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THE FIXED POINT PROPERTY IN ¢y

ENRIQUE LLORENS-FUSTER AND BRAILEY SIMS

AssTrRACT. A closed convex subset of ¢ hasthefixed point property (fpp) if every
nonexpansive self mapping of it has afixed point. All nonempty weak compact convex
subsets of ¢y are known to have the fpp. We show that closed convex subsets with
a nonempty interior and nonempty convex subsets which are compact in a topology
dlightly coarser than the weak topology may fail to have the fpp.

1. Introduction. We say aclosed convex subset of the Banach space (X, || - ||) has
the fixed point property (fpp) if every nonexpansive mapping T:C — C has a fixed
point. Here, T nonexpansivemeans || Tx— Ty|| < ||x—y]|, for al x,y € C. Weask which
nonempty closed bounded convex subsets of ¢, enjoy the fpp?

It is now well known that all nonempty weak compact convex subsets of ¢y have the
fpp [Maurey, 1980]. On the other hand, closed bounded convex subsetswith anonempty
interior always fail to have the fpp, Proposition 1 below. That sets without interior may
aso fail to have the fpp is demonstrated by B; := {(x) : 0 < X, < 1, al n} onwhich
T: (Xn) — (1, %1, X, .. .) isafixed point free isometry.

We refine this last example by showing that closed bounded convex subsets of ¢
which are compact in a locally convex topology only ‘slightly’ coarser than the weak
topology may fail to have the fpp. Thislends support to the following.

CONJECTURE. In ¢q the only closed bounded convex subsets with the fpp are weak
compact.

ProrosITION 1. Let C be a closed bounded convex subset of cy. If the set C has an
interior point then C fails the fpp.

ProOOF.  Without loss of generality we may supposethat 0 € int (C), so there exists
e > Osuchthat B[O, ] C C.
We define R: C — B[O, ¢]* by

R((x(n))) = ((|x(n)| A s))

where [x(n)| Ae := min{|x(n)], £}, and B[O, £]* = {(x(n)) € B[O, ] : x(n) > 0}. Inorder
to prove that Ris nonexpansive, we apply the well known James-Birkhoff inequality:

lane—bAe| <|a—Db|, foreveryab,seR.
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Therefore we have:
IR6) — RW)I| = sup{| Ix()] Ae — [y Ae|:n=1,2,...}
< sup{| ()| = [yM)| | :n=1,2,...} < [x—y].
Now we define the mappings S B[O, €]* — B[0, £]* by

s((x(n))) = (2D, X)),

andT:C— B[0,e]" by T:= SoR.
Thismap T is anonexpansive selfmapping of C. If there existsx € C with T(X) = X,
then x € B[O, ¢]*, R(X) = x, and T(x) = S(x) = x, acontradiction. ]

2. TheE-topologyoncy. Letd:=(1,1,1,...,1,...) € {5 = ¢, and let E be the
closed subspaceof (1 givenby E := ker(d). Thatis, E = {(y(n)) € 1 : Zy(n) = 0}. By
[Guerre-Delabriere, 1992, Lemma 1.1.11] E isa norming subspacefor cq. Alternatively
itiseasily verified by direct calculation (see, for example, Lemma 2.8 below) that in this
case

2o < SUB{(Y) £y € E, Iyl < 1} < [
where (x,y) = Y x(K)y(k), as usual. Consequently E separates points of ¢ and so, by
[Jameson, 1974, 27.3], the set E isdensein ¢ = (1 with respect to the weak™ topology.
We consider ¢ equipped with the topology E := o(co, E). That is, E is the smallest
locally convex linear topology on ¢ making continuous all the elements of E (as linear
functionals on ¢o).

Thetopology E may be seenas'slightly’ coarser than the weak topology on ¢y, being
induced by anorming codimension one subspace of cj. It displays some unusual, though
not too pathological, properties. For example, the following five propostions can be
proved by more or less standard methods of locally convex space theory.

