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(Z2)*-ACTIONS FIXING A PRODUCT OF SPHERES 
AND A POINT 

PEDRO L. Q. PERGHER 

ABSTRACT. In the paper we identify up to bordism all manifolds with (Z2/-action 
whose fixed point set is S" x ST1 U point. 

1. Introduction. In [6], Conner and Floyd showed that the fixed point structure 
of a differentiable involution on a closed manifold determines the bordism class. This 
fact allowed the analysis of the following question: given a smooth closed manifold F, 
not necessarily connected, can one identify up to bordism all manifolds and involutions 
(M, T) with F as the fixed point set? For instance, in [9] and in [1] this question was 
considered for F — RP(2«) and F = RP(«) U RP(m) (disjoint union), respectively. 

In [8], Stong showed more generally that the stationary point structure of a differen­
tiable (Z2)*-action determines the bordism class, and this fact made possible to take into 
account the above question for (Z^f -actions. In this direction, Capobianco [2] obtained 
this classification for F = RP(/i), CP(«), or ST. 

In this paper we want to consider the case F = S" x S^UpQ? — point), n,m>0. 
We recall that in [6] Conner and Floyd exhibited involutions (KtP(2\ 7}), / = 1,2,4, 

or 8, where KtP{2) denotes the appropriate projective plane, with FTi = SfUpiF^ = fixed 
point set of 7J), and with the property that if (M", T) is an involution with FT = $ Up, 
then n = 2j,j = 1, 2, 4, or 8, and in each case (M2J, T) is bordant to (KjP(2), 7}). The 
normal bundle to Sf in KtP{2\ g —> S1: = KtP{\\ satisfies wt{Ç) ^ 0. 

Consider the set L = Lx U L2, where U = {(1,1), (2,2), (4,4), (8,8)}, L2 = 
{(1,3), (1,7), (2,6), (3,5)}. One has that, for each (n,m) G L, there is an involution 
(wl%+m)>Tn,m) with FTnm = 5" x S™ Up. In fact, observe first that the fixed data of the 
involution (X/P(2) x KtP{2\ Tt x T) is bordant to (£?j = g x Ç -> S x ^ U ^ 1 ' -+p), 
hence there is an involution (Wf^T^i) having precisely this fixed data (see proof of 25.2 in 
[5]). Next, consider the "smash product" ST AS™ = (SPxST)/^ xj>0Ujto xS"1), JC0 G S", 
^ o G . f , which is homeomorphic to S"*"1, and the quotient map qnjm\ S" x S"1 —> ST¥m. 
For (n, m)<EL2, consider the induced bundle %£% = q^m(C+m) —• S" x ST. One knows 
that q*nm: Hn+m{Sn+m, Z2) -> H^^ST x ST, Z2) is an isomorphism, and so by the natural-
ity of Whitney classes we get wn+m(^) ^ 0 (and also that both wn(g?£) and wm(C?J£) 
are zero). By computing characteristic numbers we may conclude that the line bundles 
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over RP(CJJJr) and RP(2« + 2m - 1) are bordant. By using [5; 25.2] we obtain then an 
involution \wl^m\rn^) with fixed data (^ ^ S" x ST)U {R2{n^ -> p). Note that, 
excluding the (n, m) = (8,8) case, this latter approach may be employed also to obtain 
(̂ «,m+m)>Tn,m) for («, m) E L\, and the resulting involutions are bordant to those already 
considered. Actually, (W^KT^) is bordant to (W2J^m'\r„w) ifn + m = nf + mf and 
« + /w = 4 or 8, and is bordant to (Kn+mP(2\ Tn+m} if n + m = 2,4 or 8. 

Now let (M, O) be a smooth (Z2)*-action; here, and throughout this paper, (Z2)* will be 
considered as the group generated by A: commuting involutions 7i, 72, . . . , 7*. The normal 
bundle 77 of F = F$ in M decomposes as Whitney sum of subbundles on which (Z2)* acts 
as one of the irreducible (nontrivial) real representations. To describe this decomposition 
one may use sequences a = (a\, #2, • • •, <*k) where each a7 is either 0 or 1. Let ea C 77 be 
the subbundle on which each 7} acts as multiplication by {—Vfj for eachy; then 

