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Abstract
For a real constant α, let πα

3 (G) be the minimum of twice the number of K2’s plus α times the number of
K3’s over all edge decompositions of G into copies of K2 and K3, where Kr denotes the complete graph on r
vertices. Let πα

3 (n) be the maximum of πα

3 (G) over all graphs G with n vertices.
The extremal function π 3

3 (n) was first studied by Győri and Tuza (Studia Sci. Math. Hungar. 22
(1987) 315–320). In recent progress on this problem, Král’, Lidický, Martins and Pehova (Combin. Probab.
Comput. 28 (2019) 465–472) proved via flag algebras that π 3

3 (n)� (1/2+ o(1))n2. We extend their result
by determining the exact value of πα

3 (n) and the set of extremal graphs for all α and sufficiently large n.
In particular, we show for α = 3 that Kn and the complete bipartite graph K�n/2�,�n/2� are the only possible
extremal examples for large n.

2020 MSC Codes: Primary 05C70; Secondary 05C35

1. Introduction
In recent progress on a problem of Győri and Tuza [27], Král’, Lidický, Martins and Pehova [19]
proved via flag algebras that the edges of any n-vertex graph can be decomposed into copies of K2
and K3 whose total number of vertices is at most (1/2+ o(1))n2, where Kr denotes the clique on
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r vertices. The origins of this problem can be traced back to Erdős, Goodman and Pósa [10], who
considered the problem of minimizing the total number of cliques in an edge decomposition of
an arbitrary n-vertex graph. They showed the following.

Theorem 1.1 (Erdős, Goodman and Pósa [10]). The edges of every n-vertex graph can be
decomposed into at most �n2/4� complete graphs.

The only extremal example for this bound is the (bipartite) Turán graph T2(n) :=K�n/2�,�n/2�,
where Ka,b denotes the complete bipartite graph with part sizes a and b. Moreover, this result
still holds if we restrict the sizes of the cliques used in the decomposition to 2 and 3 (i.e. sin-
gle edges and triangles). In a series of papers published independently by Chung [4], Győri and
Kostochka [15] and Kahn [18], they proved that in fact something stronger than Theorem 1.1 is
true, confirming a conjecture by Katona and Tarján.

Theorem 1.2 (Chung [4], Győri and Kostochka [15], Kahn [18]). Every n-vertex graph can be
edge-decomposed into cliques whose total number of vertices is at most �n2/2�.

For a given graph G on n vertices, let πk(G) be the minimum over all decompositions of the
edges of G into cliques C1, . . . , C� of size at most k of the sum |C1| + |C2| + · · · + |C�|, where
|G| := |V(G)| denotes the order of a graph G. Let πk(n) be the maximum of πk(G) over all graphs
G with n vertices. With this notation, the conclusion of the above theorem is that mink∈N πk(n)�
�n2/2�. In light of Theorem 1.2, Tuza [27] conjectured that π3(n)� n2/2+ o(n2), and in fact
that π3(n)� n2/2+O(1). Győri and Tuza [16] showed that π3(n)� 9n2/16. This was the best
known bound until recently, when using the celebrated flag algebra method of Razborov [24],
Král’, Lidický, Martins and Pehova [19] proved the asymptotic version of Tuza’s conjecture.

Theorem 1.3 (Král’ et al. [19]). We have π3(n)� (1/2+ o(1))n2 as n→ ∞.

In this paper we show, by building upon the proof in [19], that for all large n it holds in fact that
π3(n)� n2/2+ 1. Moreover, if a graph G of order n attains π3(n), then G is the complete graph
Kn or the Turán graph T2(n).

Which of these two graphs is extremal is a matter of divisibility of n by 6. In the case of the
Turán graph, we trivially have π3(T2(n))= 2�n/2��n/2�, giving n2/2 for even n and (n2 − 1)/2
for odd n. In order to determine π3(Kn), we have to determine the maximum number of edge-
disjoint triangles in Kn. Clearly, the graph made of their edges is triangle-divisible, that is, each
vertex has even degree and the total number of edges is divisible by three. It is routine to see that
the minimum size of a graphH on n vertices whose complementH is triangle-divisible is attained
by taking at most one copy of the claw K1,3 and a perfect matching on the remaining vertices for
even n, and isolated vertices plus at most one copy of the 4-cycle K2,2 for odd n. (Note that

(n
2
)
is

never equal to 2 modulo 3.) In fact this gives the value of π3(Kn) for all large n by the following
general result (which we will also use in our proof).

Theorem 1.4 (Barber, Kuhn, Lo and Osthus [2]). For every ε > 0, if G is a triangle-divisible graph
of large order n andminimum degree at least (0.9+ ε)n, then G has a perfect triangle decomposition.

The constant 0.9 in the minimum degree condition in Theorem 1.4 comes from the result of
Dross [6] on fractional triangle decompositions, and Nash-Williams [21] conjectured that it can
be replaced by 3/4. Very recently, Dukes and Horsley [7] and Delcourt and Postle [5] improved
the constant to 0.852 and (7+ √

21)/14= 0.8273 . . . , respectively.
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Table 1. Values of π3(Kn) and π3(T2(n)) for large n

n mod 6 K2’s in an optimal decomposition of Kn π3(Kn) π3(T2(n))

0 perfect matching
n2

2
n2

2

1 none
(
n
2

)
n2 − 1
2

2 perfect matching
n2

2
n2

2

3 none
(
n
2

)
n2 − 1
2

4 K1,3 + perfect matching
n2

2
+ 1

n2

2

5 C4

(
n
2

)
+ 4

n2 − 1
2

In Table 1 we list the values of π3 for the graphs Kn and T2(n) for large n. Let us define

En :=

⎧⎪⎪⎨
⎪⎪⎩

{T2(n),Kn} if n≡ 0, 2 (mod 6),
{T2(n)} if n≡ 1, 3, 5 (mod 6),
{Kn} if n≡ 4 (mod 6),

and

�(n) :=

⎧⎪⎪⎨
⎪⎪⎩
n2/2 for n≡ 0, 2 (mod 6),
(n2 − 1)/2 for n≡ 1, 3, 5 (mod 6),
n2/2+ 1 for n≡ 4 (mod 6).

