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Abstract

We prove that analogues of the Hardy–Littlewood generalised twin prime conjecture for
almost primes hold on average. Our main theorem establishes an asymptotic formula for the
number of integers n = p1p2 ≤ X such that n + h is a product of exactly two primes which
holds for almost all |h| ≤ H with log19+ε X ≤ H ≤ X1−ε, under a restriction on the size of one
of the prime factors of n and n + h. Additionally, we consider correlations n, n + h where
n is a prime and n + h has exactly two prime factors, establishing an asymptotic formula
which holds for almost all |h| ≤ H with X1/6+ε ≤ H ≤ X1−ε.

2020 Mathematics Subject Classification: 11N37 (Primary)

1. Introduction

The generalised twin prime conjecture states that for any integer k ≥ 1 there are infinitely
many primes p such that p + 2k is also a prime. Hardy and Littlewood [10] conjectured that
the number of primes p ∈ (X, 2X] such that p + 2k is prime is

∼ S(2k)X

log2 X
(1·1)

as X → ∞, where S(h) is the singular series defined by

S(h) := 2�2

∏
p|h
p>2

p − 1

p − 2
(1·2)

if h is an even integer and zero if h is odd. Here �2 := ∏
p>2

(
1 − 1/(p − 1)2

)
is the twin

prime constant. The Hardy–Littlewood conjecture (1·1) is equivalent to showing for any
fixed non-zero integer h that

1

X

∑
X<n≤2X

1P(n)1P(n + h) ∼S(h)

(
1

X

∑
X<n≤2X

1P(n)

)2

, (1·3)

where 1P is the indicator function of the primes, as X → ∞. While the Hardy–Littlewood
conjecture remains wide open it is known to be true on average. In particular, for any fixed
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A> 0 we have

∑
|h|≤H

∣∣∣∣∣ 1

X

∑
X<n≤2X

1P(n)1P(n + h) −S(h)

(
1

X

∑
X<n≤2X

1P(n)

)2 ∣∣∣∣∣
2

= O

(
H

logA+2 X

)
,

so by Chebyshev’s inequality we have that (1·3) holds for all but at most OA(H log−A X)
values of |h| ≤ H = H(X). Mikawa [24] proved that if X1/3+ε ≤ H ≤ X1−ε, then for all but at
most Oε,A(H log−A X) values of |h| ≤ H we have that (1·3) holds. Matomäki, Radziwiłł and
Tao [21]

1
improved this range, showing that if 0 ≤ h0 ≤ X1−ε and X8/33+ε ≤ H ≤ X1−ε then

(1·3) holds for all but Oε,A(H log−A X) values of h such that |h − h0| ≤ H.
In this paper we establish an analogue of the Hardy–Littlewood conjecture for integers

which have exactly two prime factors (called E2 numbers) which holds on average, provided
we restrict the size of one of the prime factors. Given P> 0 and fixed δ > 0 we define
E′

2 := E′
2(P) to be the set of integers n = p1p2 with exactly two prime factors such that

p1 ∈ (P, P1+δ]. The presence of the two prime factors gives the problem a bilinear structure
which enables us to go further and we show an asymptotic formula for the correlation

1

X

∑
X<n≤2X

1E′
2
(n)1E′

2
(n + h),

where 1E′
2

is the indicator function of the set E′
2, which holds for almost all |h| ≤ H with

log19+ε X ≤ H ≤ X log−A X and A> 3.

THEOREM 1·1. Let ε > 0, A> 3 be fixed and let log19+ε X ≤ H ≤ X log−A X. Then, there
exists some η= η(ε)> 0 such that

1

X

∑
X<n≤2X

1E′
2
(n)1E′

2
(n + h) ∼S(h)

(
1

X

∑
X<n≤2X

1E′
2
(n)

)2

(1·4)

holds for all but at most O(H log−η X) values of 0< |h| ≤ H. Here we define

P :=
{

log17+ε X, if log19+ε X ≤ H ≤ exp
(
( log X)ε

3)
,

exp
(
( log log X)2

)
, if exp

(
( log X)ε

3)
<H ≤ X log−A X.

Remark 1·2. The range X log−A X ≤ H ≤ X can also be dealt with by the same methods,
see for example [24, 21]. The smallest possible choice of H in the above is H = log19+ε X,
however it may be possible to lower this exponent. In the proof of Theorem 1·1 we apply the
argument of Teräväinen [28, sections 2-4] showing that almost all intervals [x, x + log5+ε x]
contain an integer which has exactly two prime factors. The second half of Teräväinen’s
paper is dedicated to lowering the exponent 5 + ε to 3.51 through an argument additionally
using some sieve theory and the theory of exponent pairs. We do not apply these ideas here,
but it is possible that adapting some aspects of this argument to our proof could lower the
exponent of H.

1 Mikawa proved his result (in his notation) also in the range X1−ε ≤ H ≤ X. Matomäki, Radziwiłł and Tao
note that their result can also be proved in this range by their methods. Both results are also proved with a
better error term.
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We can prove a similar asymptotic formula for correlations of general E2 numbers
which holds on average using the same methods. Making some adjustments to the proof
of Theorem 1·1, we obtain an asymptotic formula for correlations n, n + h ∈ E2 which holds
for almost all |h| ≤ H. The cost of considering the set of E2 numbers is taking H larger than
in the previous theorem, although we still go beyond what is known for primes.

THEOREM 1·3. Let ε > 0, B> 0, A> 3 be fixed and let exp
(
( log X)1−ε)≤ H ≤

X log−A X. Then, we have that

1

X

∑
X<n≤2X

1E2(n)1E2(n + h) ∼S(h)

(
1

X

∑
X<n≤2X

1E2(n)

)2

for all but at most O(H log−B X) values of 0< |h| ≤ H.

We can also combine our argument with the work of Mikawa [24] on correlations of
primes to study correlations n, n + h where n is a prime and n + h is an E2 number on
average. We are still able to take advantage of the bilinear structure provided by the almost
prime to go further than what is known for primes and prove an asymptotic formula which
holds for almost all |h| ≤ H with H as small as X1/6+ε.

THEOREM 1·4. Let ε > 0 be fixed sufficiently small, B> 0, A> 5 be fixed and let
X1/6+ε ≤ H ≤ X log−A X. Then, we have that

1

X

∑
X<n≤2X

1P(n)1E2(n + h) ∼S(h)

(
1

X

∑
X<n≤2X

1P(n)

)(
1

X

∑
X<m≤2X

1E2(m)

)

for all but at most O(H log−B X) values of 0< |h| ≤ H.

1·1. Previous works

Before outlining the proofs of our results we first discuss some previous results on primes
and almost primes which are proved using sieve methods.

Chen’s theorem gives that p + 2 = q such that p is prime and q is either a prime or a
product of two primes holds for infinitely many primes p. Debouzy [4] proved under the
Elliott–Halberstam conjecture that given any 0 ≤ β < γ there exists X0 such that for all
X ≥ X0 we have that∑

n≤X

�(n)�(n + 2) + 1

γ − β

∑
n≤X

�(n + 2)
∑

d1d2=n
nβ≤d1≤nγ

�(d1)�(d2)

log n
= 2�2X(1 + o(1)).

This result is proved using an improvement of the Bombieri asymptotic sieve. The Elliott–
Halberstam conjecture [5] (see also [3, 6]) concerns the distribution of primes in arithmetic
progressions and states that for every A> 0 and 0< θ < 1 we have that

∑
q≤xθ

max
(a,q)=1

∣∣∣∣ψ(x;q, a) − x

ϕ(q)

∣∣∣∣
 x

logA x
,

where we define ψ(x;q, a) := ∑
n≤x,n≡a(q) �(n).

https://doi.org/10.1017/S0305004122000251 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004122000251


304 N. EVANS

More generally, Bombieri [1] had previously considered pairs Pk and Pk + 2 = p with p
prime and Pk an almost prime with at most k factors. More precisely, defining�k(n) := (μ ∗
logk )(n) to be the generalised von Mangoldt function where ∗ denotes Dirichlet convolution,
Bombieri proved that if k ≥ 1 is an integer and x ≥ x0(k) we have∑

n≤X

�k(n)�(n + 2) = 2�2X( log X)k−1(k + O(k4/32−k/3))

and, assuming the Elliott–Halberstam conjecture, for k ≥ 2 we have the asymptotic∑
n≤X

�k(n)�(n + 2) ∼ 2�2kX( log X)k−1.