1= © £a 

where (0) = (0,0, . . . , 0) (trivial sequence). In this way, choosing an order for {a : 
a ^ (0)}, F and the ordered set of the 2* — 1 vector bundles ea {a ^ (0)) constitute 
the fixed data of the action on M. We will always consider the standard order given in­
ductively by (ci,0),(c2,0),.. .,(c2*-i_i,0), (cu 1),. -.,(c2*-i-i, l)>(0,0,... ,0,1), where 
c\,C2, •.. ,c2*-i_i denote the (ordered) irreducible nontrivial representations of (Z2)*-1 

(the case k = 1 is trivial). 
Consider now an involution (M, T) with fixed data 77 —> F For 1 < £ < A: let 

(Z2)* act on M2'" , the cartesian product of 2 ' - 1 copies of M, by Ti(xi,...,x2 '-0 = 
(r(jci),..., r(x2/-i)), letting T2,..., Tt act by permuting factors so that the points fixed 
by 72,. . . , Tt form the diagonal copy of M, and letting Tt+\,...,Tk act trivially; we denote 
this action by Tk(M, T). The fixed data of Tk (M, T) may be described using induction on 
t: it is ©^y1 £a/ —> F where both 0 ? ^ _ 1 efl., and ©^?-i eQi are equal to the fixed data of 
rj:|(M, 7), and where eax = 77, eait_x = T{F) and efly = 0 for 2' <y < 2k - 1, here 7(70 
and 0 denoting, respectively, the tangent bundle and the 0-dimensional bundle over F. 

Given now a (Z2)*-action (M,O), O = (7^, r 2 , . . . , 7).), we observe that each auto­
morphism a: (Z2)

k —* (Z2)* yields a new action given by (M; O ^ I ) , o " ^ ) , . . . , cr(7^)); 
we denote this action by or(M, O). The fixed data of <J(M, O) is obtained from the fixed 
data of (M, O) by a permutation of subbundles. 

The desired classification will be obtained with the 

THEOREM. If (Af, <D), O = (T\, T2,..., 7*), w a (Z2f-action whose fixed point set 
is S" xS™ Up, then («, m) G L a«t/ ̂ /zere is a« integer t, I < t < k, and an automorphism 
a: (Z2)

k -> (Z2f such that r = (n + m)2' am/ (JW, O) w 6orc/a«fto aT*(W2
n%

+m ,̂rw,w). 

We shall prove first this result for involutions. The general case will be obtained then 
by induction. 

https://doi.org/10.4153/CMB-1995-053-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1995-053-1


368 PEDRO L. Q. PERGHER 

2. Involutions fixing products of spheres and a point. We start with an involution 
(AT, T) with S" x S"1 Up as the fixed point set. Let rf —> S" x S™ denote the normal bundle 
to S" x S™ in AT, where 5 = dim(77). We write 

W(r]s) = 1 + w„ + ww + w„+w. 

Since x ( ^ ) = x(*^ xSTUp) = 1 mod 2, where % denotes the Euler characteristic [6; 
27.2], one has from [6; 27.5] that some Whitney number of 77 involving ws(r]) is non-zero. 

Assuming first n < m, we have therefore three possibilities: 
i) s = n,m = in for some i > 1 and < + 1 [ ^ x ST] ^ 0; 

ii) 5 = m and wnww[*Sw x S"1] ^ 0; 
iii) 5 = n + m and Wa+mtS" x ST] ^ 0. 

The structure of H*(S" x S"1^) excludes validity of i). Assuming ii) valid and using 
the Wu formula [10], we get 

o n, x (m — n—\\ (m—\\ 
S<1 (ww) = I Iwnww + I 1 Wm+n = wnwm. 

But &71 = 0 in //*(S" x Sm
9Z2) if/ > 0, so one has a contradiction. It remains only 

the possibility s = n + m and wn+m =̂  0. 
Suppose first wn ^ 0 and wOT ^ 0. As is well know, #*(BO, Z2) is generated over the 

Steenrod algebra by the classes wy. Since both w„ and wm cannot be obtained over the 
Steenrod algebra from lower classes, both n and m must be a power of 2, say n — 2P, 
m — 2q,p<q. 

Now let c be the characteristic class of the line bundle over RP(r/). One has 

W(RP(Î])) = 1 + C2" + W2P + C2" + W2« 

so the Whitney number 

^.(RPfo^'-'piPfo)] 

of this line bundle is zero. Since 

^(RP(2« + 2m - 1)) = 1 + a2*1 + a2**', 

where a G H1 (RP(2«+2w — 1), Z2) is the generator, the corresponding Whitney number 
of the line bundle over RP(2« + 2m - 1) is non-zero. By [5; 25.2], (rj —> S77 x ST) U 
(R2(n+m) _^ p^ c a n n o t b e the fixed data of an involution; hence either w„ = 0 or wm = 0 
(and so n + m must be a power of 2). 