Thus, by the calculations of Table 1, we have for all large n that En consists of those graphs in
{T2(n),Kn} which maximize π3 while �(n) is this maximum value.

Clearly, �(n) is a lower bound on π3(n) for large n. Our main result is that this is equality.

Theorem 1.5. There exists n0 ∈N such that for all n� n0, we have π3(n)= �(n), and the set of
π3(n)-extremal graphs up to isomorphism is exactly En.

A simple corollary of Theorem 1.5 is an affirmative answer to a question of Pyber [23] (see also
[27, Problem 45]) for sufficiently large n. A covering of a graph G is a collection of subgraphs of
G such that every edge of G appears in at least one subgraph. (For comparison, a decomposition
requires that every edge appears in exactly one subgraph.)

Corollary 1.1. There exists n0 ∈N such that for all n� n0, the edge set of every n-vertex graph can
be covered with triangles and edges so that the sum of their orders is at most �n2/2�.

Proof. Theorem 1.5 directly implies the corollary unless n≡ 4 (mod 6) and the graph under con-
sideration is Kn. So assume that n≡ 4 (mod 6). Denote the vertices of Kn by v1, . . . , vn. Recall that
an optimal decomposition for Kn is obtained by taking edges v1v2, v1v3, v1v4 and vivi+1 for all
odd i with 5� i� n− 1. The rest of the graph becomes triangle-divisible and Theorem 1.4 can
be applied. This gives a decomposition of cost n2/2+ 1. A covering of cost at most n2/2 can be
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obtained from this decomposition by replacing edges v1v2 and v1v3 with a triangle v1v2v3. (Note
that the pair v2v3 is covered by two triangles in the resulting covering.)

We also study an extension of Theorem 1.5, where we consider decompositions into K2’s and
K3’s but we modify the cost of K3’s to be α (with the cost of K2 still being 2). The minimum
over all costs of such decompositions of a graph G is denoted by πα

3 (G). The maximum value
of πα

3 (G) over all n-vertex graphs G is denoted by πα
3 (n). Note that π3

3 (G)= π3(G) and π3
3 (n)=

π3(n). Denote Kn without one edge by K−
n and Kn without a matching of size two by K=

n . Then
the following result holds.

Theorem 1.6. For every real α there exists n0 ∈N such that every πα
3 -extremal graph G with n� n0

vertices satisfies the following (up to isomorphism).

• If α < 3, then G= T2(n).
• If α = 3, then Theorem 1.5 applies.
• If 3< α < 4 and n≡ 0, 2, 4, 5 (mod 6), then G=Kn.
• If 3< α < 4 and n≡ 1, 3 (mod 6), then G=K=

n .
• If α = 4 and n≡ 1, 3 (mod 6), then G ∈ {Kn,K−

n ,K=
n } and, moreover, the three listed graphs

are all πα
3 -extremal.

• If α = 4 and n≡ 0, 2, 4, 5 (mod 6), then G=Kn.
• If 4< α, then G=Kn.

This paper is organized as follows. In Section 2 we give an outline of the proof of Theorem 1.3
from [19] that we build on. Theorem 1.5 is proved in Section 3. An extension for other weights of
triangles is in Section 4. Some related results are mentioned in Section 5.

Notation.We follow standard graph theory notation (see e.g. [3]).
For a graph G, we denote the set neighbours of x ∈V(G) by ΓG(x) (or just Γ (x) when G is

understood) and the number of edges in a set B⊆ E(G) incident with x by dB(x). We let K[V1,V2]
denote the complete bipartite graph with vertex partition (V1,V2). The term [X, Y]-edges refers to
edges xy ∈ E(G) such that x ∈ X and y ∈ Y . We write [x, Y]-edges as shorthand for [{x}, Y]-edges.

Let t2(n) := |E(T2(n))| be the number of edges in the Turán graph T2(n). Recall that t2(n)=
�n2/4�. By a cherry we mean a path with two edges.

We consider graphs up to isomorphism; in particular, we write G=H to denote that G and H
are isomorphic graphs.

2. Outline of the proof of Theorem 1.3 from [19]
In this section we give a short outline of the proof of [19, Lemma 5], which was a key step in
proving π3(n)� n2/2+ o(n2) and is a starting point of our argument towards Theorem 1.5. For
an n-vertex graph G and each i ∈N, let Ki(G) be the set of all i-cliques in G. Let π3,f (G) be the
minimum of

2
∑

xy∈K2(G)
c(xy)+ 3

∑
xyz∈K3(G)

c(xyz)

over fractional {K2,K3}-decompositions c of E(G), that is, over maps c : K2(G)∪K3(G)→ [0, 1]
such that for every edge xy ∈ E(G) we have c(xy)+ ∑

z : xyz∈K3(G) c(xyz)� 1. Of course, π3,f (G)�
π3(G). By a result of Haxell and Rödl [17] or a more general version by Yuster [28], it also holds
that π3(G)� π3,f (G)+ o(n2). So, to show that π3(G)� n2/2+ o(n2), it suffices to consider the
fractional equivalent π3,f (G).
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Lemma 2.1. Let G be an n-vertex graph. Then(
n
7

)−1 ∑
W∈(V(G)7 )

π3,f (G[W])� 21+ o(1),

where the sum is taken over 7-vertex subsets W of V(G).