PrROPOSITION 2.1.  Thetopology E consist of (), co, all finite intersections of the sets

{(x(n)) € co:a< S xMyM) < b, S y(n) = o}
and all arbitrary unions of these finite inter sections.
ProPOSITION 2.2.  E is Hausdorff.

PROPOSITION 2.3. A sequence (xn) in o is E convergentto x € ¢ if and only if for
everyy € E,

<Xnvy> - <X- y).

ProPOSITION 2.4.  Every E-convergent sequenceis bounded.

PROPOSITION 2.5. Let M be a bounded subset of ¢y and let x € E-cl M. Then there
. . E
exists a sequence (xn) in M such that x, — x.

On the other hand, we have some results which are specific for the topology E.
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REMARK 2.6. The sequence(d,) in ¢, given by
d,:=(,...,1,0,0,...)

N —
n

E-converges to 0, but (d») does not have weakly null subsequences. Indeed, for y =
(v(m) € E,

n
(dhy) = 2-¥6) — 0, asn— oo
=
Note that (dy,) is the standard summing basis for co.

REMARK 2.7. Let (xn) be asequencein co which is E-convergent to x € co. Since,
thevectory := (1,...,1,—k,0,...) belongsto E, we have

N e/

k
Xn(1) + -+ -+ Xn(K) — kn(k +1) — x(2) + - - - +x(k) — kx(k + 1)

and so
Xa(1) + - - +Xn(K) X(1) +--- +x(k)
k k

Necessary conditions such asthis help provide a better understanding of E-convergence.

— Xa(k+1) — — x(k+1).

LEMMA 2.8. For every element X = (x(n)) € ¢y there exists a sequence (yn) in E
suchthat ||ya||2 = 2 and
(X, yn)| = [IX]-

ProoF. Takex(l) € {x(n) : n € N} suchthat |x(l)] = ||x|| and define
Yn:=(0,...,0,1,0,...,0,—1,0,...)
N/ N/
| n
Clearly ||yn||s = 2 and
|06 yn) = XA) =x(n+ D] — [x()] =[x, asn— oo.

PROPOSITION 2.9. If a sequence (x,) in C, is E-convergent to x € ¢ then ||x|| <
2liminfy, [|%||-

ProoF. Takey € E. We have
[ V)| = lim|(xq, y)| < [[yl|2 liminf [|x,]]

We now apply the above lemma, to obtain a sequence (yn) in E with ||yn||1 = 2 such
that
[ yn)l = [Ix]l,  asn— o0
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and therefore the last inequality gives, forn=1,2,...
|06 yn)| < [lyall2 liminf {|xm||.
Taking limits we obtain the conclusion:

I = (6 yn)| < 21iminf ||| =

lim |
N—oo

REMARK 2.10. Thebound 2 inthelast inequality cannot be improved. For example,
if we consider the sequence (d,) C ¢ defined above in Remark 2.6, then for e; =

1,0,....)wehaved, — 2e1£> —2ey, but
|| — 2e1|| = 2= 2liminf ||dy — 2e4]|.

REMARK 2.11. There exist bounded, convex, norm-closed sets which are not E-
closed (That is, we do not have a Mazur’s theorem for the E-topology). To see this, let
K be the norm closed convex hull of theset D = {d, : n = 1,...}. Obviously every
convex combinationy of vectors d, must verify y(1) = 1, and so ||y|| = 1. Therefore

0=E —limd, ¢ K,
and K is not E-closed.

REMARK 2.12. Theright shift S:co — ¢ is not E-continuous. Indeed, the sequence
(dn) is E-convergent to 0 but for y € E with y(1) # 0 we have

(Sth).y) = 3¥0) = (230) — ¥ — (1), asn— oo
j=2 j=1

and so (S(dy)) doesnot convergesto (0).

PROPOSITION 2.13. A sequence (Xn) in Cp isweakly convergentto x € ¢ if and only
if (S(xn)) is E-convergent to S(x).

