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Introduction. The numerical range of a bounded linear operator A on a complex Hilbert
space H is the set W(A) = {(Aff): | / 1 | = 1}. Because it is convex and its closure contains the
spectrum of A, the numerical range is often a useful tool in operator theory. However, even
when H is two-dimensional, the numerical range of an operator can be large relative to its
spectrum, so that knowledge of W(A) generally permits only crude information about A.
P. R. Halmos [2] has suggested a refinement of the notion of numerical range by introducing
the ^-numerical ranges

Wk{A) = \-tr(PA):P = projection of rank fci
[k J

for k = 1, 2, 3, . . . . It is clear that W^A) = W(A). C. A. Berger [2] has shown that Wk(A)
is convex.

In Section 1 of this paper we obtain a few additional results about ^-numerical ranges,
including a description of Wk(A) for normal matrices A. In Section 2 we introduce another
generalized numerical range if (A), which by definition consists of the diagonals of all matrices
that are unitarily equivalent to A. A theorem of Horn [3] shows that i^(A) is convex if A is
a Hermitian matrix; this can fail for normal matrices of order ^ 3 [5, 7]. By computing the
convex hull of 1V(A) for normal matrices A, we obtain a generalization of a result of F. John
[4]. Finally, in Section 3 we exploit the connection between ^(A) and fc-numerical ranges to
obtain a simple proof of Horn's result.

1. ^-numerical ranges. Throughout the paper H is a complex Hilbert space of dimension
n < oo, and A is a linear operator on H. We begin by listing some elementary properties of
Wk{A).

THEOREM 1.1. For any operator A on H,

(i) Wk(A) is convex and compact.
(ii) (n-k)WH.k(A) = tv(A)-kWk(A) (k = 1, 2 , . . . . n-1).

(iii) W^U-UU) = Wk(A) if U is unitary.
(iv) Wn(A) = (lln)tt(A), W,{A)=W{A).
(v) Wk{A) contains each normalized sum

of eigenvalues of A.
(vi) Wk+1(A) <= Wk{A) (k = 1, 2 , . . . , n-1).

Proof. As mentioned in the Introduction, the convexity of Wk(A) was proved by Berger.
The rest of (i) follows from the continuity of the trace and the compactness of the set of rank
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k projections. Statements (ii), (iii), and (iv) are clear from the definition. Assertion (v) is an
immediate consequence of (iii) and the fact that A is unitarily equivalent to a matrix in
triangular form. The inclusion in (vi) will follow from Theorem (1.2) and the fact that if
O ^ X£ /and tr(A') = k+l, then

1 1
k + l k

where

Note that if k = 1, then (v) reduces to the familiar fact that the numerical range contains
the spectrum.

THEOREM 1.2.

Wk(A) = \-tr(XA):0 g X^I, tr(X) = fci.

In order to prove Theorem 1.2 we need two lemmas.

LEMMA 1.3. Let Pk be the set ofn-tuples (,Pi,p2, • • • »/>„> satisfying 0 £p, £ 1,

Then Pk is compact and convex, and the set E x t ^ ) of extreme points ofPk consists of all vectors
with k coordinates equal to 1 and the rest equal to 0.

Proof. Ifp = (Pi,p2, • • •.Pn) belongs to Pk and if 0 <p t < 1, 0 <p, < 1 for some i&\,
because k is an integer. If e = mm{pupi, 1—Pi, 1— pi}, thenp = i(p'+p"), where

P' = (Pi-*>P2> ••

p" = <J>i+e,P2, .-^Pi-e, . . . , />„>.

Since />', p" belong to Pk, it follows that p is not an extreme point of Pk. The same argument
clearly works for the other coordinates of p. Hence if p is an extreme point, then each pt is
either 0 or 1. Thus exactly k coordinates of/? equal 1 and the others are 0. Conversely, it is
clear that each such vector is an extreme point of Pk.

LEMMA 1.4. The convex hull of the set of Hermitian projections of rank k consists of those
operators X satisfying 0 ^X^I, tr (X) = k.