There are a number of results regarding bounded gaps between the primes; Zhang [30]
proved that

lim inf
n→∞ (pn+1 − pn)< 7 × 107 (1·5)

and in particular that there exist infinitely many bounded gaps between the primes. Maynard
[23] improved the above bound to 600, while the Polymath 8b [27] project subsequently
improved this to 246. Under the generalised Elliott–Halberstam conjecture, the best known
bound is 6. The twin prime conjecture would amount to proving the above result with the
bound 2. Goldston, Graham, Pintz and Yıldırım [9] proved an almost prime analogue of
(1·5); if q1 < q2 < · · · denotes the sequence of products of exactly two distinct primes, then

lim inf
n→∞ (qn+1 − qn) ≤ 6.

Integers with exactly two prime factors cannot be counted by sieve methods due to the
parity problem - even assuming the Elliott–Halberstam conjecture - and we will instead
apply the circle method as in previous works on correlations of primes [21, 24].

1·2. Outline of the proof

We now discuss the main ideas of the proof of Theorem 1·1. We apply the Hardy–
Littlewood circle method, first expressing the correlation∑

X<n≤2X

1E′
2
(n)1E′

2
(n + h)

in terms of the integral

∫ 1

0

∣∣∣∣∣
∑

X<n≤2X

1E′
2
(n)e(nα)

∣∣∣∣∣
2

e( − hα)dα. (1·6)

We split the integral (1·6) over the unit circle into integrals over the major arcs, the set
of points in (0,1) which are well approximated by a rational with a small denominator, i.e.
the set of α ∈ (0, 1) such that |α − a/q| ≤ 1/(q logC X) for some integers (a, q) = 1 with

1 ≤ q ≤ logA′
X for some 0< A′ <C, and the minor arcs consisting of the rest of the circle.

In many problems of this type (see e.g. [21, 24]) where the Hardy–Littlewood circle
method is applied, it is usual that the major arcs are treated in a standard way to provide
the main term and an error term which is not too difficult to control, while the contribution
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from the minor arcs is more difficult to bound suitably. Since the correlation∑
X<n≤2X

1E′
2
(n)1E′

2
(n + h) =

∑
P<p1,p3≤P1+δ

∑
X<p1p2,p3p4≤2X

p3p4=p1p2+h

1

has a bilinear structure, we are in fact able to bound the integral over the minor arcs with rel-
ative ease using standard results on bilinear exponential sums. For the major arcs, while we
are still able to evaluate the main term in the usual way, the difficulty now lies in estimating
the error term.

We will first treat the integral over the minor arcs. We find cancellation in the contribution
on average over the shift h:

∑
0<|h|≤H

∣∣∣∣∣
∫
m

∣∣∣∣∣
∑

X<n≤2X

1E′
2
(n)e(nα)

∣∣∣∣∣
2

e( − hα)dα

∣∣∣∣∣
2

.

Expanding the square, applying Poisson summation and Gallagher’s Lemma, we can reduce
the problem to bounding an integral of the form

sup
α∈m

∫ 2X

X

∣∣∣∣∣
∑

x<n≤x+H

1E′
2
(n)e(nα)

∣∣∣∣∣
2

dx = sup
α∈m

∫ 2X

X

∣∣∣∣∣
∑

x<p1p2≤x+H
P<p1≤P1+δ

e(αp1p2)

∣∣∣∣∣
2

dx.

The bilinear structure of these sums means we get the required cancellation, as seen in
the work of Mikawa [24]. We apply the Cauchy–Schwarz inequality before separating the
contributions of the diagonal and off-diagonal terms. The diagonal terms are bounded triv-
ially and a standard argument for bounding bilinear exponential sums is used to bound the
off-diagonal terms.

The major arcs contribute the main term, which is evaluated in a standard way, and an
error term. We expand the exponential sum in terms of Dirichlet characters, with a suitable
approximation to the principal character providing the main term.

To the remaining terms in the expansion, we again apply Gallagher’s Lemma to reduce the
problem to understanding almost primes in almost all short intervals. We add and subtract a
sum over a longer interval, so that we aim to estimate an expression of the form

∑
q≤( log X)A

′

q

ϕ(q)

∑
χ(q)
χ 
=χ0

( ∫ 2X

X

∣∣∣∣∣ 2

q( log X)C

∑
x<n≤x+ q( log X)C

2

1E′
2
(n)χ(n)

− 2

q�

∑
x<n≤x+ q�

2

1E′
2
(n)χ(n)

∣∣∣∣∣
2

dx

+
∫ 2X

X

∣∣∣∣∣ 2

q�

∑
x<n≤x+ q�

2

1E′
2
(n)χ(n)

∣∣∣∣∣
2

dx

)
,

(1·7)

with � slightly smaller than X. We are then able to apply Cauchy–Schwarz and what is
known about primes in almost all short intervals to the second term. For the estimation
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of the first term, we adapt the work of Teräväinen [28] on almost primes in almost all
short intervals (which in turn adapts the work of Matomäki and Radziwiłł [19] on mul-
tiplicative functions in short intervals). In particular, we first use a Parseval-type bound
in order to bound the integral in terms of the mean square of the associated Dirichlet
polynomial ∫ T

−T

∣∣∣∣∣
∑

X<n≤2X

1E′
2
(n)χ(n)

n1+it

∣∣∣∣∣
2

dt.

We then factorise this Dirichlet polynomial into a short Dirichlet polynomial corresponding
to the smaller prime factor p1 and a longer polynomial corresponding to the larger prime
factor p2. The domain of integration is split according to whether the short polynomial is
pointwise small. When the shorter polynomial is small, we apply the pointwise bound fol-
lowed by a mean value theorem. When this shorter polynomial is large, to get sufficient
cancellation we further decompose the long Dirichlet polynomial into products of shorter
polynomials using Heath–Brown’s identity, reducing the problem to estimating type I and
type II sums. The type I sums occur when these polynomials are sufficiently long and are
in fact partial sums related to Dirichlet L-functions. In this case we are able to apply the
Cauchy–Schwarz inequality followed by a result on the twisted fourth moment of partial
sums of Dirichlet L-functions. Otherwise, for the type II sums, we then further split the
domain according to whether one of these polynomials is small, in which case it is bounded
pointwise before we use a mean value theorem. When the polynomial is large, we apply the
Halász–Montgomery inequality followed by large value theorems.

The proof of Theorem 1·3 also follows the argument given above, but we need to make
appropriate adjustments to the parameters when applying the circle method and take more
care when using the Cauchy–Schwarz inequality. On both the major and minor arcs the
application of Cauchy–Schwarz to sums over the smaller prime factor is now too inefficient,
but we can overcome this by splitting these sums into dyadic intervals and then combining
the contributions. For the proof of Theorem 1·4, we combine these ideas for the almost
primes with the work of Mikawa [24] on the primes.

Recently, the methods of Matomäki and Radziwiłł [19] have been combined with the
Hardy–Littlewood circle method to make progress on other problems in analytic number
theory. Matomäki, Radziwiłł and Tao [22] obtained short averages (of length logB X for some
large B> 0) for correlations of divisor functions and the von Mangoldt function, at the cost
of weaker error terms. Matomäki, Radziwiłł and Tao [20] use these ideas to establish that
Chowla’s conjecture [2] holds on average as soon as the length of the average grows with X.
Recent work of Lichtman and Teräväinen [18] shows that a hybrid of Chowla’s conjecture
and the Hardy–Littlewood conjecture holds on average (see also [17]), with average of length
a power of log X.

