be two small-scale quantities which keep away from the influences of the
mean gradients and are not directly related to the surrounding energy-containing motions.
These analyses are reminiscent of the work of Cheng & Fu (2023), who reported that the
u–T coupling in compressible wall turbulence is sustained by energy-containing motions,
just as the description of the phenomenological model proposed by Gaviglio (1987). It can
be seen that, compared with the GRA, the current model better captures the dominance of
the large-scale eddies described phenomenologically by Gaviglio (1987), with the mean
fields as the connecting factors. Therefore, within the current framework, the assumption
(2.6) is natural and reasonable.

Next, we combine the DNS data of compressible wall turbulence with a mature
mathematical tool to verify our propositions. The DNS database of channel flows used
in the present study for detailed analysis is built in our previous study (Cheng & Fu
2022). These cases are performed in a computational domain of 4πh × 2πh × 2h in
the streamwise (x), spanwise (z) and wall-normal (y) directions, respectively. Herein,
h denotes the channel half-height. Three cases at bulk Mach numbers (Mb) 0.8, 1.5
and 3.0 are selected, and their bulk Reynolds numbers (Reb) are 17 000, 20 020 and
15 000, respectively. They are of the highest friction Reynolds numbers in our dataset
at the corresponding Mb, and denoted as Ma08Re17K, Ma15Re20K and Ma30Re15K,
respectively. The details of each simulation and its validation are provided at length in
Cheng & Fu (2022). We will not repeat them here for the sake of brevity.

The diagnostic tool deployed in the present study is the spectral linear stochastic
estimation (SLSE). The SLSE is a data-driven tool for investigating the multiphysics
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couplings in both incompressible and compressible wall-bounded turbulence. It is capable
of measuring the degree of the linear coherence between two variables in the flow field,
and estimating the instantaneous signal of a target physical quantity with another quantity
as input. Note that the estimated signal is linearly coherent with the input signal, due to
the linear nature of the SLSE. In the present study, we first resort to the SLSE to extract
the component of T ′ that bears a linear coherence with the streamwise velocity fluctuation
u′ at a given wall-normal position y in turbulent channel flows. It takes the form of

T ′
l ( y) = F−1

x,z
{
HTu (λx, λz; y) Fx,z

[
u′ ( y)

]}
, (3.1)

where T ′
l is the component of T ′ sharing a linear coherence with u′ at the wall-normal

position y. In this regard, the uncorrelated component can be calculated as T ′
nl = T ′ − T ′

l .
In the expression, Fx,z and F−1

x,z denote the two-dimensional (2-D) fast Fourier transform
and the inverse 2-D fast Fourier transform in the streamwise and the spanwise directions,
respectively. Here HTu is the transfer kernel, which gauges the correlation between T̂ ′( y)
and û′( y) at streamwise length scale λx and spanwise length scale λz, and can be calculated
as

HTu (λx, λz; y) =
〈
T̂ ′ (λx, λz; y) ˘̂u′ (λx, λz; y)

〉
〈
û′ (λx, λz; y) ˘̂u′ (λx, λz; y)

〉 , (3.2)

where 〈·〉 denotes the ensemble averaging, û′ and T̂ ′ are the Fourier coefficients of u′

and T ′, respectively, and ˘̂u′ represents the complex conjugate of û′. Similarly, we can also
extract the component of u′ that holds a linear relationship with T ′, that is,

u′
l ( y) = F−1

x,z
{
HuT (λx, λz; y) Fx,z

[
T ′ ( y)

]}
, (3.3)

where the kernel function HuT can be constructed by analogy. The uncorrelated component
can be calculated as u′

nl = u′ − u′
l. On the other hand, we also can measure the overall

response intensity by comparing the r.m.s. values of T ′ and u′, namely, T ′
rms/u′

rms. The
ratios between T ′

l and u′, and T ′
l and u′

l, can be defined by analogy. They can be compared
with the following response functions, i.e.

f1( y) =
∣∣∣∣ 1
Prt

∂T̄
∂ ū

∣∣∣∣ , f2( y) =
∣∣∣∣∂T̄
∂ ū

∣∣∣∣ . (3.4a,b)