Proof. Suppose O^X^I and tr(X) = k. By the spectral theorem we can write

X = Y, ^t^i> where the E; are mutually orthogonal projections of rank 1, and the A, are the
> = 1 n

eigenvalues of X. Then 0 ̂  A( ^ 1 and £ Xt = k, and Lemma 1.3 implies that A'is a convex
i = l

combination of projections of rank k.
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The converse follows from the obvious fact that the set of operators X satisfying
O ^ X ^ / and tr (X) = k is convex and contains the projections of rank k.

There is another way of expressing Lemma 1.4 which seems of independent interest. Let
<Sk be the positive cone generated by the projections of rank k, i.e., <<?fc is the smallest set that
contains all such projections and is closed with respect to addition and multiplication by
non-negative scalars.

COROLLARY. <gk = {X £ 0: tr(X) ^ k \\ X \\}.

Proof of Theorem 1.2. If O g X ^ / and tr (X) = k, then by Lemma 1.4I = ^a ,F i i s a
i

convex combination of projections of rank k. Hence

is a convex combination of the points (l/fc)tr(f tA)e Wk(A). Using Berger's result that Wk(A)
is convex, we find that (l/fc)tr(X4)e Wk(A). This proves one of the inclusions asserted in
Theorem 1.2. The other is trivial.

THEOREM 1.5. If A is a normal operator on H, then

Ext Wk(A) c | l(A

the set of normalized k-fold sums of eigenvalues of A.
n

Proof. By the spectral theorem, we can suppose that A = £ Af £() where the Et are
i = i

mutually orthogonal projections of rank 1.
Suppose that A = (Ilk) tr (PA) belongs to Wk(A).

Then

Since ti(PE,) = tr(P2Et) = ti(PEtP) ^ 0, the n-tuple with coordinates tr(P£j) belongs to Pk.
By Lemma 1.3 there are numbers au xi} such that

0 g a, g 1, I o, = 1, tr (P£,.) = £ a, xy,

where, for each /, exactly fc of the xti are 1 and the others are 0.
Hence

A = -kY A,tr(P£,) =

Now (l/A:)^x,^A; is, for each /, a normalized Mold sum of eigenvalues of A. Thus each

XeWk(A) is a convex combination of normalized A:-fold sums of eigenvalues. Since these
sums are in Wk(A), the proof is complete.
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REMARK. Theorem 1.5 includes the known fact that the extreme points of the numerical
range of a normal operator are eigenvalues. This is also true if H is infinite-dimensional [6].

2. Diagonals of matrices. Our interest in ^-numerical ranges arose from their connection
with an unsolved problem in matrix theory. Given n complex numbers Xu X2,..., Xn, the
problem asks for necessary and sufficient conditions on \iu \i2,...,\in in order that there exist a
normal matrix with eigenvalues Xt, X2,... Xn and main diagonal <^1} \.i2,..., /*„>. Equivalently,
if A is a given normal matrix, to determine which n-tuples <ju,, n2, ••• A O c a n serve as the
diagonal of some matrix unitarily equivalent to A. Or again, to characterize the n-dimensional
numerical range if (A) consisting of «-tuples of the form ((Afu/i), i4f2, f2), ..., (Afn,/„)>,
where the/) form an orthonormal basis of H. In the case in which A is Hermitian the problem
was solved by Horn [3].

THEOREM 2.1. if (A) is arcwise connected for any matrix A.

Proof. If eu e2, • •., en is a fixed orthonormal basis of H, then any point in if (A) has the
form

{{U-'AUe,, e,), {U~lAUe2, e2), ...,(U~'AUen, *>„)>,

where U is a unitary operator on H. The theorem is therefore an immediate consequence of
the well known fact that the group of unitary matrices is arcwise connected.

If A = (Xu X2, ..., An> is a complex n-tuple and n is a permutation of the numbers
1, 2 , . . . , n, let AB be the n-tuple <A(t(1), kn(2),..., An(n)>, and let #f(A) denote the convex hull
of the vectors An.