Outline of proof. LetM be the positive semidefinite matrix

M := 1
12·109

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1800000000 2444365956 640188285 −1524146769 1386815580 −732139362 −129387078

2444365956 4759879134 1177441152 −1783771230 2546923788 −1397639394 −143552208

640188285 1177441152 484273772 −317303211 1038156300 −591902130 −6783162

−1524146769 −1783771230 −317303211 1558870290 −651906630 305728704 154602378

1386815580 2546923788 1038156300 −651906630 2285399634 −1283125950 −10755036

−732139362 −1397639394 −591902130 305728704 −1283125950 734039016 −1621938

−129387078 −143552208 −6783162 154602378 −10755036 −1621938 23860164

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 0,

and let −→F := (F1, . . . , F7) be the following vector of rooted graphs, each having four vertices with
the root denoted by the white square:

�F =

⎛
⎝

, , , , , ,

⎞
⎠.

Take any graphG of order n→ ∞. Forw ∈V(G), let vG,w ∈R
7 denote the column vector whose

ith component is p(Fi, (G,w)), the density of the 1-flag Fi in the rooted graph (G,w), which is G
with the vertex w designated as the root.

It was shown in [19] that
1(n
7
) ∑
W∈(V(G)7 )

π3,f (G[W])+ 1
n

∑
w∈V(G)

vTG,wMvG,w � 21+ o(1). (2.1)

Namely, if we rewrite the left-hand side as a linear combination
∑

H cHp(H,G), where H ranges
over all 7-vertex unlabelled graphs and p(H,G) is the density ofH in G, then each coefficient cH is
at most 21. Since

∑
H p(H,G)= 1, the claimed inequality (2.1) follows.

In particular, sinceM is positive semidefinite, the quantity
1
n

∑
w∈V(G)

vTG,wMvG,w

is always non-negative, yielding the result.

The main result of [19], that π3(n)� n2/2+ o(n2), now follows directly from Lemma 2.1.

Proof of Theorem 1.3. Let G be any graph of order n→ ∞. As mentioned before, π3(G)�
π3,f (G)+ o(n2). Also, we have(

n
2

)−1
π3,f (G)�

(
7
2

)−1(n
7

)−1 ∑
W∈(V(G)7 )

π3,f (G[W]),
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H2 H5 H7 Figure 1. Graphs H2, H5 and H7.

by averaging optimal fractional decompositions of all 7-vertex induced subgraphs. Combining
this inequality with Lemma 2.1 immediately gives that π3(G)� (1/2+ o(1))n2.

3. Proof of Theorem 1.5
We use the so-called stability approach, where the first step is to describe the approximate struc-
ture of all almost π3-extremal graphs of order n→ ∞ within o(n2) adjacencies. Namely, our
Corollary 3.2 will show that every such graph is close to Kn or T2(n).

For this purpose, we start by showing that all almost π3-extremal graphs contain almost no
copies of the three graphs in Figure 1 (which are obtained by taking the unlabelled versions of the
corresponding graphs in−→F ). This is achieved by the following lemma, which builds on the results
from [19].

Lemma 3.1. For every c> 0 there exist ε > 0 and n0 ∈N such that for all n� n0, if G is a graph of
order n with π3(G)� (1/2− ε)n2, then G has at most c

(n
4
)
copies of each of the graphs

H2 := ({a, b, c, d}, {ab}),
H5 := ({a, b, c, d}, {ab, bc, ac, ad}),
H7 := ({a, b, c, d}, {ab, bc, ac, bd, ad})

from Figure 1.

Proof. Given c> 0, let ε � 1/n0 > 0 be sufficiently small. Let G be a graph as in the lemma. Let
M and −→F be as in the proof of Lemma 2.1.

First, the rank of the matrix M is 6 with v= (1, 0, 3, 1, 0, 3, 0) being the only zero eigenvector.
(Thus all other eigenvalues ofM are strictly positive byM � 0.)

Second, by the almost optimality of G and the fact that each term on the left-hand side of (2.1)
is non-negative, we have ∑

w∈V(G)
vTG,wMvG,w = oε(n). (3.1)

We now show that Gmust contain few copies of the graphs H2, H5 and H7. Suppose, for con-
tradiction, thatG contains at least c

(n
4
)
copies ofH2. Then, by a simple double-counting argument,

we have that at least cn/4 vertices in G contain at least c
(n
3
)
/4 copies of the rooted flag F2. In par-

ticular, the second coordinate of at least cn/4 of the vectors vG,w is at least c/4. For each such
vector u, let u′ := u/‖u‖2 be the scalar multiple of u of �2-norm 1. Since ‖u‖2 �

√
7, we have that

its second coordinate u′
2 is at least c/4

√
7. The scalar product of u′ and the �2-normalized zero

eigenvector v/
√
20 (whose second coordinate is 0) is at most√

1− (c/4
√
7)2.

Thus the projection of u on the orthogonal complement L= v⊥ of the zero eigenspace of M has
�2-norm at least c/4

√
7. Thus uTMu� λ2(c/4

√
7)2, where λ2 > 0 is the smallest positive eigen-

value ofM (in fact one can check with the computer that λ2 = 0.0005228 . . . ). Thus the left-hand
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side of (3.1), in which each term is non-negative byM � 0, is at least (cn/4)× λ2(c/4
√
7)2 = Ω(n),

a contradiction.
The analogous argument shows that the densities of H5 and H7 in G are also at most c.

Let us say that two graphsG1 andG2 of the same order are k-close in the edit distance (or simply
k-close) if there is a relabelling of the vertices of G2 so that |E(G1)�E(G2)|� k. In other words we
can make G1 and G2 isomorphic by changing at most k adjacencies.

Corollary 3.2. For every δ > 0 there exists n1 ∈N such that if G is a graph of order n� n1 with
π3(G)� �(n)− n2/n1, then G is δn2-close in edit distance to Kn or to T2(n).

Proof. Given any δ > 0, choose sufficiently small constants δ � c� 1/n1 > 0. Take any graph G
on n� n1 vertices such that π3(G)� �(n)− n2/n1.

By Lemma 3.1 and the Induced Removal Lemma [1], G can be made {H2,H5,H7}-free by
changing at most cn2 adjacencies. Denote this new graph by G′ and note that π3(G′)� π3(G)−
2cn2. By c� δ, it is enough to show that G′ is δn2/2-close to Kn or T2(n).