Note that, the Prt in f1( y) is computed from the DNS data, and we observe that the
difference between the values of Prt and Prt is negligible for the DNS data of channel
flows considered in the present study, hence we will not make a distinction between
the HSRA and the MHSRA. Specifically, f1( y) is the transfer function suggested by
the HSRA (MHSRA) and f2( y) is the transfer function indicated by the GRA and the
present model. If the HSRA (MHSRA) is true, the distribution of f1( y) should match
well with that of T ′

rms/u′
rms for each case (see (1.4)). If the present model is established,

the distribution of f2( y) should agree with that of T ′
l,rms/u′

l,rms (see (2.9)), whereas
for the establishment of the GRA, the profile of f2( y) should be in close agreement
with that of T ′

l,rms/u′
rms (see (1.10)). Additionally, to facilitate comparison, three ratio

functions are defined as r1 = (|(1/Prt)(∂T̄/∂ ū)|u′
rms)/T ′

rms, r2 = (|(∂T̄/∂ ū)|u′
l,rms)/T ′

l,rms
and r3 = (|(∂T̄/∂ ū)|u′

rms)/T ′
l,rms, which are the quantitative metrics corresponding to the

HSRA, the present model, and the GRA.
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100

T′
rms/u′

rms T′
l,rms/u′
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l,rms/u′
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Ma30Re15K
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Ma08Re17K

Core region

Ma30Re15K
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Ma08Re17K
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y/h y/h

(b)(a)

Figure 1. Variations of (a) T ′
rms/u′

rms and (b) T ′
l,rms/u′

rms and T ′
l,rms/u′

l,rms for all cases of channel flows. The
response functions given by different Reynolds analogy models are represented by solid lines in each panel:
f1( y) is the transfer function suggested by the HSRA (MHSRA) and f2( y) is the transfer function indicated by
the GRA and the present model.

Figure 1(a) shows the variations of T ′
rms/u′

rms for all cases of channel flows mentioned
above, and the distributions of f1 are added for comparison. It can be found that the
magnitudes of T ′

rms/u′
rms agree tolerably well with those of f1 within 0 < y/h < 0.6, below

the core region of a channel. This observation is consistent with the finding of Huang et al.
(1995) for compressible channel flows. It suggests that the overall response of T ′ follows
the prediction of the HSRA, as well as the MHSRA.

In figure 1(b), we concentrate on the components of T ′ and u′ that are linearly coherent
with each other, namely, T ′

l and u′
l. One can notice that the distributions of f2 are consistent

with those of T ′
l,rms/u′

l,rms for 0 < y/h < 0.6, at least within the Mach numbers under
consideration. The accuracy is rather similar to that of the HSRA (MHSRA) (see the
variations of r1, r2 and r3 for each case shown in figure 2). This is an interesting finding,
because it implies that it is essentially T ′

l , rather than T ′, that would response to u′
l, rather

than u′, if the transfer function is f2; that is to say,

T ′ − T ′
nl = ∂T̄

∂ ū
(u′ − u′

nl). (3.5)

It is noted that (3.5) may be not fully accurate in an instantaneous sense, but it suggests
the key input–output relation between them, and is valid in a statistical sense. Compared
with (2.9), the establishment of (3.5) underscores the fact that

− φ′ = T ′
nl, −χ ′ = u′

nl. (3.6a,b)

That is to say, −φ′ and −χ ′ are not physically real fields that exist independently of T ′
and u′, respectively, but just the components of T ′ and u′ that are not linearly correlated
with u′ and T ′, respectively. Furthermore, this result also suggests α = 1. Interestingly,
it is precisely the assumed value of Pre. More discussion regarding the value of α is
given in § 4. On the other hand, if the input–output relation follows (1.10) predicted by the
GRA, it is u′, rather than u′

l, that would be linearly coherent with the T ′
l , and the response

intensity should be f2. Figure 1(b) also shows the variations of T ′
l,rms/u′

rms for comparison.
Obviously, it deviates from the prediction of the GRA ( f2) for each case. It suggests the
existence of χ ′, and thus demonstrating the superiority of the present model in depicting
the u′–T ′ relation and providing direct evidence of the phenomenological model proposed
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Figure 2. Variations of r1 = (|(1/Prt)(∂T̄/∂ ū)|u′
rms)/T ′

rms, r2 = (|(∂T̄/∂ ū)|u′
l,rms)/T ′

l,rms and
r3 = (|(∂T̄/∂ ū)|u′

rms)/T ′
l,rms for three channel flows at different Mb.
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Figure 3. (a) Premultiplied streamwise spectrum of T ′
nl; (b) premultiplied streamwise spectrum of u′

nl. The
case Ma15Re20K is taken into consideration. Each spectrum is normalized by its maximum value, and the
streamwise wavelength is scaled by the semilocal units at y∗ ≈ 20.