THEOREM 2.2. If A is normal with eigenvalues Xu A 2 , . . . , An, then 3V(X) = ^i^(A) (the
convex hull of-W(A)).

Proof. Clearly each An belongs to iV(A) and therefore 3V(A) c <6W(A). To complete
the proof, it is enough to show that iV{A) cr j^(X).

If fieiT^A), then there is an orthonormal basis fuf2, •••,fn such that {it = (4/)./i) for
i = 1, 2, . . . , « . If ex, e2, • • •, en are the eigenvectors of A corresponding to Xu X2, ..., kn,
then a computation shows that fi = PX, where Pu — | ( / , , ej)\2. Since P is clearly doubly
stochastic,! it follows from a theorem of Birkhoff [3] that fi belongs to

REMARK. Lerer [5] gives an example of a 3 x 3 unitary matrix A with the property that
if(A) is a proper subset of 3^(X). Theorem 2.2 therefore implies that in general if (A) need
not be convex.

THEOREM 2.3. Let Abe a normal matrix with eigenvalues XUX2,..., Xn, and for fieC let
) denote the convex hull of the set of normal matrices with spectrum the set of coordinates

ofn. Then

t A matrix with non-negative entries is doubly stochastic if the sum of the entries in each row and
column is 1.
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Proof. Let \p] be the diagonal matrix whose main diagonal is fi. Then (diag(r), \i) =
tr(r[/i]*) for any matrix T. Hence by Theorem 2.2,

0?f(A), n) = V(iT(A), n) = <f{(diag(tf "Ml/), /t): U unitary}

r(£/ ~ iA U In)*): U unitary}
1)*): Uunitary}

COROLLARY 1 (F. John [4]). For any subset a o/R", let Cia) be the set of all Hermitian
matrices A with ^f(A) <=. a. If a is compact and convex, so is C{a).

Proof. If a is the half-space {!; eRn: (<!;, n) 2: r}, then by Theorem 2.3 a Hermitian matrix
/4 belongs to C(CT) if and only if tr(̂ 4J5*) ^ r for all matrices B that are unitarily equivalent
to [p]. From this description it is clear that C(a) is closed and convex. If a is compact and
convex, it is an intersection of closed half-spaces, and C{&) is therefore an intersection of
closed sets. Thus C{&) is closed and convex; because it is bounded it is compact.

Theorem 2.3 yields another proof of Theorem 1.5:

COROLLARY 2. If A is normal with eigenvalues Als A 2 , . . . , An, then

(fe = 1,2,...,n).

Proof. kWk(A) = <${tr(AP):P projection of rank k}

= {tT(AB*):BeC(jik)}

^fc): 7i permutation},

where /^ is the vector with the first k entries equal to 1 and the rest equal to 0.
The next theorem indicates a connection between fc-numerical ranges and diagonals, and

includes several results of [1].

THEOREM 2.4. If A is a matrix, then Ae Wk{A) if and only if"W{A) contains a vector with
at least k coordinates equal to A.

Proof Without loss of generality we may suppose that A = 0. If P is a projection, let
CP(A) = PA |P(H) be the compression of A to the range of P. A simple computation shows

Now if Oe Wk{A), then there is a projection P of rank k such that tr (PA) = 0. The
operator CP(A) then has trace 0 and hence, using a result from [1], we can choose an ortho-
normal basis / „ ... ,fk of P(H) such that (Af^f,) = {Cp(A)fiJd = 0 for / = 1, 2 , . . . . k. If
fk+ ! , . . . , /„ form an orthonormal basis of P(H)L, then the matrix of A relative to the basis
/i>/2> •••>/>! has at least k zeros on the main diagonal.
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3. Diagonals of Hermitian matrices. For the remainder of the paper A will denote an
n x n Hermitian matrix (« ^ 3) with eigenvalues Xl ^ X2 ^ . . . ^ Xn and corresponding unit
eigenvectors eu e2, ...,en.