Let us show that G′ is either triangle-free or the disjoint union of at most two cliques. Indeed,
if some vertices a, b, c span a triangle in G′ then, by the {H5,H7}-freeness of G, all the remaining
vertices of G′ have either no or three neighbours among {a, b, c}. Let A0 be the set of vertices in
G′\{a, b, c} which see none of {a, b, c}, and let A3 be the set of vertices which see all of {a, b, c}.
Then A3 is a clique because G′ isH7-free. The set A0 is also a clique because G′ isH2-free. Also, no
pair xy in A3 ×A0 can be an edge, as otherwise, for example, the 4-set {a, b, x, y} spans a copy of
H5 in G. It follows that G is the disjoint union of the cliques on A0 and A3 ∪ {a, b, c}, as required.

Now, if G′ is triangle-free, then

e(G′)= π3(G′)/2� �(n)/2− n2/n1 − 2cn2 � t2(n)− 3cn2.

Thus, by the stability result for Mantel’s theorem by Erdős [8] and Simonovits [26], the graph G′
must indeed be δn2/2-close in edit distance to T2(n).

Otherwise G′ is the disjoint union of two cliques. Let us show that one of them has size at
most δn/2. Indeed, otherwise G′ has a triangle packing covering all but at most n/2+ 2 edges by
Theorem 1.4, meaning that π3(G′)� e(G′)+ n/2+ 2. Also, e(G′) is maximum when clique sizes
are as far apart as possible. Thus, by the lower bound on π3(G)� π3(G′)+ 2cn2, we conclude that,
for example,

�(n)− 3cn2 �
(

δn/2
2

)
+

(
(1− δ/2)n

2

)
,

leading to a contradiction to our choice of constants. Therefore G′ is at most n · δn/2 adjacency
edits away from Kn, as desired.

The key steps in proving Theorem 1.5 are Lemmas 3.3–3.5.

Lemma 3.3. There exist constants δ > 0 and n1 ∈N such that, among all graphs on n� n1 vertices
which are δn2-close to T2(n), the maximizer of π3 is T2(n).

Proof. Choose sufficiently small ε � δ � 1/n1 > 0. Let G be an arbitrary graph with n� n1 ver-
tices which is δn2-close to T2(n). We will show that π3(G)� π3(T2(n)) with equality if and only if
G= T2(n). In fact this claim can be directly derived from the result of Győri [11, Theorem 1] that a
graph with n vertices and t2(n)+ k edges, where n→ ∞ and k= o(n2), has at least k−O(k2/n2)
edge-disjoint triangles. More specifically, for each ε > 0 there exists δ > 0 and n0 ∈N such that
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every graph with n� n0 vertices and t2(n)+ k edges, where k� δn2, has at least k− εk2/n2 edge-
disjoint triangles. (See also [12, Theorem 1] for a generalization of this to r-cliques for any fixed
r� 3.) Since G is δn2-close to T2(n), it must have at most t2(n)+ δn2 edges. From this and
1/n� δ � ε � 1, we have that, for k := e(G)− t2(n),

π3(G)� 2(t2(n))+ k)− 3(k− εk2/n2)= 2t2(n)− k(1− 3εk/n2)� 2t2(n).

Clearly, if equality is achieved then k= 0, i.e. e(G)= t2(n); furthermore, G must be triangle-free
and thus G= T2(n), as required.

Next we need to analyse graphs that are close to Kn. If n≡ 1, 3 (mod 6), then let E ′
n consist

of those graphs which are obtained from Kn by removing a matching of size m≡ 2 (mod 3);
otherwise let E ′

n := {Kn}. Also, define

w(n) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
n/2 n≡ 0, 2 (mod 6),
2 n≡ 1, 3 (mod 6),
n/2+ 1 n≡ 4 (mod 6),
4 n≡ 5 (mod 6).

Using Theorem 1.4 and the calculation for Kn described in Table 1, one can show that π3(G)=(n
2
) +w(n) for all large n and every G ∈ E ′

n. We are going to show that these are exactly the
extremal graphs among those close to Kn. It is more convenient to do first the case when we have
some bound on the minimum degree of a graph and then derive the general case (in a separate
Lemma 3.5).

Lemma 3.4. There exist constants δ > 0 and n0 ∈N such that the following holds. Let G be a graph
on n� n0 vertices with minimum degree at least n/8 such that G is δn2-close to Kn and π3(G)�(n
2
) +w(n). Then G ∈ E ′

n.

Proof. Choose small constants in the following order: c� δ � 1/n0 > 0. Suppose that G is a
graph of order n� n0 as in the statement of the lemma. Let w :=w(n).

Let

U := {v ∈V(G) : dG(v)� (1− c)n}.
Then

|U|cn
2

� e(G )� δn2,

and so |U|� (2δ/c)n. Denote W :=V(G) \U, and let S := {v ∈W : dG(v) is odd}. Let M be a
set of edges forming a maximum matching in G[S], and denote X := S \V(M). Then X is an
independent set and thus

(|X|
2
)
� δn2, which implies that rather roughly

|X| < cn. (3.2)

Moreover, for every edge yz ∈M and any two distinct vertices y′, z′ ∈ X, at most one of yy′ and zz′
can be an edge of G (otherwise y′yzz′ is an augmenting path contradicting the maximality ofM).
It follows that if |X| �= 1, then for every edge yz ∈M there are at least |X| edges missing between
yz and X. Let YW denote the set of missing edges in G[W]. Thus

|YW |�
(|X|

2

)
+ |M|(|X| − 1|X|=1), (3.3)
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WU

YW

YU

(a)

X

WU

M

Z1Z2 Z3

(b)

Figure 2. (a) Missing edges in YW are coloured blue and edges in YU are red. (b) Edges in Z1 are coloured blue, edges in Z2 are
red and in Z3 green. The same vertices are in (a), where some of the missing edges are dashed. Note that this is a sketch and
vertices inW can incident to both blue and red (dashed) edges.

where the indicator function 1|X|=1 is 1 if |X| = 1 and is 0 otherwise. Moreover, the set YU of
missing edges in G with at least one endpoint in U satisfies

|YU |� cn|U| −
(|U|

2

)
(3.4)

by the definition of U. Note that e(G)= (n
2
) − |YW | − |YU |. See Figure 2 for a sketch of YW

and YU .
We now build a decomposition D of G into edges and triangles, starting with D = ∅. If we add

edges/triangles toD, we regard them as removed from E(G). It is convenient to split our argument
into the following two cases.