by Gaviglio (1987). Moreover, Guarini et al. (2000) pointed out that the u′ − T ′ relation
(2.4) implies the ū–T̄ relation (2.2). In this regard, the improvement of the present model
over the GRA is fundamental.

Another fact supports our judgement is that for a compressible wall boundary layer with
a cold wall, the fluctuating velocity and temperature fields show a strong decorrelation in
the proximity of the wall-normal region where ∂T̄/∂ ȳ ≈ 0, (see figure 14a of Cogo et al.
(2023)). According to (3.5) and (3.6a,b), near the extreme point of a mean temperature
profile where ∂T̄/∂ ȳ ≈ 0, the right-hand side of (3.5) should be zero. In this way, we can
deduce that T ′

l ≈ 0 and φ′ = −T ′
nl ≈ −(T ′ − T ′

l ) ≈ −T ′. As can be seen, φ′ happens to be
−T ′ that decorrelates with u′, i.e. the component of T ′ that is not linearly correlated with u′.
Moreover, figure 3 shows the premultiplied streamwise spectra of T ′

nl and u′
nl for the case

Ma15Re20K with the streamwise wavelength scaled by the semilocal units at y∗ ≈ 20. One
can notice that their spectral peaks are located at λ∗x ≈ 250 and λ∗x ≈ 400, respectively.
Here, we use the superscript ‘∗’ to represent the normalization in semilocal units. It can
be seen that their streamwise length scales are shorter than those of the temperature and
velocity streaks populating the near-wall region (λ∗x ≈ 1000) (Cheng & Fu 2022). This
observation is consistent with the analyses conducted above, which assert that −φ′ and
−χ ′ ought to be two small-scale quantities which are not directly related to the surrounding
energy-containing motions controlled by the mean fields.

We also verify our model in supersonic and hypersonic turbulent boundary layers. The
DNS database of compressible turbulent boundary layers used here is built by Zhang et al.
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Case M∞ Re∞ T∞(K) Tw/Tr Tw/Te Lx × Ly × Lz Reτ tsu∞/δi

M20T050 2.0 9081 220 0.5 0.85 24.8δi × 8.1δi × 8.7δi 665–806 589.4
M20T100 2.0 26631 220 1.0 1.68 30.1δi × 8.2δi × 10.6δi 674–819 584.6
M80T050 8.0 422782 51.8 0.5 4.82 13.8δi × 6.8δi × 5.0δi 650–715 271.5
M80T100 8.0 1186116 51.8 1.0 8.72 14.3δi × 7.0δi × 5.1δi 601–654 231.1

Table 1. The parameters of compressible turbulent boundary layers. Here M∞, Re∞ and T∞ are the freestream
Mach number, Reynolds number and temperature, respectively; Tw/Tr denotes the ratio of isothermal wall
temperature and recovery temperature; Tw/Te denotes the ratio of isothermal wall temperature and boundary
edge temperature; Lx, Ly and Lz are the lengths of selected domain in the streamwise, wall-normal and spanwise
directions, respectively; δi and Reτ are the inlet boundary layer thickness and the range of the friction Reynolds
number of the selected domain, respectively; and tsu∞/δi is the time period used to accumulate statistics.

(2022). For each case, a selected domain is adopted for analysing, and the parameters are
provided in table 1. It can be observed that the Reynolds number effects are negligible
because the corresponding variation of Reτ is small. Under the circumstances, the 2-D
SLSE introduced above can be deployed. More details about the computational set-ups
and the numerical methods regarding the DNS of this dataset can be found in Zhang et al.
(2022).