Actually, if n + m = 2* and 77—>5wxSWIisaw + w-dimensional bundle satisfying 
the above conditions, then we can show that (77 —+ ST x S"1) U (R2(n+m>> —» /?) is the fixed 
data of an involution. Therefore, the next step will consist in restricting the occurrence 
of these bundles. 
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2.1 The above bundles can occur only for (n, m) G L2. Let (X,xo), (Y,yo) be compact 
CW-complexes with basepoint, and let KO(X) denote the (real) reduced Grothendieck 
ring of X. According to [4; 2.4.8], one has 

KO(Ix Y)^KO(X)eKO(Y)eKO(XAY). 

The proof of this fact, which is based upon arguments involving split exact sequences, 
yields precisely the following: if p\\X x Y —> X, p2\X x Y —> Y are the projections, 
i\ :X —> X x 7 is the inclusion x i—• (x,yo) and q:X x Y -—> X A Y is the quotient map, 
then given a G KO(X x Y), there are elements b G KO(̂ T A F) ,cG KO(y) such that 
a=p*li*l(a) + q*(b)+p*2(c). 

We then have, in particular, that there are bundles P —> S1*™, g —* S"1, so that the 
bundles rj mdp\i\(r]) 0 q*(P) ®p2(Q) are stably equivalent. Letting W(F) = 1 + f̂ +m, 
JF(0 = 1 + vm, one then has 

1 + Wrt + Wm + WW+W = (1 + W„)(l + ? * ( 0 W , ) ) ( l +P2(Vm)) 

= 1 + Wn +p*2(vm) + W^(vm) + ?*(0Wm). 

Hence/^(vm) = ww, and so wnpl(vm) = wnwm = 0. It follows that q*(Wn+m) = wn+w, 
that is, Wn+m T̂  0. But Milnor [3] shows that n + m = 1, 2, 4, or 8 in that case. Since 
n < m, n + m = 4 or 8. This completes 2.1. 

Since in each case rj has the same characteristic numbers as (£%, (Af, T) is bordant 

Finally, suppose n = m, with W(r]) = 1 + wn + w2n. As before, we then have s = 2n 
and w2n 7̂  0. Assuming first wn ^ 0, we may obtain the bundle p*(j]) over S" with non­
zero Whitney class wn(r]) by choosing suitable inclusion/7: S" —> S" x S". Hence n — 1, 
2, 4 or 8 in that case. Otherwise, if wn = 0, we can use the arguments and terminology 
outlined before to obtain 

1 + w2n = (\+q\W2n))(\ +/>2*(v„)) = 1 +p*2(vn) + q\W2n). 

Thus W2n ^ 0 and so n = 1, 2, or 4. In any case, (n, m) GL and (AT, T) is bordant to 

3. The general case. Let (AT, <D), <D = (Ti, T2,..., 7*), be a (Z2)*-action with fixed 
data T] — ©a^(o) £a —* F. For each a ^ (0), let fa:(Z2)

k —• Z2 = {+1,-1} denote the 
homomorphism given by^(7/) = (— l)a/. We note that ker(fa) is isomorphic to (Z2)

k~l. 
Let F be ay-dimensional component of F and let Na represent the fixed point set of the 
action (AT, ker(/a)). If T £ ker(/a), then ea —• F is a component of the normal bundle 
to the fixed point set of the manifold with involution (N*a, T\^ ), where hfa represents the 
component of Na containing F . 

Suppose now that (AT, O) has F® = ST x S7" Up as the fixed point set, and denote by 

V(0) J V(0) y 
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the fixed data of O. 
For each a, denote by Sa the component ofFkeT^ containing S" x S™ and by Pa the 

component containing/?. Let a be chosen so that dim(Pa) > 0, and take T £ ker(fa). 
Since an involution cannot have precisely one fixed point [6; 25.1], the fixed set of the 
involution (Pa, T) is Sn x Sm Up, that is, Pa = Sa. But then, by the previous section, 
dim(Pa) = 2(n + m) and (Pa, T) is bordant to (Wl%+m\Tn,m) for some (n,m) E L, and 
the normal bundle ea in that case has w„+w(£a)[5

?z x 5™] as the only non-zero Whitney 
number; throughout, we will denote these bundles by ry. Evidently, dim(/xa) = 2(n + m) 
in that case. 