Case 1. U �= ∅ or S= ∅.

In this case, our procedure for constructing D is as follows.

Step 1. Add the following toD asK2’s: the edges of the matchingM and the edges of some �|X|/2�
cherries with distinct endpoints in X such that their middle points are pairwise distinct.

Step 2. For each u ∈U, one at a time, add to D a maximum set of edge-disjoint K3’s containing u
and two vertices fromW. Add all remaining edges incident to vertices in U as K2’s to D.

Step 3. (a) Let S′ ⊆V(G) be the set of vertices with odd degree after Step 2. Add to D the edges
of some |S′|/2 cherries with distinct endpoints in S′ such that their middle points are
pairwise distinct.

(b) If the number of remaining edges is not divisible by 3, then fix this by adding toD (as
single edges) the edge set of some cycle of length 4 or 5.

Step 4. Add a perfect triangle decomposition of the remaining edges to D.

For i ∈ {1, 2, 3}, let Zi be the set of edges that are added to D in Step i as copies of K2. See
Figure 2 for some illustrations of the above steps.

Claim. The above steps can be carried out as stated. Moreover, the obtained decomposition D of G
has at most |M| + |X| + (|U|

2
) + 2|U| + 6 copies of K2.

Proof of Claim. In order to carry out Step 1 as stated, we can iteratively pick any two new vertices
x, y ∈ X and then an arbitrary vertex z which is suitable as the middle point for a cherry on xy.
Note that the number of choices for z is at least n− 2− 2cn, the number of common neighbours
of x, y ∈ X ⊆W, minus |X| − 1, the number of vertices previously used as middle points. This is
positive by (3.2) and c� 1, so we can always proceed. Note for future reference that every vertex
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is incident to at most three edges removed in Step 1. Also, Step 1 adds |Z1| = |M| + 2(�|X|/2�)�
|M| + |X| copies of K2 to D.

Clearly, Step 2 can always be processed. Consider the moment when we apply Step 2 to some
u ∈U. In the current graph, the induced subgraph G[Γ (u)∩W] has minimum degree at least
|Γ (u)∩W| − cn− 3, which is at least |Γ (u)∩W|/2 since |Γ (u)|� n/8− 3. So by Dirac’s theo-
rem, this subgraph has a matching covering all but at most one vertex, that is, all edges between u
andW except at most one are decomposed as triangles in Step 2. Let U ′ be the set of those u ∈U
for which an exceptional edge occurs. Thus we have |U ′|� |U| copies of K2 connecting U to W
that are added to D in Step 2. There are trivially at most

(|U|
2

)
edges with both endpoints in U. So

Step 2 adds |Z2|�
(|U|
2

) + |U| copies of K2 toD. Note that all edges incident toU are decomposed
after Step 2.

Since all vertices of W but at most one had even degrees before Step 2, we have that S′ has at
most |U ′| + 1� |U| + 1 vertices. As in Step 1, a simple greedy algorithm finds all cherries as stated
in Step 3(a). (Note that S′, as the set of all odd-degree vertices, has even size.)

The minimum degree of G[W] after Step 3(a) is at least 0.99n, since each w ∈W has at most
2|U| + 6 incident edges removed (at most 2|U| from Step 2 and at most 3 in each of Steps 1
and 3(a)). Thus we can find the required 4- or 5-cycle in Step 3(b).

Clearly, we add |Z3|� |S′| + 5� |U| + 6 copies of K2 to D in Step 3.
Note that, at the end of Step 3, the graphG[W] has minimum degree at least, say, 0.98nwhile all

its degrees are even. By Theorem 1.4, all remaining edges can be decomposed using only triangles,
so Step 4 indeed removes all remaining edges.

Step 4 adds no additional K2’s, so the total number of K2’s in D is

|Z1| + |Z2| + |Z3|� |M| + |X| +
(|U|

2

)
+ 2|U| + 6,

finishing the proof of the claim.

Now we compute the cost of D. Using the notation from above, we have

w� π3(G)−
(
n
2

)
�−|YU | − |YW | + |Z1| + |Z2| + |Z3|
�−|YU | − |YW | + |M| + |X| +

(|U|
2

)
+ 2|U| + 6. (3.5)

Substituting the bounds from (3.3) and (3.4) and rearranging the terms, we get

w�
(
2
(|U|

2

)
+ 2|U| − cn|U| + 6

)
+ (3− |X|)

( |X|
2

+ |M|
)

+ (1|X|=1 − 2)|M|. (3.6)

First, suppose that |U| > 0. Then the estimate |U|� 2δn/c yields that

2
(|U|

2

)
+ 2|U| − cn|U| + 6�−cn|U|/2�−cn/2.

Since w� 2, we must have that |X|� 1. Observe that n is odd as otherwise w� n/2 and, by |M|�
n/2, the cases |X| ∈ {0, 1} also contradict (3.6). So every vertex of degree n− 1 has even degree,
meaning that every vertex of S is in some pair from YW or YU . Hence 2|M|� 2|YW | + |YU |.
Substituting this into the right-hand side of (3.5) and using our bound on |YU | from (3.4), we
obtain

w�−|YU |
2

+ |X| +
(|U|

2

)
+ 2|U| + 6� 3

2

(|U|
2

)
+ 2|U| − cn|U|

2
+ 7,

which again is negative for |U| > 0 and large n, contradicting w� 2.

https://doi.org/10.1017/S0963548320000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000358


Combinatorics, Probability and Computing 281

Thus U is empty and, by the assumption of Case 1, S is also empty (and so are X andM). This
gives that the initial graph G has minimum degree at least (1− c)n, |Z1| = |Z2| = 0, S′ = ∅, and no
K2’s are added to D in Step 3(a).