1·3. Notation

Throughout p, pi, are used to denote prime numbers, while k,l,m,n,q,r,v (with or without
subscripts) are positive integers.

As usual, μ( · ) is the Möbius function and ϕ( · ) is the Euler totient function. We let dr(n)
denote the number of solutions to n = a1 · · · ar in positive integers. We let cq( · ) be the
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Ramanujan sum, defined by

cq(n) :=
q∑

a=1
(a,q)=1

e

(
an

q

)
.

We write τ ( · ) for the Gauss sum defined on Dirichlet characters χ modulo q by

τ (χ) :=
q∑

n=1

e

(
n

q

)
χ(n), (1·8)

which satisfies τ (χ0) =μ(q).
We use e:T→R to denote e(x) := e2π ix, where T is the unit circle. The notation 1S( · )

is the indicator function of the set S; in particular, we write 1S(n) = 1 if n ∈ S and 1S(n) = 0
otherwise. Let ‖x‖ := minn∈Z |x − n| denote distance to the nearest integer.

We will use (a,b) to denote the greatest common divisor of natural numbers a and b,
while we write a | b if a divides b. The shorthand a ≡ b(q) is used to denote that a and b are
congruent modulo q.

We use the shorthand χ(q) to denote that the summation is taken over all Dirichlet
characters modulo q. For complex functions g1, g2 we use the usual asymptotic notation
g1(x) = O(g2(x)) or g1(x) 
 g2(x) to denote that there exist real x0 and C> 0 such that for
every x ≥ x0 we have that |g1(x)| ≤ C|g2(x)|. We write g1(x) = o(g2(x)) if for every ε > 0
there exists x0 such that |g1(x)| ≤ ε|g2(x)| for all x ≥ x0. We use the convention that ε > 0
may be different from line to line.

2. Preliminary lemmas

We now state several results we will need throughout the argument. We will need the
following bound on primes p such that p + h is also prime and the singular series:

LEMMA 2·1. Let h ≤ x be an even non-zero integer and suppose that y ≥ 4. The number
of primes p ∈ (x, x + y] such that p + h is also prime is


 S(h)y

( log y)2
.

Furthermore, we have that ∑
h≤x

S(h) 
 x.

Proof. See [26, corollary 3·14] and the subsequent exercises.

We will also need Gallagher’s Lemma, which will reduce bounding integrals over the
major and minor arcs to studying almost primes in short intervals.

LEMMA 2·2 (Gallagher’s Lemma). Let 2< y< X/2. For arbitrary complex numbers an,
we have

∫
|β|≤ 1

2y

∣∣∣∣∣∣
∑

X<n≤2X

ane(βn)

∣∣∣∣∣∣
2

dβ 
 1

y2

∫ 2X

X

∣∣∣∣∣∣
∑

x<n≤x+y

an

∣∣∣∣∣∣
2

dx + y

(
max

X<n≤2X
|an|

)2

. (2·1)
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Proof. This lemma is a modification of [8, lemma 1] (see also [24, lemma 1]).

Once we have applied Gallagher’s Lemma in the treatment of the major arcs, part of the
error term is reduced to a Dirichlet character analogue of a problem on primes in almost all
short intervals. We will use the following result adapted from the work of Koukoulopoulos
[16] to bound the second term arising in (1·7):

LEMMA 2·3. Let A ≥ 1 and ε ∈ (0, 1/3] be fixed. Let X ≥ 1, 1 ≤ Q ≤�/X1/6+ε and �=
Xθ with 1/6 + 2ε≤ θ ≤ 1. Then we have that

∑
q≤Q

∑
χ(q)

∫ 2X

X

∣∣∣∣∣∣
∑

x<n≤x+q�

(
�(n)χ(n) − δχ

)∣∣∣∣∣∣
2

dx 
 Q3�2X

logA X
,

where we define δχ = 1 if χ = χ0 and δχ = 0 otherwise.

Proof. The proof can be adapted from the proof given in [16, section 4]. Once the contribu-
tion of the imprimitive characters has been bounded in a standard way, the main difference
we need to account for when compared with [16, theorem 1·2] is the presence of the square.
To account for this, we adjust certain parameters (namely, replace D with

√
D and adjust

some of the powers of logarithms as needed) and do not require as many applications of
the Cauchy–Schwarz inequality. We also note that in our argument we do not need the full
strength of [16, theorem 1·2].

We use the following Parseval-type result to reduce the problem of finding almost primes
in short intervals (cf. the first term of (1·7)) to finding cancellation in the mean square of the
associated Dirichlet polynomial:

LEMMA 2·4 (Parseval Bound). Let an be arbitrary complex numbers, and let 2 ≤ h1 ≤
h2 ≤ X/T3

0 with T0 ≥ 1. Define F(s) := ∑
X<n≤2X an/ns. Then

1

X

∫ 2X

X

∣∣∣∣∣∣
1

h1

∑
x<n≤x+h1

an − 1

h2

∑
x<n≤x+h2

an

∣∣∣∣∣∣
2

dx


 1

T2
0

max
X<n≤2X

|an|2 +
∫ X

h1

T0

|F(1 + it)|2dt + max
T≥ X

h1

X

Th1

∫ 2T

T
|F(1 + it)|2dt.

(2·2)

Proof. This is [28, lemma 1], which is a variant of [19, lemma 14].

Finally, we record an exponential sum bound and a related bound on the sum of reciprocal
of the distance to the nearest integer function which provide the necessary cancellation in
the estimation of the minor arcs.

LEMMA 2·5. Let β ∈R, then

∑
n≤x

e(βn) 
 min

(
x,

1

‖β‖
)

.

Proof. This is a standard result, see for example [13, chapter 8, Equation (8·6)].
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LEMMA 2·6. If 1< X ≤ Y and α ∈R satisfies α = a/q + O(q−2) with (a, q) = 1, then we
have

∑
n≤X

min

(
Y

n
,

1

‖αn‖
)



(

Y

q
+ X + q

)
log (qX).

Proof. This is a standard result, see for example [13, chapter 13, Page 346].

3. Applying the circle method

To prove Theorem 1·1, we will apply the Hardy–Littlewood circle method. Let ε > 0 be
small and fixed. We define P> 0 according to the size of H as follows:

P :=
{

log17+ε X if log19+ε X ≤ H ≤ exp
(
( log X)ε

3)
,

exp
(
( log log X)2

)
, if exp

(
( log X)ε

3)
<H ≤ X log−A X.

(3·1)

It will be more convenient throughout the argument to have a log weight attached to the
indicator function of E′

2 as follows:

Definition 3·1. We define the arithmetic function �2:N→R to be

�2(n) =
{

log p2, if n = p1p2 with P< p1 ≤ P1+δ ,
0, otherwise.

From now on we fix δ > 0 sufficiently small. We will prove the following asymptotic for-
mula, from which Theorem 1·1 follows immediately after applying dyadic decomposition:

THEOREM 3·2. Let ε > 0, A> 3 be fixed and let log19+ε X ≤ H ≤ X log−A X. Then, there
exists some η= η(ε)> 0 such that for all but at most O(H log−η X) values of 0< |h| ≤ H we
have that

∑
X<n≤2X

�2(n)�2(n + h) =S(h)X

⎛
⎝ ∑

P<p≤P1+δ

1

p

⎞
⎠

2

+ O

(
X

logη X

)
, (3·2)

where S(h) is the singular series defined in (1·2).

Remark 3·3. As H becomes an arbitrarily large power of log X, or is larger than any power
of log X, we are able to improve the bound on the error terms to O(X log−A X) for A> 0 once
we have suitably modified the dependencies between H, P and the parameters of the circle
method. We also note that, after appropriately modifying the main term, using this result we
can in fact prove Theorem 1·1 with a better error term.

We consider the integral

∫ 1

0
|S(α)|2e( − hα)dα =

∑
X<m,n≤2X

�2(m)�2(n)
∫ 1

0
e(α(m − n − h))dα, (3·3)
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where for α ∈ (0, 1) we define the exponential sum

S(α) :=
∑

X<n≤2X

�2(n)e(nα).