LEMMA 3.1. If fie W(A), there is a unit vector f such that (Aff) = n and

kW^Ai) = kWk(A)r\((k+ l)Wk+l(A)~n),

where A t is the compression of A to the orthogonal complement off, and k = 1,2, . . . , n-\.

Proof. Choose the largest integer / such that fie [Xt, Xi+l]. Since A is Hermitian there
is a unit vector / i n the span of e,- and ei+l with (Aff) = //. Define

k k+l

pk

r k

= max^ £ XJt
U=i

= mini £ Xj, Y. Xi~R-
U="-*+l j = n-k J

It will be shown that each side of the above equation is [ak, f}k].
A real number x belongs to the interval [ak, pk] if and only if

1 n-k+l

k+l n

1 n-k

Theorem 1.5 shows that these conditions are respectively equivalent to

xekWk(A), x+ne(k+l)Wk+l(A)-
This proves that

[a,, ft] = kWk(A)n((k+ l)Wk+i(A)-ti-
k

Now kW^Ai) is the set of all sums £ (Agp gf) where glt g%,...,gk are orthonormal
j = i k

vectors in {/J1. Hence clearly kWk{Ax) c k\Vk(A). It is also clear that £ (Agp g})+{.AfJ)

belongs to (k+ l)Wk+1(A). Therefore

kWAAJ c kWAA)n((k+l)Wk+1{A)-n)-

To prove the reverse inclusion, it suffices to prove that the numbers ak and fik belong to

kW^Ai). Note first that <xk is V X, or ^ X,-n according as Xk+l ^ n or Xk+1 > ft. If

•^t+i ^J" then / i s orthogonal to eu ...,ek, and s o a t = £ A/efcWr
t041). If Xk+1 > \i t h e n /

is in the span of e,,..., ek+ x; let g be the projection on this span and P the projection on the
k+l

orthogonal complement o f / i n this span. Then tr(QA) = tr (PA)+n and tr (QA) = £ XJt so
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that

and akekWk(Ai). The proof is completed by arguing similarly for fik.
The last part of this proof can be based on the fact, proved in [7], that the spectrum of A{

consists of A,+A(+1-/z and the points Ay with; # i, i+1.
It is now easy to obtain Horn's characterization of

THEOREM 3.2. Let A be annxn Hermitian matrix with eigenvalues X = (_XU X2, ..., An>,
and let \i = (\iu y.2,..., fin}. The following are equivalent.

(i) fi
(ii) n

(iii) n

for each choice of subscripts and k = 1, 2 , . . . , « .

Proo/. The equivalence of (i) and (ii) is an immediate consequence of Birkhoff's theorem
(see [3]). Moreover, it is obvious that (ii) implies (iii). We show that (iii) implies (ii).

Choose a unit vector/! such that (Afuf^) = fit as in Lemma 3.1, and let Av be the com-
pression of A to the orthogonal complement of fv. If j ^ 2, then (il+nJe2W2(A); hence

by Lemma 3.1. Also, if j ^ k andj, k^.2, then

The argument can now be repeated with At replacing A. This gives a unit vector f2 in
{fi}1' such that (Af2,f2) = (A1f2,f2) = n2. Also, if ^42 is the compression of At to
{/i}xn{/2}x, then as before

Hj+Hke2W2(A2),

for;, k k 3 and j V A:.
The proof is completed by n— 1 repetitions of the same argument.

REMARK. We observed earlier that in general iC(A) ^ 3V{X) for normal matrices. The
reason for this is that Lemma 3.1 fails. For example, let A be the 3 x 3 diagonal matrix with
non-collinear eigenvalues Xu X2, A3, and let n = ^ + | A 2 . Let/be any unit vector such that
(Af,f) = n, and let Al be the compression of A to {/}x. If z — $X2+$X3, then z belongs to
Wi{A)r\{2 W2{A)-y). However, it is easy to see that W{A J is the line segment \\Xy+$X2, A3]
(see [7] for example) and this does not contain z.
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