If n is even, then every vertex of G has at least one missing edge,

e(G)�
(
n
2

)
− n

2
,

and

π3(G)�
(
n
2

)
− n

2
+ |Z3|�

(
n
2

)
− n

2
+ 5,

which is strictly less than π3(Kn), a contradiction.
Let n be odd and let r := (n

2
) − e(G) be the number of missing edges in G. Suppose that r > 0, as

otherwise G=Kn and we are done. The upper bound on π3(G) given by D is ρr + (n
2
) − r, where

we define ρr as the unique element of {0, 4, 5} with (n
2
) − ρr − r ≡ 0 (mod 3). Therefore r� 3 as

otherwise π3(G)�
(n
2
) + 1, contradicting w� 2. On the other hand all the degrees of G are even

so r = 3 and the only non-empty component of G is a triangle. However, this contradicts w� 2
because

π3(G)=
{(n

2
) − 1 n≡ 1, 3 (mod 6),(n

2
) + 1 n≡ 5 (mod 6).

Case 2. U = ∅ and S �= ∅.
Some things simplify in this case (as we do not need to deal with U). On the other hand we

have to be a bit more careful with calculations, as the new extremal graphs (Kn minus a matching)
fall into this case. In particular, removing a 4- or 5-cycle may be too wasteful here. So we construct
a decompositionD of G as follows. Recall thatM is a maximummatching in G[S] and X is the set
of vertices of S not matched byM.

Step 1. Make the graph triangle-divisible by removing the following asK2’s. If X = ∅, then remove
all but one edge xy ∈M and a path of length ρ + 1 ∈ {1, 2, 3} whose endpoints are x and y
(thus, for ρ = 0, we remove just the matchingM). If X is non-empty, then removeM and
the edge sets of some |X|/2− 1 paths of length 2 and one path of length ρ + 2 ∈ {2, 3, 4}
so that their degree-1 vertices partition X and their degree-2 vertices are pairwise distinct.

Step 2. Decompose the rest perfectly into triangles.

Note that S, the set of all odd-degree vertices of G, has even size (and also |X| = |S| − 2|M| is
even). Since the minimal degree of G is at least (1− c)n, a simple greedy algorithm achieves Step 1
(and Theorem 1.4 takes care of Step 2).

The decomposition D has exactly |M| + |X| + ρ copies of K2. Also, e(G)=
(n
2
) − |YW |. Thus

w� π3(G)−
(
n
2

)
�−|YW | + |M| + |X| + ρ. (3.7)

Using (3.3) and that |X| �= 1 (since |X| is even), we obtain

w� (3− |X|)
( |X|

2
+ |M|

)
− 2|M| + ρ. (3.8)

Moreover, |X|� 2 as otherwise 2�w� ρ − 2− 3|M|, contradicting ρ � 2. Thus X has either
0 or 2 elements.
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Suppose that X = ∅. First, let n be even. Then every vertex not in S is incident to at least one
non-edge of G, |YW |� (n− 2|M|)/2, and by (3.7),

n/2�w� 2|M| + ρ − n/2.

If 2|M|� n− 2, then all inequalities here become equalities and thus |M| = (n− 2)/2, |YW | = 1,
ρ = 2, w= n/2, and n≡ 0, 2 (mod 6). However, then the graph after Step 1 has exactly(

n
2

)
− 1− n− 2

2
− 2

edges, which is not divisible by 3, a contradiction. Thus 2|M| = n, the copies of K2 in the decom-
position contain a perfect matching of G, and π3(G)� π3(Kn) with equality only if G=Kn, as
desired. So suppose that n is odd. Since every vertex of S has to be incident to a missing edge of G,
we have |YW |� |S|/2= |M| and the bound in (3.7) becomes w� ρ. It follows that we have equal-
ity throughout, |YW | = |M|, w= ρ = 2, n≡ 1, 3 (mod 6), and

(n
2
) − |M| − ρ ≡ 0 (mod 3); the last

gives that |M| ≡ 2 (mod 3). Thus G is as required.
Finally, it remains to consider the case when |X| = 2. This time, (3.8) yields that

2�w� ρ − |M| + 1� 3.

Therefore |M|� 1, and n≡ 1, 3 (mod 6) as otherwise w� 4. If |M| = 1, then we have equality
everywhere, giving w= ρ = 2, |S| = 4 and |YW | = 3. However, then the graph after Step 1 has(

n
2

)
− |YW | − |M| − |X| − ρ =

(
n
2

)
− 8

edges, which is not divisible by 3, a contradiction. ThusM is empty, ρ ∈ {1, 2} and S= X. By (3.7),
|YW |� 2 and hence |YW | = 1. In other words, G=K−

n . However, then the graph after Step 1 has(
n
2

)
− 1− (2+ ρ)

edges, which is not divisible by 3. (Alternatively, Theorem 1.4 gives that π3(K−
n )−

(n
2
)
< 2=w.)

This contradiction finishes Case 2 and the proof of the lemma.

Lemma 3.5. There exist constants δ > 0 and n1 ∈N such that the following holds. Let G be a graph
on n� n1 vertices maximizing π3(G) among all graphs that are δn2-close to Kn. Then G ∈ E ′

n.