Figure 4(a,c,e,g) show the distributions of T ′
rms/u′

rms and f1( y) within the boundary
layers, and figure 4(b,d, f,h) display the variations of T ′

l,rms/u′
rms, T ′

l,rms/u′
l,rms and f2( y)

for all cases. It is noted that the Prt in the definition of f1( y) is replaced by Prt herein,
as previous studies showed that this modified version of the turbulent Prandtl number
is less sensitive to the freestream Mach number and wall temperature condition at the
edge of the turbulent boundary layer (Zhang et al. 2014; Cogo et al. 2023). It can be
observed that for all cases, the profiles of f1( y) agree roughly with those of T ′

rms/u′
rms,

irrespective of the Mach number and wall thermal condition. It implies the success of
the MHSRA (HSRA), which is documented in numerous previous studies (Guarini et al.
2000; Duan & Martin 2011; Huang et al. 2022). However, significant deviations can still be
traced within the intermittent layers (y/δ > 0.8). Similar inconsistency can also be found
in previous studies, for example, figure 9(b) of Zhang et al. (2018) and figure 18(c) of Cogo
et al. (2023).

On the other hand, it is apparent that the distributions of T ′
l,rms/u′

l,rms match reasonably
well with those of f2( y) in most regions of the boundary layers for all cases, even in the
intermittent layers, see figure 4(b,d, f,h). Observable deviations can only be traced around
the extreme points of the mean temperature profiles for the cases with cold walls. This
is acceptable, because the gradient of the mean temperature is zero around this kind of
point, which leads to the breakdown of the u′

l–T ′
l relation (3.5). By contrast, for all cases,

the distributions of T ′
l,rms/u′

rms are not in tune with those of f2( y) unequivocally. One can
also refer to the distributions of r1, r2 and r3 for all cases displayed in figure 5. Combining
with the results of compressible channel flows reported above, we might claim that the
present model is superior to the GRA in depicting the relationship between fluctuating
fields of velocity and temperature in canonical compressible wall turbulence. Of course, it
also needs more data for validation in the future.

Moreover, the present model seems to work better than the MHSRA (HSRA) in the
intermittent layers of compressible boundary layers, irrespective of the Mach number and
wall thermal condition, for the cases under consideration (see figures 4 and 5). By the
way, in the core region of an internal flow, the acoustic component of the fluctuating
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Figure 4. Variations of (a,c,e,g) T ′
rms/u′

rms and (b,d, f,h) T ′
l,rms/u′

rms and T ′
l,rms/u′

l,rms for all the cases of
turbulent boundary layers. The response functions given by different Reynolds analogy models are represented
by solid lines in each panel: f1( y) is the transfer function suggested by the MHSRA (HSRA) and f2( y) is the
transfer function indicated by the GRA and the present model. Here, δ is the mean boundary layer thickness of
the selected domain for each case.
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Figure 5. Variations of r1 = (|(1/Prt)(∂T̄/∂ ū)|u′
rms)/T ′

rms, r2 = (|(∂T̄/∂ ū)|u′
l,rms)/T ′

l,rms and
r3 = (|(∂T̄/∂ ū)|u′

rms)/T ′
l,rms for compressible turbulent boundary layers with different wall thermal

conditions and freestream Mach numbers.

motions is dominant (Zhang et al. 2014; Cheng & Fu 2024b), as a result, the basics of
each Reynolds analogy model might not hold, leading to the significant deviations of the
MHRSA (HSRA) and the present model illustrated in figure 1.

4. Implications for the ū–T̄ relation

One may ask, why does the GRA fail to accurately characterize the relationship of the
fluctuating fields, but is able to effectively capture the distributions of the mean fields in
canonical flows? This is due to the negligible effect of the term rg(χ

′2 + 2u′χ ′)/2Cp in
(2.8) in determining the ū–T̄ relation. According to (3.6a,b), this term can be rewritten as

rg

(
χ

′2 + 2u′χ ′
)

2Cp
=

rg

[
u′2

nl − 2(u′
nl + u′

l)u
′
nl

]
2Cp

≈ −rgu′2
nl

2Cp
, (4.1)

where the assumption u′
lu

′
nl = 0 is adopted. Here u′

nl is a small-scale fluctuating quantity,

and the magnitude of −rgu′2
nl/2Cp is significantly smaller than those of other terms

associated with mean fields in (2.8), and thus can be ignored. As a result, an analytic
solution of (2.8) becomes available with α = 1, that is (1.11). We note in passing that,
ignoring this small-scale fluctuating term is equivalent to adopting the approximation
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A Reynolds analogy model

u2
e ≈ ū2

e = ū2, which is widely deployed for modelling the canonical wall turbulence
(Zhang et al. 2014).