Suppose next that dim(Pa) = 0; taking again T £ ker(/^), one has that (Sa, T) is an 
involution fixing ST x ST. Since W(S" x ST) = 1, it follows by [6; 25.3] that ea -* Sn x Sm 

bounds. In that case, if dim(£a) = « + m, we have that ea is bordant to the tangent bundle 
over S" x S™; throughout, we will use the notation Y —-> 5" x S™ for these bundles. 

There is at least one ao with dim(Pfl0) > 0; otherwise r = 0. Denote by 

VJy "C * Pa0 
c 

the fixed data of the action (Af^ker^)) restricted to Pao, where c runs through the 
2k~l — 1 nontrivial representations of ker(/a0). 

As described before, for each c there is a corresponding subgroup (Z\~2)c of ker(/^0); 
if we take 7 £ keifl^) and S G ker(/"ao), but S £ (Z£~2)c, then the subgroups (Z§_2)c® (r) 
and (Z2_2)c0 (ST) of (Z2)* determine representations aCl, aC2 so that $c |# xs* = £ac 0£«c 

and ïïclp = [iac ®/iflc . We assert that eflc 0 eac is either 77 0 Y or 0 0 0. In fact, 
suppose that dim(£ÛC2 ) > 0 and ea bounds (that is, dim(fj,ac ) = 0). Then dim(/xaci ) = 
dim(//flci ) + dim(/iÛC2 ) = dim(#c) > dim(eac2 ) > 0. As we have seem, eQcx = rj and 
dim(/iac ) = 2(n + m); hence dim(eûc ) = 2(n + m) — dim(r/) = n + m. That is, £flc = Y. 
In particular, we have proved that, for each a, dim(ea) is either « + wor zero. So, if we 
suppose on the other hand that eQc = rj, then dim(/xflc ) = 2(w + m) and so « + m + 
dim(£ÛC2 ) = 2(n + m) + dim(/iflc2 ). It remains dim(eac2 ) = n + m and dim(/iac2 ) = 0, that 
is, eac2 = Y. 

Since eao = r/, one has thus that the number of bundles ea = r/ is equal to one 
plus the number of bundles £a = Y ; we assert that this number is 2' for some 0 < 
t < k — 1 and that the bundles r/, Y and 0 are settled in the fixed data of (AT, O) in 
the same manner as the bundles £ ^ , 7(5" x Sm) and 0 are settled in the fixed data of 
(T^,t+\(^l^m\Tn,m) for some a G Aut((Z2)*). Indeed, suppose inductively the fact true 
for (Z2)*-1 -actions. Considering k > 1, there is at least one 71 G (Z2)* such that the 
component of FT containing/?, which we call (FT)P, has positive dimension. To simplify 
notation we may suppose T — T^ (it suffices to take an automorphism (Z2)* —» (Z2)* 
carrying Tk into T). On Fjk one has an induced action *F of (Zif~x, the group generated 
by JTI , 72, . . . , Tk-\. Since a (Z2y-action cannot fix precisely one point [6; 31.3], the fixed 
set of ((FTk)p, *F) is S" x S"1 U/?. Let 0 —> ( F ^ denote the normal bundle to ( F j ^ in 
AT. Since Tk acts as —1 in the fibers of 0 , one has 

©1^x5^ = ((B£(c,l)) 0 £(0,1)-
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The fixed data of ((FTk)p, ¥ ) restricted to S" x &" is 

0^(c,O). 
c 

But the induction hypothesis guarantees that this latter fixed data contains 2 ' - 1 bundles 
£(c,o) = rç> 2'"1 — 1 bundles £(c>o) = Y and 2k~l — 2* bundles t(C$) = 0 for some 
1 < t < k— 1 ; moreover, these bundles are settled in that fixed data as the corresponding 
bundles are settled in the fixed data of prk-\Wfy+m) ,Tn,m), for some p G Aut((Z2)*-1). 
Hence, if we assume £(o,i) = 0 and e^\) = 0 for all c, the fact is proved. Otherwise, the 
preceding comments imply that at least one of these bundles, say e^,\), must be 77, which 
is the normal bundle to S" x ST1 in P{ht\y One has, as before, the fixed data 0C #c —• 
P(hti)>