Proof. Let n0 and δ be the constants from Lemma 3.4. We claim that, for example, n1 := 2n0 is
enough for the conclusion of Lemma 3.5 to hold. Indeed, take any extremal graph G of order
n� n1. If G satisfies the assumption on minimum degree of Lemma 3.4, then we are done.
Hence assume that the minimum degree of G is less than n/8. Let Gn :=G, and iteratively define
a sequence of graphs Gn−1,Gn−2, . . . as follows. Given a graph Gi of order i, if it has a ver-
tex x of degree less than i/8, let Gi−1 :=Gi − x be obtained from Gi by removing the vertex x;
otherwise stop. Note that the process does not reach i< n/2 for otherwise G has roughly at least
(n/2)× (n/4) non-edges, which is a contradiction to G being δn2-close to Kn.

Let Gs with |Gs| = s� n/2� n0 be the graph for which the above process terminates. By
Lemma 3.4, we have that π3(Gs)� s2/2+ 1. By decomposing all edges in E(G) \ E(Gs) as K2’s,
we obtain

π3(Gn)� π3(Gs)+ 2(n− s) · n
8
� s2

2
+ 1+ (n− s) · n

4
.
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This is a convex function in s so it is maximized on the boundary of n/2� s� n− 1. If s= n/2,
we get

π3(Gn)� n2/4+ 2<

(
n
2

)
� π3(Kn).

If s= n− 1, we get

π3(Gn)� π3(Gs)+ 2(n− s) · n
8
� (n− 1)2

2
+ 1+ n

4
�

(
n
2

)
− n

4
+ 2< π3(Kn).

In both cases, we get a contradiction to Gn being extremal.

Proof of Theorem 1.5. Choose sufficiently small constants in this order 1� δ � 1/n0 > 0. In
particular, n0 is sufficiently large to satisfy Corollary 3.2 for this δ as well as Lemmas 3.3 and 3.5.
Let G be an arbitrary graph of order n� n0 with π3(G)� �(n). By Corollary 3.2, G is δn2-close to
either T2(n) or Kn.

If G is close to T2(n) then it must be T2(n) by Lemma 3.3. If G is close to Kn then it
must be in E ′

n by Lemma 3.5. By comparing the costs of optimal decompositions, we conclude
that G ∈ En.

4. Extension to an arbitrary cost α

The goal of this section is to prove Theorem 1.6. Everywhere in this section, let n be sufficiently
large.

First, note that the case α � 6 is trivial. Indeed, the cost of a triangle is not better than a cost of
three edges. Thus, for every graph G, an optimal decomposition is to decompose all edges of G as
K2’s. The unique graph maximizing the number of edges is Kn, so it is also the unique maximizer
of πα

3 for every α � 6.
Next let us make some easy general observations which apply when α < 6. First,

πα
3 (G)= αν(G)+ 2(e(G)− 3ν(G))= 2e(G)− (6− α)ν(G),

where ν(G) denotes the maximum number of edge-disjoint triangles contained in G. Also, if α1 �
α2 < 6, ν(G1)� ν(G2) and π

α1
3 (G1)> π

α1
3 (G2) for some graphs G1 and G2, then

π
α2
3 (G1)− π

α2
3 (G2)= π

α1
3 (G1)− π

α1
3 (G2)+ (α2 − α1)(ν(G1)− ν(G2))> 0. (4.1)

In particular, if Kn is the maximizer of πα1
3 , it is also a maximizer for π

α2
3 .

4.1 The case α < 3
Next we discuss the case α < 3. Let n be large and let G be a πα

3 (n)-extremal graphs. Since

π3
3 (G)� πα

3 (G)� πα
3 (T2(n))= π3

3 (T2(n))= (1/2+ o(1))n2,
Corollary 3.2 gives that G is o(n2)-close to Kn or T2(n). Since α < 3, we have that πα

3 (T2(n))�
(1+ Ω(1))πα

3 (Kn) and thus G is close to T2(n). Now, Lemma 3.3 implies that πα
3 (G)� π3

3 (G)�
π3
3 (T2(n))= πα

3 (T2(n)), with equality if and only if G= T2(n), as desired.

4.2 The case 3< α < 4
This subsection proves Theorem 1.6 for 3< α < 4.

First let us show that every πα
3 -maximizer G is in Kn or K=

n . Suppose for a contradiction that G
violates this. In particular, we have πα

3 (G)� πα
3 (Kn). By (4.1), we have that π3

3 (G)� π3
3 (Kn). For
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n→ ∞, it holds by Table 1 that πα
3 (Kn)� (1+ Ω(1)) πα

3 (T2(n)). Hence G needs to be close to
Kn and Lemma 3.5 applies to G. In particular, this means that n≡ 1, 3 (mod 6). Lemma 3.5 gives
that all π3

3 -extremal graphs are obtained from Kn by removing a matching of size congruent to 2
modulo 3. It follows from (4.1) that, among these graphs, πα

3 is strictly maximized by K=
n since

this graph has the largest ν.
Theorem 1.4 gives that 3ν(K=

n )=
(n
2
) − 6. Since πα

3 (G)� πα
3 (K=

n ) and π3
3 (G)< π3

3 (K=
n ), this

implies by (4.1) that ν(G)> ν(K=
n ). Since also ν(G)< ν(Kn) (otherwiseπα

3 (G)< πα
3 (Kn)), we con-

clude that 3ν(G)= (n
2
) − 3, that is, exactly three pairs of vertices of G are not included in some

triangle from an optimal decomposition ofG. This implies thatG is a complete graph without one
edge, or a path on three vertices, or a triangle. Among these three candidates (that have the same
ν), K− has the largest size and thus maximizes πα

3 . So K− is the only possible candidate for G.
However, πα

3 (K=
n )> πα

3 (K−
n ) if α < 4. This contradiction finishes the proof for 3< α < 4.

Thus every πα
3 -maximizer is in {Kn,K=

n }. It remains to compare these two graphs. Calculations
based on Theorem 1.4 show that

πα
3 (K=

n )− πα
3 (Kn)+ 4

6− α
= ν(Kn)− ν(K=

n )=
{
0 n≡ 0, 2, 4, 5 (mod 6),
2 n≡ 1, 3 (mod 6).