PROCF.  Since the right shift Sis weak continuous we have that if x, 2 X then

S(Xn) = S(X), and so S(xn) E S(X). Conversely, for every y = (y(1),y(2),...) € {1 we
have that

V= (~Zy0y0Y@....) €E

E o ~ . ~
If S(Xn) = S(X) then (S(xn), ¥) — (S(X),¥). Butit is easy to seethat (S(xn),¥) = (Xn,Y)
and (S(x),¥) = (x,y), which yields the conclusion. n
E-convergence can also be related to weak* convergencein ¢ = (..
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PROPOSITION 2.14. For a bounded sequence (xn) in co we have for the following
conditionsthat (i) = (ii) = (iii).

(i) For some A1 we haveX, N A1d.
.. E

(i) xp — 0.

(iii) Thereexists a subsequence (X, ) with X, v, A2d, for some ), € R.

ProOOF.  If X, v, A1d, then for f € kerd we have f(xp) = % (f) — \d(f) = 0, so
@) = (ii).

Suppose X, = O and let fo := (1/2,1/4,1/8,...,1/2"..) € (1, s0d(fo) = 1.
Choose a subsequence x,, such that limy fo(x,,) exists, and equals A, say. Then for f €
¢y = (1 wehavef = d(f)fp + g, whereg = f — d(f)fo € E = ker(d), and so %, (f) =
f(n) — d(f)X2 = X2d(f). Thus(ii) = (iii). n

3. ¢ofailsthe E-fpp. Letdy:=Oandforn=1,2,3,... defined, as above;

dh:=(1,...,1,0,0,...)
_,—d
n

To demonstrate the failure of the E-fpp in ¢o, we show that
K :=co{d}r2o

consisting of vectors of the form
2 Anth = (1= 20, 1= (Ao + A1), 1= o+ Ar+A2),...),
n=0

where \n > 0and =22 An = 1, is a E-compact convex set which admits a fixed point
free affine isometry. Indeed T defined by

T(1— X0 1= o+ A)....) ==L 1— )Xo, 1= (Ao+A),...)

is such a map. The proof of these claims occupies the remainder of this section and is
contained in the following lemmas.

LEMMA 3.1. For the mapping T defined above we have
(i) TmapsK into K,

(i) Tisanisometry,

(iii) Tisfixed point freein K.

Proor. To establish (i) it sufficesto note that for An > 0 and 22 An = 1, we have
T(Z Andn) = (L1 o1~ (ho+ X))
n=0

)\n_]_dn S K

gk

1

>
Il
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(ii) follows, sincefor x = (1— Ao, 1— (Ao + A1), ...) andy = (1— po, 1— (o +pa), -..)
we have that
[T = Ty|l = [[(0, o — Ao, ko + 112 — Ao — Ax, .. )|
= [[(o — Xo, o + p11 — Ao — Az, )|
= [[x=yl.
Finaly, if x = (1 —Xo,1—(o+ )\1),...) were such that x = Tx = (1,1 — o,

1—(Ao+)),.. ) then wewould have A\g = 0, A1 = 0, ... contradicting the requirement
that >, An = 1. Indeed, T(0) = (1,0,0,...) # 0, and so we have (jii). -

LemMA 3.2. K isE-closed.
Proor. Forn=1,2,...let

o0
Xn = l;)xﬁ")dk =@ - 2AP, 12D 20y,

where A" > 0 and 32, A" = 1, be such that x, B = (s tar. ).
Choosing f := (1,-1,0,0,...) € Ewehave
o =2 = L= A0 —p2) = (@ =AY = AP — o) — 0.
Thatis,
A(ln) — M1 — p2.
Similarly, choosing f := (0,1,—1,0,0,...) weobtain

)\(zn) — 2 — U3,

and in genera

)\(kn) — Mk — Hk+1-
Thus, fork=1,2,...

Ak I= ik — fkel = Iilr1n>\(k”) >0
and
X = (p1, 41 — A1, b1 — A1 — A2,...) € Co.