 a n d for each c the decomposition ïïcl&xsr = £aC{ 0 £aC2 with the bundles ea , 
zQc corresponding, respectively, to the subgroups (Zk~2)c 0 (7*) and (Z* -2^ 0 (ST*) 
(observe that 7* ^ ker^i ) ) ) . But it can be seen that 7* acts trivially in the fibers of 
eacx, and as multiplication by —1 in the fibers of eaci. It follows that eac^ is of the form 
£(b,o) while £ac is of the form £(Vi\)9 v ^ h. In this manner, the occurrence of the bundles 
77 in the fixed data of O is given by £(h,\), by the 2 ' - 1 bundles £(Cjo) given by induction 
hypothesis and by the 2*~l — 1 bundles £(v,i), v ^ /*, corresponding to the 2 ' - 1 — 1 
bundles £(b,o) = Y of the induction hypothesis. So, this number is 2'. To analyse the 
order of the bundles we note first that the condition ker(/^o)) = (Z2)

k~2 0(7*) implies 
that ker(/^,i)) = {Z2)

k~2 ® (57^), where the sum & + h is taken modulo 2. This means 
that (v, 1) = (b + /z, 1), and hence the fixed data of (AT, O) obey the following rule: 
if £(6,o) = 77, Y or 0, then £(&+/&,i) = Y, 77 or 0, respectively. By observing (by direct 
inspection) that for each representation (h, 1) there is automorphism a\ (Z2)

k —-> (Z2)* 
such that the fixed data of aTk

+l (Wfy+m\ rn,m) has e(Af 1} = ^ and also the part 0 C e(Cf0) 

equal to the fixed data of Tk
t~\W2{£m\Tn,m\ and that the actions oTk

t+l(Wf£m\Tn^) 
obey the same above rule, the fact is proved (observe in the above proof that we may 
suppose that the part ®c e^ss) of the fixed data of (AT, O) behaves as the fixed data of 
T^k~l (Wj^m\r„tm); indeed, it suffices to take the automorphism (Z2)

k —-* (Z2)
k which 

restricted to (Z2)*-1 is p~x and which carries 7* into 7*). 
Next consider the homomorphism 

5 : ® ^ v , x ; , . . . ^ _ 1 _ 1 ^ _ 1 _ , ( ^ ' 2 * - 0 - ^ - M n24_,_,(Z2,2A-1 - i) 

of the Stong's sequence [8, 4.3]. Rewriting the fixed data of (AT,0) as (0y£y —• 
SP x ST)\J (®jHj -> p),j = 1,2,...,2* - 1, and according to [7, 8.7], one has 

s[®j£j ^srxS"1] = [A0(e2e(&3(8)A))0(£4e(£5^A))0- • -e^^eo^-i®*)) -* 
RP(ei)] G 5\£-i(BO(l) x BO(«i) x • • • x BO(/i2*-i_i)), where A —• RP(ei) is the line 
bundle. Now, for / = 1,2,4, or 8, suppose that there are £y,, ej2 withy 1 ^j2, v/(£y,) = 7i 
and v/(ey2) = 72, where 7/ = p*(1),Pi'. S? x Sf —> & are the projections (for / = 1,2) and 
7 G //%S\Z2) is the generator. By computing characteristic numbers one may see then 
that S[0y ey —* S1 x &] is nonzero; in the same way, one may see that S[®j p>j —+ p] is 
zero. 
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On the other hand, if (H, m) G L2, the Milnor's result [3] implies that vm(ej) = 0 for 

any/ 

The above facts imply that (©, e,r —* S" x ST1) U (©y /x, —> /?) is bordant as an el­
ement of fAÊ+w(BO(«i) x • • • x BO(«2*-i)) to the fixed data of (replacing / + 1 by i) 

ar^(Wl^m\T^m) for some a G Aut((Z2)
A:), and so the proof is complete. 

It is interesting observing that the above proof serves also to extend, for (Z2/-actions, 
the previously mentioned Conner-Floyd's result; it is the following 

THEOREM. If (AT, O) is a (Z2)
h-action with fixed point set ST Up, then n = 1,2, 4, 

or 8 and there is an integer t, 1 < t < k, and an automorphism a: (Z^f —* (Zif such 
that r = nl* and (M", O) is bordant to cjTk

t(KnP(2\ T„). 
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