Thus πα
3 (Kn)> πα

3 (K=
n ) if n≡ 0, 2, 4, 5 (mod 6) and πα

3 (K=
n )> πα

3 (Kn) otherwise, as required.

4.3 The case 4� α < 6
In this case we provide a direct proof, without using flag algebras or fractional decompositions. Let
n be large and let G be any graph of order n such that πα

3 (G)= πα
3 (n). Let D be a decomposition

of G with minimum weight consisting of t triangles and � edges.
If G is a complete graph, then we are done. Hence we assume there exists some pair of ver-

tices x, y ∈G such that xy /∈ E(G). Let G′ be obtained from G by adding the edge xy. Let D′ be an
optimal decomposition of G′ containing t′ triangles and �′ edges. Recall that finding an optimal
decomposition is equivalent to maximizing a triangle packing, that is, t′ = ν(G′). Hence t′ � t.

If xy is used as an edge in D′, then removing xy from D′ gives a decomposition of G with cost
πα
3 (G′)− 2, contradicting the maximality of G. Therefore xy must appear in a triangle xyz ∈D′.

We now construct a decomposition D∗ of G by removing xyz from D′ and adding the edges xz
and yz. Since the total cost of D∗ is α(t′ − 1)+ 2(�′ + 2), we have

πα
3 (G)� cost(D∗)= α(t′ − 1)+ 2(�′ + 2)= αt′ + 2�′ − α + 4� αt′ + 2�′ = πα

3 (G
′),

which contradicts the maximality of πα
3 (G) if at least one of the inequalities is strict. Hence α = 4,

xymust be in a triangle in D′, and πα
3 (G′)= πα

3 (n).
This means that it is possible to keep adding edges to G, which results in a sequence of graphs

G,G′, . . . ,Kn where an optimal decomposition of each of these graphs has cost πα
3 (n), i.e. they are

all πα
3 -extremal graphs. Note that we can add missing edges to G in any order, always obtaining a

sequence of extremal graphs.
This allows us to reverse the process and examine a sequence of edge removals from Kn.
Suppose thatG is obtained fromKn by removing the edge xy, i.e. G′ isKn. Note that if �′ > 0, i.e.

the optimal decomposition ofKn contains an edge, then there exists an option forD′ that contains
the edge xy, which was already ruled out. This means thatKn is triangle-divisible, which is the case
if and only if n≡ 1, 3 (mod 6).

Now assume that G is missing more than one edge. Hence K−
n must be also extremal. By the

above, n≡ 1, 3 (mod 6), Kn is triangle-divisible, and π4
3 (n)= 4ν(Kn), where ν(Kn)= 1

3
(n
2
)
.

Suppose that G is obtained from Kn by removing two edges uv and xy. First suppose that u= x.
Let D� be a decomposition of G into triangles and one edge vy. This gives

π4
3 (G)� cost(D�)= 4(ν(Kn)− 1)+ 2< 4ν(Kn)= π4

3 (n),
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contradicting the maximality of π4
3 (G). Hence xy and uv form a matching. Note that x, y, u and

v have odd degrees in G, so �� 2, for else we are unable to fix the parity of the vertices x, y,
u and v. Now

(n
2
) − � − 2 needs to be divisible by 3, so �� 4. There indeed exists a decomposition

with � = 4 by taking edges xu, xv, yu and yv and the rest as triangles. This gives

π4
3 (G)= 4(ν(Kn)− 2)+ 2 · 4= π4

3 (n).
Therefore G is extremal.

Suppose that G is obtained from Kn by removing three edges uv, xy and zw. Since G′ must be
Kn without a matching, uv, xy and zw also form a matching. Let D� be a decomposition of G into
triangles and edges ux, yz and vw. This gives

π4
3 (G)� cost(D�)= 4(ν(Kn)− 2)+ 6< 4ν(Kn)= π4

3 (n),
contradicting themaximality ofπ4

3 (G). This implies thatG cannot be obtained fromKn by deleting
three or more edges, thus finishing the proof of this case and of Theorem 1.6.

5. Related results
A related question of Erdős (see e.g. [9]) asks for the largest t = t(n,m) such that every graph with
n vertices and t2(n)+m edges has at least t edge-disjoint triangles. Of course, t�m. Győri [11]
(see [13] for a correction) showed, for large n, that t�m−O(m2/n2) ifm= o(n2), and t =m if n
is odd and m� 2n− 10 or n is even and m� 3n/2− 5. Moreover, the last two bounds on m are
sharp.

More recently, Győri and Keszegh [14] proved that every K4-free graph with t2(n)+m edges
hasm edge-disjoint triangles.

Theorem 1.5 shows that the maximum of π3(G) is attained for G= T2(n) or G=Kn. However,
if we restrict the set of graphs under consideration to graphs of a particular edge density, the
decomposition is perhaps cheaper. Note that if the optimal decomposition of a graph G contains
t triangles and � edges, then π3(G)= 2e(G)− 3t. That is, we have that π3(G)= 2e(G)− 3ν(G),
where as before ν(G) denotes the maximum number of edge-disjoint triangles in G. Then
Theorem 1.3 implies an inequality between the edge density of G and its triangle packing density,
which we denote by νd(G) := 3ν(G)/

(n
2
)
.

Corollary 5.1 (of Theorem 1.3). Let G be a graph with d
(n
2
)
edges. Then

νd(G)� 2d − 1+ o(1).

We also have that νd(G)� d, which is tight for all graphs which are the union of edge-disjoint
triangles.

A question reminiscent of the seminal result of Razborov on the minimal triangle density in
graphs [25] (see also [22] and [20]) would be to determine the exact lower bound on νd(G) in
terms of d (answering asymptotically the question of Erdős stated above).

Some flag algebra computations yield numerical asymptotic lower bounds on νd(G) with
different edge densities between 0.5 and 1. The result, depicted in Figure 3, suggests that the
true asymptotic shape of the region {(d, νd(G)) : 0� d� 1,G graph} may indeed have a richer
structure.
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