So we must have .

p1= > A >0,

k=1

and then, provided i1 < 1,

X= Z )\kdk cK
k=1

But, givene > 0 there exists N so that

00 N
pr= > A< D Ate/2,
k=1 k=1
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and there exists n for which
M — A" <e/2N, fork=1,2,...,N.
Thus,
N 00
<Y AV 4e<1+4e, as PN =1,
k=1 k=0

and so i1 < 1, asrequired. n

Since dy £ do, we have that {d,}:>, is E-compact. The E-compactness of K then
follows from Lemma 3.2, the definition of E, and the following general result.

LEMMA 3.3. Let X be a separable Banach space and let M be a closed norming
subspace of X*. If D C X is o(X, M)-compact then co(D) is o (X, M)-precompact.

PROCF.  SinceM isclosed and norming, D isbounded and, equipped with therelative
(X, M) topology, is acompact Hausdorff space. Let C := C(D, o(X, M)), the space of
continuous real valued functions on D with this topology. Then V defined by

V(E)(m) ;= f(mp), forf eC*andme M

is aweak* to weak*; that is, ¢(C*, C) to o(M*, M), continuous linear operator from C *
to M*. Since M is horming, X may be identified with a closed subspace of M* (the space
X, || - |I") is complete, where || x|’ := sup{m(x) : m € M, ||m|| < 1}). It sufficesto show
that V(C*) C X, asthen V(B¢.) is aca(X, M)-compact convex subset of X containing D
(for d € D consider the action of V on d regarded as a point measurein Bc.).
Toestablishthat V(C*) C Xwefirst notethat if f € C* thenV(f) isa(M, X) boundedly
continuous. Indeed, since X is separable, bounded subsets of M are (M, X) metrizable.
So, if (m,) is a bounded sequencein M with m, — min the o(M, X) topology then the
L ebesgue dominated convergence theorem givesthat f(my|p) — f(m|p), asrequired.
Now, supposethereisanf € C* with g := V(f) & X. Then there exists F € M**
with |F|| = 1, F(g) # 0, and F|x = 0. By is o(M**, M*) dense in By, so there is a
net (m) C By with m(m*) — F(n), for all m* € M*. In particular i(x) — F(X) = O,
foradl x € X < M*™. Thatis, m — 0 in the o(M, X) topology, and so since (m) is
bounded g(m) — g(0) = 0. But, g € M* so g(my) = fm(g) — F(g) # 0, acontradiction
establishing the result. ]

4. Further results. In this section we note that the construction of the E-topology
can be generalized to obtain a family of similar topologies for some of which compact
convex sets C may fail to have the fpp even for contractive mappings; that is, mappings
T:C — Csatisfying || Tx — Ty|| < [[x— ||, whenever x # y. Most of the proofs require
only minor modifications to those given in sections 2 and 3 for the E-topology, and so
will be omitted.

To effect the generalization let a = (a(n)) € (-, be any sequence of ‘weights’ satis-
fying o < a(n) < 3, for some0 < o < 3 < o0, and take

Ea = o(co, ker(a)),

https://doi.org/10.4153/CMB-1998-055-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1998-055-2

420 E. LLORENS-FUSTERAND B. SIMS

the coarsest (locally convex linear topology) on ¢y making each functional in E; contin-
uous, where E; := {y(n) € ( : X a(n)y(n) = 0}.
Proposition 2.1 remains true with the obvious modifications, namely:

PrROPOSITION 4.1.  The topology E, consists of (), ¢, all finite intersections of the
sets

{(xm) € co: a< Xy < b, T amy(r) = 0}
and all arbitrary unions of these finite inter sections.
Again E, is anorming subspacefor cg, indeed
g
a+f
so E, is Hausdorff.
Similarly one can verify Propositions 2.3, 2.4 and 2.5 with E replaced by E, and E
replaced by E,.
The sequence (d,) need not convegeto 0 with respect to the E, topology. Indeed, for
y=(¥(n) € Ea