Then, by the integral identity

∫ 1

0
e(nx)dx =

{
1, if n = 0,

0, otherwise,
(3·4)

we have that the integral in (3·3) vanishes unless m = n + h. Thus (3·3) becomes

∫ 1

0
|S(α)|2e( − hα)dα =

∑
X<n≤2X−h

�2(n)�2(n + h)

=
∑

X<n≤2X

�2(n)�2(n + h) + O(h log2 X). (3·5)

This error term will be negligible by our choice of H. Thus, except for an acceptable error,
we can represent the correlation by an integral over the unit circle.

We split the domain of integration into the major and minor arcs. We define the major arcs
M to be the set of real α ∈ (0, 1) such that∣∣∣∣α − a

q

∣∣∣∣≤ 1

qQ
for some 1 ≤ q ≤ Q0, a< q, (a, q) = 1 (3·6)

with Q0 := logA′
X and Q := P log X. Here we define A′ > 0 according to the size of H as

follows

A′ :=
⎧⎨
⎩

1 + ε2, if log19+ε X ≤ H ≤ exp
(
( log X)ε

3)
,

3 + ε2, if exp
(
( log X)ε

3)
<H ≤ X log−A X.

(3·7)

We define the minor arcs m to be the rest of the circle, that is, the set of real α ∈ (0, 1) such
that ∣∣∣∣α − a

q

∣∣∣∣≤ 1

qQ
for some Q0 < q ≤ Q, a< q, (a, q) = 1. (3·8)

Remark 3·4. The parameters satisfy Q0 < P<Q<H. Decreasing the size we can take for
P would directly reduce how small we are able to take H.

In Section 4, we will prove the following estimate for the integral over the minor arcs:

PROPOSITION 3·5 (Minor arc estimate). Let A> 3 be fixed and let ε > 0 be fixed sufficiently
small. Let Q log1+ε X ≤ H ≤ X log−A X. With m defined as in (3·8), for α ∈m there exists
some η= η(ε)> 0 such that∫

m∩[α− 1
2H ,α+ 1

2H ]
|S(θ)|2dθ 
 X

log1+η X
. (3·9)
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Sections 5-8 will be dedicated to proving the following expression for the integral over
the major arcs:

PROPOSITION 3·6 (Major arc integral). Let A> 3 be fixed and let ε > 0 be fixed sufficiently
small. Let log19+ε X ≤ H ≤ X log−A X. With M defined as in (3·6) and δ > 0 sufficiently
small, there exists some η= η(ε)> 0 such that for all but at most O(HQ−1/3

0 ) values of
0< |h| ≤ H we have that

∫
M

|S(α)|2e( − hα)dα =S(h)X

⎛
⎝ ∑

P<p≤P1+δ

1

p

⎞
⎠

2

+ O

(
X

logη X

)
,

where S(h) is the singular series given in (1·2).

Assuming Proposition 3·5 and Proposition 3·6, we can now prove Theorem 3·2.

Proof of Theorem 3·2. Following [21, section 3], by [21, proposition 3·1] we have that

∑
0<|h|≤H

∣∣∣∣∣∣
∑

X<n≤2X

�2(n)�2(n + h) −
∫
M

|S(α)|2e( − hα)dα

∣∣∣∣∣∣
2


 H
∫
m

|S(α)|2
∫
m∩[α− 1

2H ,α+ 1
2H ]

|S(β)|2dβdα.

By Proposition 3·5, there exists some η= η(ε)> 0 such that

sup
α∈m

∫
m∩[α− 1

2H ,α+ 1
2H ]

|S(β)|2dβ 
 X

log1+η X
.

Noting that by partial summation and Mertens’ theorem we have the bound

∫ 1

0
|S(α)|2dα =

∑
X<n≤2X

� 2
2 (n) 
 log X

∑
X<n≤2X

�2(n) 
 X log X
∑

P<p≤P1+δ

1

p


 X log X

we have that

∑
0<|h|≤H

∣∣∣∣∣∣
∑

X<n≤2X

�2(n)�2(n + h) −
∫
M

|S(α)|2e( − hα)dα

∣∣∣∣∣∣
2


 HX2

logη X
.

Applying Chebyshev’s inequality and Proposition 3·6 then gives the result.

4. The minor arcs

We first treat the integral over the minor arcs, proving Proposition 3·5 by following the
proof of [24, lemma 8].
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Proof of Proposition 3·5. Starting with the minor arc integral (3·9), we make the substitution
θ = α + β to see that

I :=
∫
m∩[α− 1

2H ,α+ 1
2H ]

|S(θ)|2dθ =
∫
α+β∈m
|β|≤ 1

2H

|S(α + β)|2dβ.

We apply Lemma 2·2 to the integral to get

I 
 1

H2

∫ 2X

X

∣∣∣∣∣∣
∑

x<n≤x+H

�2(n)e(nα)

∣∣∣∣∣∣
2

dx + H log2 X.

The second term is acceptable by our choice of H, so it remains to bound the first term. We
first consider the case H ≤ exp (( log X)ε

3
). We apply the Cauchy–Schwarz inequality to the

integrand to get

∣∣∣∣∣
∑

x<p1p2≤x+H
P<p1≤P1+δ

( log p2)e(αp1p2)

∣∣∣∣∣
2

≤
( ∑

P<m1≤P1+δ
|1P(m1)|2

)( ∑
P<m2≤P1+δ

∣∣∣∣∣
∑

x<m2p≤x+H

( log p)e(αm2p)

∣∣∣∣∣
2)

. (4·1)

The first term is 
 P1+δ/log P, while the second term is equal to

∑
x<mp1,mp2≤x+H

P<m≤P1+δ

( log p1)( log p2)e(αm(p1 − p2)).

Next, we perform the integration on this sum. We may trivially extend the domain of inte-
gration to [0,3X] as the integrand is positive. Define the set � := {x:0 ≤ x ≤ 3X, mpi − H ≤
x<mpi, i = 1, 2}. Exchanging the order of integration and summation and noting that
X < x<mp1, mp2 ≤ x + H ≤ 3X, we have that

I 
 P1+δ

H2 log P

∑
P<m≤P1+δ

∣∣∣∣∣∣
∑

X<mp1,mp2≤3X

( log p1)( log p2)e(αm(p1 − p2)) · |�|
∣∣∣∣∣∣ .

If m|p1 − p2|>H, then |�| = 0. Since we have that mpi − H > X − H > 0 and mpi ≤ 3X for
i = 1, 2, the condition 0 ≤ x ≤ 3X is weaker than the condition max (mp1, mp2) − H ≤ x<
min (mp1, mp2). Therefore, if m|p1 − p2| ≤ H we have that |�| = H − m|p1 − p2|.

We now split the sum into the diagonal terms, p1 = p2, and the off-diagonal terms, p1 
=
p2, denoted by S1 and S2 respectively. The diagonal terms contribute

S1 
 P1+δ

H log P

∑
P<m≤P1+δ

∑
X
m<p≤ 3X

m

log2 p 
 XP1+δ log (X/P)

H
. (4·2)
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Now we bound the off-diagonal terms. Let r = |p1 − p2|. Noting that 0<mr ≤ H, we need
to bound

S2 
 P1+δ

H2 log P

∑
0<r≤H

∑
X

P1+δ <p1,p2≤ 3X
P

p2=p1+r

( log p1)( log p2)

∣∣∣∣∣
∑

P<m≤P1+δ
0<m≤H/r

e(αmr)(H − mr)

∣∣∣∣∣.

Noting that 0<m ≤ H/r and P<m ≤ P1+δ , we have that 0< r ≤ H/P. We apply partial
summation and Lemma 2·5 to the sum over m to see that

S2 
 P1+δ

H log P

∑
0<r≤ H

P

min

(
H

r
,

1

‖αr‖
) ∑

X
P1+δ <p1,p2≤ 3X

P
p2=p1+r

( log p1)( log p2).