Finally, it is instructive to discuss the value of α. Ignoring the fluctuating term and
solving (2.8) yields the general solution without additional assumptions,

T̄ = T̄w + A
∂T̄
∂ ū

∣∣∣∣
w

ū + Bū2α, (4.2)

where A = α/(2α − 1) and B is a constant. Differentiating (4.2) with respect to ū
and taking the value on the wall boundary, one has α = 1. It indicates that α = 1
is a requirement for the mathematical self-consistency of the present model, which
is fully consistent with the results shown in figures 1(b) and 4(b,d, f,h). As such, the
well-established ū–T̄ relation (1.11) proposed by Zhang et al. (2014) can also be deduced
under the framework of the present model by replacing the artificial assumption Pre = 1
with a stricter mathematical derivation of α = 1. On the other hand, because the ū–T̄
relation (1.11) has been broadly validated in numerous studies of compressible wall
turbulence, including pipe flows (Zhang et al. 2014), channel flows (Modesti & Pirozzoli
2016) and turbulent boundary layers (Huang et al. 2022), it implies that α = 1 should be
generic. Unlike the arbitrary assumption of Pre = 1 in the GRA, α = 1 carries distinct
physical significance as per (2.6). It suggests that the momentum and heat transfers, which
are controlled by the gradients of the mean fields, are dynamically similar. This similarity
is not sensitive to the Mach number and the geometry of the flows. In simpler terms, within
the regime controlled by the mean fields, the input–output relation between u′ and T ′ holds
a certain universality.

5. Discussion and concluding remarks

As the u′–T ′ relations are shown to be related to the multiscale eddies in the boundary
layers, it is of significance to examine their Reynolds number dependence. A new set
of DNS data of supersonic channel flows is used. Three cases at Reb = 3000, 9400 and
20 020 are selected, and their bulk Mach numbers are all 1.5. Validation of this dataset
is also given in Cheng & Fu (2022). They are denoted as Ma15Re3K, Ma15Re9K and
Ma15Re20K, respectively. Figure 6(a) shows the variations of r1 for all three cases.
Remarkable Reynolds number dependence can be traced. Within 0.3 < y/h < 0.7, the
magnitude of r1 approaches unity as the increase of the Reynolds number. It suggests
that the HSRA (MHSRA) will be more accurate at higher Reynolds numbers. Figure 6(b)
shows the counterparts of r2. Interestingly, clear Reynolds number dependence can also be
observed, and the values of r2 are closer to unity for high Reynolds numbers in the outer
region.

In conclusion, in the present study, we are dedicated to proposing a Reynolds analogy
model for compressible wall turbulence. This model is demonstrated to be able to
alleviate the defects of the GRA, and maintains its success in describing the ū–T̄ relation.
Furthermore, the present model is superior to the GRA in depicting the u′–T ′ relation.
The key points of the present model are validated by analysing the data of compressible
wall-bounded turbulence with different Mach numbers, Reynolds numbers and wall
thermal conditions.

The present study provides a new perspective of the velocity–temperature coupling in
compressible wall turbulence, and may trigger new studies on this topic. For example,
as the u′

l − T ′
l relation is universal for compressible wall turbulence, further work can
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Figure 6. Variations of (a) r1 = (|(1/Prt)(∂T̄/∂ ū)|u′
rms)/T ′

rms, (b) r2 = (|∂T̄/∂ ū|u′
l,rms)/T ′

l,rms for three
channel flows at Mb = 1.5 with different Reb.

concentrate on the relation between u′
l and u′

nl, as well as that between T ′
l and T ′

nl. This
may open up a new research avenue for modelling the momentum and heat transfers in
compressible wall-bounded turbulence, with the SLSE introduced in the present study
serving as a helpful tool.
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