IXoo < sup{(x,y) 1y € Ea, [I¥ll1 < 1} < [IX][,

n
(dn,y) = X;V(J)
]:
and it is generally untrue that the above sum convergesto 0 asn — oo. On the other
hand, if we replace (d,) by the sequence (a,) given by
an = (a(1),...,a(n),0,0,...)
we have

PrOPOSITION 4.2.  The sequencea,, is E,-convergent to 0 and does not have weakly
null subsequences. Indeed, for y = (y(n)) € Ea,

(80, Y) = ia(j)y(j) .0, asn— oo,
2

Variants of Lemma 2.8 and Proposition 2.9 also hold for E, as do analogues of Re-
marks 2.10, 2.11 and 2.12.

LEMMA 4.3.  For every element x = (x(n)) € co there exists (yn) in Ea such that
o B
+= < <1+Z2
1+ 8 < Iyl <142

and
(%, yn)| = [IX]]-

The proof is essentialy the same as that for Lemma 2.8 if the —1 in the definition of
Yn isreplaced by —a(l) /a(n +1).

Using this lemma we can prove the following in away similar to that for Proposi-
tion 2.9.
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PrROPOSITION 4.4.  If a sequence (x,) in Co is Ea-convergent to x € cq then

BN ...
x| < (1+ a) liminf x|

To obtain instances where the E,-fpp fails we put ap := 0 and take
Ka := T0{an}no

Then K, consists of vectors of the form
> Anén = (a(l)(l —X0),a(2)(1— (Ao + A1), aB)(1— (Ao + A1+ A2)), .. )
n=0

where A\ > 0and X2 A = 1.

That K, is E4-closed follows by effectively the same argument as that used for
Lemma 3.2 with the functional f employed at the n-th step of the induction replaced
by f :=(0,...,1,—a(n)/a(n +1),0,...), where the 1 occurs in the n-th position. This,
in combination with Proposition 4.2 and Lemma 3.3, establishes the following.

PROPOSITION 4.5.  Kj is an E;-compact convex set.

Now define T, to be the affine map given by
Ta(a(l)(l—)\o), a(2)(1— Mo+ ), .- ) = (a(l), a(2)(1— o), a@)(1—(ho+A1), .. )
In other words,

Ta(Z /\nan) = Z An—18n.
n=0 n=1
It isclear that T, mapsKj, into K,. Moreover, if
X = (a(l)(l —20).a@)(1— o+ A1), .. )
were such that
X = Ta(X) = (a(l), a(2)(1— Ao),a@)(L— (o + A1), .. )

thenwewouldhave\g = 0, A1 = Ao, . .. contradicting therequirementthat 2° , Ap = 1,
so0 T, isfixed point free in K.
Further, if
X = (a(l)(l —20),82)(1— (o + A1), -. )

and
y= (2 ~ o). a(1 ~ (uo + ). ..

are elements of K, then

X —yll = max{a(1)|uo — Aol,a(2)[o — Ao+ p1 — Aal,...}.
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On the other hand
Tx= (a1, 3@ — 1), a@)(1 — (o +A)),-.),
Ty = (a(D, a@)(L ~ o). a3)(1 = (o *+ ).
and so,
[T~ Tyl = max{a(@so — Aol a0 — Ao+ 1 = Aal....}.

We therefore arrive at the following conclusion.

PROPOSITION 4.6. T,:K; — K, is a fixed point free (contractive) nonexpansive
mapping of the nonempty E,.-compact convex set K, whenever the sequence of weights
a = (ay) is (strictly) decreasing.

REMARK 4.7. Similar constructions and conclusions can be achieved in the James
space J and in various equivalent renormings of co. Thisleads usto ask the following.

QUESTION. To what extent can the above construction and results be extended
(@ incp, and

(b) into other Banach spaces?

We also reiterate our earlier conjecture.

QUESTION. Doesthe nonexpansive-fpp for a closed bounded convex set in ¢cq char-
acterize the set being weak compact?
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