By partial summation followed by Lemma 2·1, we have that the sum over p1, p2 is
bounded by ∑

X
P1+δ <p1,p2≤ 3X

P
p2=p1+r

( log p1)( log p2) 
 log2 X
∑

X
P1+δ <p1,p2≤ 3X

P
p2=p1+r

1 
 S(r)X

P
.

Therefore the contribution of the off-diagonal terms can be bounded by

S2 
 XP1+δ

HP log P

∑
0<r≤ H

P

min

(
H

r
,

1

‖αr‖
)
S(r).

We have that S(r) 
 log log r, so applying partial summation we have that

S2 
 XPδ

H log P
log log X

∑
0<r≤ H

P

min

(
H

r
,

1

‖αr‖
)

.

Next, we apply Lemma 2·6 to the sum over r to get

S2 
 XPδ

H

(
H

Q0
+ H

P
+ Q

)
log

QH

P
, (4·3)

recalling that since α ∈m we have that Q0 ≤ q ≤ Q. Since H ≤ exp (( log X)ε
3
), we note

that ( log QH/P) 
 ( log X)ε
3
. Therefore, combining the contributions of the diagonal terms

(4·2) and the off-diagonal terms (4·3), we find

I 
 XPδ
(

( log X)ε
3
(

1

Q0
+ 1

P
+ Q

H

)
+ P log (X/P)

H

)
.

By our choices of Q0 = log1+ε2
X, Q log1+ε X = P log2+ε X 
 H, we have that

I 
 X

log1+η X

for some η= η(ε)> 0.
Otherwise, if H > exp (( log X)ε

3
), we split the sum over P ≤ p1 ≤ P1+δ into dyadic inter-

vals before applying Cauchy–Schwarz in (4·1). We have that log (QH/P) 
 log X and
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Q0 = log3+ε2
X, so that the total contribution is

I 
 X log log X

(
log X

(
1

Q0
+ 1

P
+ Q

H

))
+ XP log (X/P)

H

 X

log2+η X

for some η= η(ε)> 0, which is acceptable.

5. The major arcs

We now shift our attention to evaluating the contribution of the integral over the major
arcs. We will first expand the exponential sum S(α) in terms of Dirichlet characters and
suitably approximate the contribution of the principal character, which will provide the main
term. We will then evaluate this main term and the sequel will then be dedicated to bounding
the error terms that arise from this expansion.

5·1. Expanding the exponential sum

First, we rewrite the integral over the major arcs by expanding the exponential sum S(α)
in terms of Dirichlet characters. Recalling that α = a/q + β satisfies (3·6), we first define

a(α) := μ(q)

ϕ(q)

∑
P<p≤P1+δ

1

p

∑
X<n≤2X

e(βn),

b(α) := 1

ϕ(q)

∑
χ(q)

τ (χ )χ(a)
∑

X<n≤2X

⎛
⎝�2(n)χ(n) − δχ

∑
P1<p≤P1+δ

1

p

⎞
⎠ e(βn),

A2(X) :=
∫
M

|a(α)|2dα,

B2(X) :=
∫
M

|b(α)|2dα,

where τ (χ) denotes the Gauss sum as defined in (1·8) and δχ = 1 when χ = χ0 and is zero
otherwise. We will now find the following expression for the integral over the major arcs,
once we have expanded the exponential sum:

LEMMA 5·1. Let M be defined as in (3·6). We have that∫
M

|S(α)|2e( − hα)dα =
∫
M

|a(α)|2e( − hα)dα + O
(

A(X)B(X) + B2(X)
)

.

Proof. Let α ∈M, so that α = a/q + β with q ≤ Q0, (a, q) = 1 and |β| ≤ 1/(qQ). Then

S(α) =
∑

X<n≤2X

�2(n)e

(
an

q

)
e(βn).

By Definition 3·1, we have that n = p1p2 with P< p1 ≤ P1+δ . As we have P>Q0, we
must have that (p1, q) = (p2, q) = 1 and therefore that (n, q) = 1. We can now rewrite our
expression for S(α) by applying the identity

e

(
a

q

)
= 1

ϕ(q)

∑
χ(q)

χ(a)τ (χ ) (5·1)
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which holds for (a, q) = 1. This gives

S(α) = 1

ϕ(q)

∑
χ(q)

τ (χ )χ(a)
∑

X<n≤2X

�2(n)χ(n)e(βn) (5·2)

= 1

ϕ(q)

∑
χ(q)

τ (χ )χ(a)
∑

X<p1p2≤2X
P<p1≤P1+δ

χ(p1)χ(p2)( log p2)e(βp1p2),

where we have applied the definition of �2 in the last line. Now we approximate the
contribution of the principal character, which will become the main term. First, note that
since we have q ≤ Q0 < P< p1 we must have that (p1p2, q) = 1 for X < p1p2 ≤ 2X, so we
must have ( log p2)χ0(p1)χ0(p2) = log p2 in these ranges. By the prime number theorem, we
have that ∑

X<n≤2X

�2(n) =
∑

P<p1≤P1+δ

∑
X
p1
<p2≤ 2X

p1

log p2 ∼ X
∑

P<p≤P1+δ

1

p
.

Therefore we choose to approximate
∑

X<n≤2X �2(n) by

∑
P<p≤P1+δ

1

p

∑
X<n≤2X

1 = X
∑

P<p≤P1+δ

1

p
+ O(1).

Using this and the fact that τ (χ0) =μ(q), we approximate the contribution of the principal
character to the exponential sum S(α) by

μ(q)

ϕ(q)

∑
P<p≤P1+δ

1

p

∑
X<n≤2X

e(βn).

Adding and subtracting this approximation in our expression (5·2) for S(α) we have that

S(α) =μ(q)

ϕ(q)

∑
P<p≤P1+δ

1

p

∑
X<n≤2X

e(βn)

+ 1

ϕ(q)

∑
χ(q)

τ (χ )χ(a)
∑

X<n≤2X

⎛
⎝�2(n)χ(n) − δχ

∑
P<p≤P1+δ

1

p

⎞
⎠ e(βn)

=a(α) + b(α).

Finally, expanding the square and applying the Cauchy–Schwarz inequality, we have that∫
M

|S(α)|2e( − hα)dα =
∫
M

|a(α) + b(α)|2e( − hα)dα

=
∫
M

|a(α)|2e( − hα)dα + O
(

A(X)B(X) + B2(X)
)

,

as required.

Thus, in order to prove Proposition 3·6 we need to evaluate
∫
M |a(α)|2e( − hα)dα (which

will also provide a bound for A2(X)) and suitably bound B2(X).
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5·2. Evaluating the main term

In this section we evaluate the integral
∫
M |a(α)|2e( − hα)dα, giving the main term of the

asymptotic (and a bound for A2(X)):

PROPOSITION 5·2. Let ε > 0 be fixed sufficiently small. Then for all but at most O(HQ−1/3
0 )

values of 0< |h| ≤ H we have that

∫
M

|a(α)|2e( − hα)dα =S(h)X

⎛
⎝ ∑

P<p≤P1+δ

1

p

⎞
⎠

2

+ O

(
X

logη X

)
,

for some η= η(ε)> 0, where we define the singular series S(h) as in (1·2).

Before we can prove Proposition 5·2, we need an expression involving the singular series
S(h).

LEMMA 5·3 (The Singular Series). Let h be a non-zero even integer and Q0 be defined
as in (3·7). Then, for all but at most O(HQ−1/3

0 ) values of 0< |h| ≤ H we have that

∑
q≤Q0

μ2(q)cq( − h)

ϕ2(q)
=S(h) + O(Q−1/3

0 log H).

Proof. For similar results, see [21, page 39] and [29, page 35]. Rewriting the sum over q, we
have that

∑
q≤Q0

μ2(q)cq( − h)

ϕ2(q)
=

⎛
⎝ ∞∑

q=1

−
∑

q>Q0

⎞
⎠ μ2(q)cq( − h)

ϕ2(q)
.

The first term can be seen to be equal to S(h) by calculating the Euler product. It remains to
bound the tail of the sum. By [29, page 35], we have that

∑
0<h≤H

∣∣∣∣∣∣
∑

q>Q0

μ2(q)cq( − h)

ϕ2(q)

∣∣∣∣∣∣
2


 H log2 H

Q0
.

By Chebyshev’s inequality, we have for all but at most O(HQ−1/3
0 ) values of h the bound

∑
q>Q0

μ2(q)cq( − h)

ϕ2(q)

 Q−1/3

0 log H,

as claimed.

We are now able to complete the proof of Proposition 5·2.

Proof of Proposition 5·2. Applying the definition of the major arcs (3·6) and expanding the
square, we have that ∫

M
|a(α)|2e( − hα)dα (5·3)
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=
∑

q≤Q0

∑
1≤a≤q
(a,q)=1

∫
|β|≤ 1

qQ

∣∣∣∣∣μ(q)

ϕ(q)

∑
P<p≤P1+δ

1

p

∑
X<n≤2X

e(βn)

∣∣∣∣∣
2

e

(−ha

q
− hβ

)
dβ

=
⎛
⎝ ∑

P<p≤P1+δ

1

p

⎞
⎠

2 ∑
q≤Q0

μ2(q)cq( − h)

ϕ2(q)

∫
|β|≤ 1

qQ

∑
X<m,n≤2X

e(β(m − n − h))dβ

=
⎛
⎝ ∑

P<p≤P1+δ

1

p

⎞
⎠

2 ∑
q≤Q0

μ2(q)cq( − h)

ϕ2(q)
I1, (5·4)

say. We rewrite the integral I1 as

I1 =
{∫ 1

0
−

∫ 1− 1
qQ

1
qQ

} ∑
X<m,n≤2X

e(β(m − n − h))dβ

=: I2 − I3,

say. To the first term I2, we apply the identity (3·4) to get

I2 =
∑

X<m,n≤2X
m=n+h

1 = X + O(H) (5·5)

and by our choice of H the error term is acceptable. Now we bound the integral I3. Note that
β is never an integer in the domain of integration, so applying Lemma 2·5 to the sums over
m and n we have that

I3 =
∫ 1− 1

qQ

1
qQ

∑
X<m,n≤2X

e(β(m − n − h))dβ 

∫ 1− 1

qQ

1
qQ

1

‖β‖2
dβ 
 qQ.

Therefore, combining this with (5·5), we have that

I1 = X + O (qQ + H) .

We now substitute this expression for I1 into (5·4) to get

∫
M

|a(α)|2e( − hα)dα =
∑

q≤Q0

μ2(q)cq( − h)

ϕ2(q)

(
X

( ∑
P<p≤P1+δ

1

p

)2

+ O(qQ + H)

)
.

To complete the proof, it remains to treat the sum over q. By Lemma 5·3 and our definitions
of H and Q0, we find immediately that for all but at most O(HQ−1/3

0 ) values of 0< |h| ≤ H
we have that

∫
M

|a(α)|2e( − hα)dα =S(h)X

⎛
⎝ ∑

P<p≤P1+δ

1

p

⎞
⎠

2

+ O

(
X

logη X

)
,

for some η= η(ε)> 0, as claimed.
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6. The error term of the major arcs

In order to complete the proof of Proposition 3·6, and therefore the proof of Theorem
3·2, we need to find sufficient cancellation in the error term B2(X) arising on the major arcs.
In this section we prove the following bound for B2(X), which immediately completes the
proof of Proposition 3·6 when combined with Proposition 5·2:

PROPOSITION 6·1. Let ε > 0 be fixed sufficiently small, then there exists some η= η(ε)> 0
such that

B2(X) 
 X

logη X
.

6·1. Reduction of the problem

First, using Gallagher’s Lemma (Lemma 2·2), we will reduce the problem of estimat-
ing B2(X) to understanding almost primes in almost all short intervals. We first define the
following: let � := X/T3

0 with T0 := X1/100 and

B1(X) :=
∑

q≤Q0

q

ϕ(q)

∑
χ(q)

∫ 2X

X

∣∣∣∣∣ 2

qQ

∑
x<n≤x+qQ/2

(
χ(n)�2(n) − δχ

∑
P<p≤P1+δ

1

p

)
(6·1)

− 2

q�

∑
x<n≤x+q�/2

(
χ(n)�2(n) − δχ

∑
P<p≤P1+δ

1

p

)∣∣∣∣∣
2

dx,

B2(X) :=
∑

q≤Q0

q

ϕ(q)

∑
χ(q)

∫ 2X

X

∣∣∣∣∣ 2

q�

∑
x<n≤x+q�/2

(
χ(n)�2(n) − δχ

∑
P<p≤P1+δ

1

p

)∣∣∣∣∣
2

dx. (6·2)

Now we are able to state a bound for B2(X) in terms of B1(X) and B2(X):

PROPOSITION 6·2. We have that B2(X) 
 B1(X) + B2(X).

Then, if we can prove that Bi(X) 
 X log−η X for i = 1, 2, we will immediately be able to
conclude Proposition 6·1.

Proof. By definition, we have that B2(X) equals

∑
q≤Q0

∑
1≤a≤q
(a,q)=1

∫
|β|≤ 1

qQ

∣∣∣∣∣ 1

ϕ(q)

∑
χ(q)

τ (χ )χ(a)
∑

X<n≤2X

(
χ(n)�2(n) − δχ

∑
P<p≤P1+δ

1

p

)
e(βn)

∣∣∣∣∣
2

dβ.

Expanding the square, we have that B2(X) equals

∑
q≤Q0

1

ϕ2(q)

∑
χ ,χ ′(q)

τ (χ )τ (χ ′)
∑

1≤a≤q
(a,q)=1

χ(a)χ ′(a)
∑

X<m≤2X

⎛
⎝χ(m)�2(m) − δχ

∑
P<p≤P1+δ

1

p

⎞
⎠

×
∑

X<n≤2X

⎛
⎝χ ′(n)�2(n) − δ

χ
′

∑
P<p≤P1+δ

1

p

⎞
⎠∫

|β|≤ 1
qQ

e(β(m − n))dβ.
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Now, using the definition of Dirichlet characters to trivially extend the sum over a to all
1 ≤ a ≤ q, we may apply the character orthogonality relation

q∑
a=1

χ(a)χ ′(a) =
⎧⎨
⎩
ϕ(q), if χ = χ ′,

0, if χ 
= χ ′,

to see that B2(X) is

=
∑

q≤Q0

1

ϕ(q)

∑
χ(q)

|τ (χ )|2
∫

|β|≤ 1
qQ

∣∣∣∣∣∣
∑

X<n≤2X

⎛
⎝χ(n)�2(n) − δχ

∑
P<p≤P1+δ

1

p

⎞
⎠ e(βn)

∣∣∣∣∣∣
2

dβ



∑

q≤Q0

q

ϕ(q)

∑
χ(q)

∫
|β|≤ 1

qQ

∣∣∣∣∣∣
∑

X<n≤2X

⎛
⎝χ(n)�2(n) − δχ

∑
P<p≤P1+δ

1

p

⎞
⎠ e(βn)

∣∣∣∣∣∣
2

dβ,

where we have used that τ (χ ) 
 q1/2 in the last line. Now we apply Lemma 2·2 to the
integral term to get that B2(X) is bounded by



∑

q≤Q0

q

ϕ(q)

∑
χ(q)

∫ 2X

X

∣∣∣∣∣ 2

qQ

∑
x<n≤x+qQ/2

(
χ(n)�2(n) − δχ

∑
P<p≤P1+δ

1

p

)∣∣∣∣∣
2

dx

+ Q log2 X
∑

q≤Q0

∑
χ(q)

q2

ϕ(q)
.

(6·3)

The second term contributes

Q log2 X
∑

q≤Q0

∑
χ(q)

q2

ϕ(q)

 QQ3

0 log2 X

to B2(X), which is negligible. Let �= X/T3
0 with T0 = X1/100, then we have that B2(X) is

bounded by



∑

q≤Q0

q

ϕ(q)

∑
χ(q)

∫ 2X

X

∣∣∣∣∣ 2

qQ

∑
x<n≤x+qQ/2

(
χ(n)�2(n) − δχ

∑
P<p≤P1+δ

1

p

)

− 2

q�

∑
x<n≤x+q�/2

(
χ(n)�2(n) − δχ

∑
P<p≤P1+δ

1

p

)∣∣∣∣∣
2

dx

+
∑

q≤Q0

q

ϕ(q)

∑
χ(q)

∫ 2X

X

∣∣∣∣∣ 2

q�

∑
x<n≤x+q�/2

(
χ(n)�2(n) − δχ

∑
P<p≤P1+δ

1

p

)∣∣∣∣∣
2

dx

=B1(X) + B2(X),

as claimed.
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6·2. Bounding B2(X)

First, we prove the the following estimate for B2(X), which will be reduced to a Dirichlet
character analogue of a problem on primes in almost all short intervals.

PROPOSITION 6·3. Let C> 0 be fixed, then with B2(X) as defined in (6·2) we have

B2(X) 
 X

logC X
.

Proof. We separate the cases χ = χ0 and χ 
= χ0. If χ = χ0, we have that

2

q�

∑
x<n≤x+q�/2

⎛
⎝�2(n) −

∑
P<p≤P1+δ

1

p

⎞
⎠

= 2

q�

∑
P<p1≤P1+δ

∑
x

p1
<p2≤ x+q�/2

p1

log p2 −
∑

P<p≤P1+δ

1

p
+ O

(
1

q�

)
.

We now apply the prime number theorem in short intervals (see, for example, [13, chapter
10·5]), finding that

2

q�

∑
P<p1≤P1+δ

∑
x

p1
<p2≤ x+q�/2

p1

log p2 =
∑

P<p≤P1+δ

1

p
+ O

(
exp ( − c( log x)1/3−ε)

)
.

Substituting this back into the above, we have that

2

q�

∑
x<n≤x+q�/2

⎛
⎝�2(n) −

∑
P<p≤P1+δ

1

p

⎞
⎠= O

(
exp ( − c( log x)1/3−ε)

)
.

Returning to the integral and summing over q, we find that the contribution of the principal
character to B2(X) is


 XQ0 exp ( − c′( log X)1/3−ε),

which is acceptable by the choice of Q0.

We now consider the case χ 
= χ0. By the definition of �2 and the Cauchy–Schwarz
inequality, we have that

B2(X) =
∑

q≤Q0

q

ϕ(q)

∑
χ(q)
χ 
=χ0

∫ 2X

X

∣∣∣∣∣∣
2

q�

∑
x<n≤x+q�/2

χ(n)�2(n)

∣∣∣∣∣∣
2

dx

=
∑

q≤Q0

q

ϕ(q)

∑
χ(q)
χ 
=χ0

∫ 2X

X

∣∣∣∣∣ 2

q�

∑
P<p1≤P1+δ

χ(p1)
∑

x
p1
<p2≤ x+q�/2

p1

χ(p2) log p2

∣∣∣∣∣
2

dx
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 P1+δ

log P

∑
q≤Q0

q

ϕ(q)

∑
P<p1≤P1+δ

4

(q�)2

∑
χ(q)
χ 
=χ0

∫ 2X

X

∣∣∣∣∣
∑

x
p1
<p2≤ x+q�/2

p1

χ(p2) log p2

∣∣∣∣∣
2

dx.

(6·4)

We make the change of variables u = x/p1 to the integral, so that

∫ 2X

X

∣∣∣∣∣
∑

x
p1
<p2≤ x+q�/2

p1

χ(p2) log p2

∣∣∣∣∣
2

dx = p1

∫ 2X/p1

X/p1

∣∣∣∣∣
∑

u<p2≤u+ q�
2p1

χ(p2) log p2

∣∣∣∣∣
2

du.

First, in the case H ≤ exp (( log X)ε
3
), we now apply Lemma 2·3 to get that

B2(X) 
 P1+δ

log P

XQ0 log log Q0

logD X

∑
P<p≤P1+δ

1

p2

 X

logC X

for C> 0, as required. In the case H > exp (( log X)ε
3
), we split the sum over P< p1 ≤ P1+δ

in (6·4) into dyadic intervals and again apply Lemma 2·3 to obtain the required bound.

6·3. Bounding B1(X)

It now remains to prove the required bound for B1(X). This problem can be reduced to
finding cancellation in the mean square of a Dirichlet polynomial.

PROPOSITION 6·4. Let ε > 0 be fixed sufficiently small. With B1(X) as defined in (6·1), there
exists some η= η(ε)> 0 such that

B1(X) 
 X

logη X
.

To prove this result, we will need the following variant of a result of Teräväinen [28] on
the mean square of the Dirichlet polynomial

F(s, χ) :=
∑

X<p1p2≤2X
P<p1≤P1+δ

χ(p1)χ(p2)

(p1p2)s
, (6·5)

to be proved in Section 8:

PROPOSITION 6·5. Let ε > 0 be fixed sufficiently small. Define T0 = X1/100 and F(s, χ) to
be the Dirichlet polynomial defined in (6·5), with P and δ > 0 as in Section 3. Then, for
T ≥ T0, there exists some η= η(ε)> 0 such that

B3(X) :=
∑

q≤Q0

q

ϕ(q)

∑
χ(q)

∫ T

T0

|F(1 + it, χ)|2dt


 1

Q0 log2+η X

∑
q≤Q0

(
qTP log X

X
+ q

ϕ(q)

)
.

(6·6)
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Proof of Proposition 6·4. assuming Proposition 6·5. First we consider when χ = χ0 as we
have a different summand in this case. We have

2

qQ

∑
x<n≤x+qQ/2

⎛
⎝�2(n) −

∑
P<p≤P1+δ

1

p

⎞
⎠− 2

q�

∑
x<n≤x+q�/2

⎛
⎝�2(n) −

∑
P<p≤P1+δ

1

p

⎞
⎠ .

(6·7)
We first consider the contribution of the second and fourth terms, namely

∑
P<p≤P1+δ

1

p

⎛
⎝ 2

q�

∑
x<n≤x+q�/2

1 − 2

qQ

∑
x<n≤x+qQ/2

1

⎞
⎠
 1

qQ
+ 1

q�
. (6·8)

Returning to our expression for B1(X), by our choice of Q0, Q and � we have that (6·8)
contributes



∑

q≤Q0

q

ϕ(q)

∫ 2X

X

1

(qQ)2
dx 
 X

Q2

∑
q≤Q0

1

qϕ(q)

 X

Q2
,

which is acceptable. Therefore, when considering the principal character χ0, we need only
to bound

∑
q≤Q0

q

ϕ(q)

∑
χ(q)

∫ 2X

X

∣∣∣∣∣∣
2

qQ

∑
x<n≤x+qQ/2

�2(n) − 2

q�

∑
x<n≤x+q�/2

�2(n)

∣∣∣∣∣∣
2

dx

=
∑

q≤Q0

q

ϕ(q)

∑
χ(q)

∫ 2X

X

∣∣∣∣∣∣
2

qQ

∑
x<n≤x+qQ/2

�2(n)χ0(n) − 2

q�

∑
x<n≤x+q�/2

�2(n)χ0(n)

∣∣∣∣∣∣
2

dx,

noting that in the range of summation we must have (n, q) = 1, i.e. �2(n)χ0(n) =�2(n) for
each X < n ≤ 2X. Thus, from now on we are able to unify the treatment of the principal
character χ0 with the rest of the characters modulo q at the cost of a negligible error.

We now apply Lemma 2·4 with h1 = qQ/2 and h2 = q�/2 to the integral with respect to
x to get

B1(X) 
 X
∑

q≤Q0

q

ϕ(q)

∑
χ(q)

(
log2 X

T2
0

+
∫ 2X

qQ

T0

|F1(1 + it, χ)|2dt

+ max
T≥ 2X

qQ

X

TqQ

∫ 2T

T
|F1(1 + it, χ)|2dt

)
,

with T0 = X1/100 and

F1(s, χ) :=
∑

X<n≤2X

�2(n)χ(n)

ns
=

∑
X<p1p2≤2X
P<p1≤P1+δ

χ(p1)χ(p2) log p2

(p1p2)s
. (6·9)
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The choice of T0 ensures that the first term is negligible. Applying partial summation, we
have that B1(X) is bounded by


 X log2 X
∑

q≤Q0

q

ϕ(q)

∑
χ(q)

(∫ 2X
qQ

T0

|F(1 + it, χ)|2dt + max
T≥ 2X

qQ

X

TqQ

∫ 2T

T
|F(1 + it, χ)|2dt

)
.

We now apply Proposition 6·5. Note that we have P log X = Q, so that the first term in our
bound for B1(X) is bounded by


 X

Q0 logη X

∑
q≤Q0

(
P log X

Q
+ q

ϕ(q)

)

 X

logη X
,

as needed. For the second term, we want to bound

X2 log2 X

Q

∑
q≤Q0

1

ϕ(q)
max
T≥ 2X

qQ

1

T

∑
χ(q)

∫ 2T

T
|F(1 + it, χ)|2dt.

Applying Proposition 6·5, we have the bound


 X2

Q0Q logη X

∑
q≤Q0

max
T≥ 2X

qQ

(
P log X

X
+ 1

Tϕ(q)

)

 X

logη X
,

again using that P log X = Q. Overall we have that

B1(X) 
 X

logη X
,

for some η= η(ε)> 0, as required.

7. Preliminaries on Dirichlet polynomials

Before we can prove Proposition 6·5, we first need the following preliminary lemmas on
Dirichlet polynomials.

7·1. Pointwise bound

After we factorise our Dirichlet polynomial, there will be instances where the best we can
do is use a pointwise bound. Before we state this bound, we need the following definition of
a well-spaced set.

Definition 7·1 (Well-spaced set). We say a set T is well-spaced if for any t, u ∈ T with
t 
= u we have that |t − u| ≥ 1.

LEMMA 7·2 (Pointwise bound). Let S be a set of pairs (t, χ) with t ∈ [ − T , T] and χ
a Dirichlet character mod q which is well-spaced (i.e. if (t, χ), (u, χ) ∈ S then |t − u| ≥ 1).
Suppose that min{|t|:(t, χ) ∈ S} � logA N for all A> 0 if χ = χ0. Let

P(s, χ) :=
∑

N<p1···pk≤2N
p1,...,pk≥z

χ(p1) · · · χ(pk)

(p1 · · · pk)1+it
,
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where z ≥ exp ( log9/10 N). Then for any C> 0 we have

|P(1 + it, χ)| 
 1

logC N
.

Proof. This is [11, lemma 10·7].

Definition 7·3 (Prime-factored polynomial, [28]). Let M ≥ 1 and

M(s, χ) =
∑

M<m≤2M

amχ(m)

ms

be a Dirichlet polynomial with |am| 
 dr(m) for some fixed r. We say that M(s, χ) is prime-
factored if for each C> 0 we have

sup
(t,χ)∈S

|M(1 + it, χ)| 
 1

logC M

when exp (( log M)1/3) ≤ t ≤ MC log log M , where S is as defined in the previous lemma.

7·2. Decomposing Dirichlet polynomials

As in the work of Teräväinen [28] and Matomäki, Radziwiłł [19], we take advantage of
the bilinear structure to factorise our Dirichlet polynomial.

LEMMA 7·4 (Factorisation of Dirichlet polynomials). Define

F(s) :=
∑

X<mn≤2X
M≤m≤M′

ambn

(mn)s

for some M′ >M ≥ 2 and arbitrary complex numbers am, bn. Let U ≥ 1 and define

Av(s) :=
∑

e
v
U ≤m<e

v+1
U

am

ms
, Bv(s) :=

∑
Xe− v

U <n≤2Xe− v
U

bn

ns
.

Then

F(s) =
∑

v∈I∩Z
Av(s)Bv(s) +

∑
k∈[Xe−1/U ,Xe1/U]
or k∈[2X,2Xe1/U]

dk

ks
(7·1)

where I = [U log M, U log M′] and

|dk| ≤
∑

k=mn

|ambn|. (7·2)
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Proof. This is [28, lemma 2] (see also [19, lemma 12]).

In some cases we will use the Heath–Brown identity to decompose a long polynomial into
products of shorter polynomials.

LEMMA 7·5 (Heath–Brown decomposition). Let k ≥ 1 be a fixed integer, T ≥ 2 and
fix ε > 0. Define the Dirichlet polynomial P(s, χ) := ∑

P≤p<P′ χ(p)p−s with P � Tε, P′ ∈[
P + P/log T , 2P

]
. Then, there exist Dirichlet polynomials Q1(s, χ), . . . , QL(s, χ) and a

constant C> 0 such that L ≤ logC X and

|P(1 + it, χ)| 
 ( logC X)(|Q1(1 + it, χ)| + · · · + |QL(1 + it, χ)|)

for all t ∈ [ − T , T]. Here, each Qj(s, χ) is of the form

Qj(s, χ) =
∏
i≤Jj

Mi(s, χ), Jj ≤ 2k,

where each Mi(s, χ) is a prime-factored Dirichlet polynomial (depending on j) of the form

∑
Mi<n≤2Mi

χ(n) log n

ns
,

∑
Mi<n≤2Mi

χ(n)

ns
, or

∑
Mi<n≤2Mi

μ(n)χ(n)

ns
,

whose lengths satisfy M1 · · · MJ = X1+o(1), Mi � exp (log P/log log P). Furthermore, if in
fact Mi > X1/k, then Mi(s, χ) is of the form

∑
Mi<n≤2Mi

χ(n) log n

ns
or

∑
Mi<n≤2Mi

χ(n)

ns
. (7·3)

Proof. This is the Dirichlet character analogue of [28, lemma 10], which follows from the
same argument.

7·3. Mean value theorems for Dirichlet polynomials

Now we state two mean value theorems, the first being the classical result:

LEMMA 7·6 (Mean Value Theorem). Let q, X ≥ 1 and let an be arbitrary complex
numbers with F(s, χ) := ∑

X<n≤2X
anχ(n)

ns . Then

∑
χ(q)

∫ T

−T
|F(it, χ)|2dt 


(
ϕ(q)T + ϕ(q)

q
X

) ∑
X<n≤2X
(n,q)=1

|an|2.

Proof. See, for example, [25, chapter 6, equation (6·14)].

Next we state a variant of the mean value theorem which will allow us to save a log X in
certain parts of the proof.
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LEMMA 7·7. With the same assumptions as Lemma 7·6, we have that

∑
χ(q)

∫ T

−T
|F(it, χ)|2dt 
 Tϕ(q)

( ∑
X<n≤2X
(n,q)=1

|an|2 +
∑

1≤h≤ X
T

q|h

∑
X<n≤2X

(n(n+h),q)=1

|an+h||an|
)

.

Proof. This is the Dirichlet character analogue of [28, lemma 4], which follows from [13,
lemma 7·1]. The proof is contained in the proof of [22, lemma 5·2].

After factorising the Dirichlet polynomial F and splitting the domain of integration
according to the size of the factors, there will be cases where the mean value is taken over a
well-spaced set. In this case, we will apply the Halász–Montgomery inequality:

LEMMA 7·8 (Halász–Montgomery Inequality). Let T ≥ 1, q ≥ 2. Let S be a well-spaced
set of pairs (t, χ) with t ∈ [ − T , T] and χ a Dirichlet character mod q. With the same
assumptions as Lemma 7·6, we have that

∑
(t,χ)∈S

|F(it, χ)|2 

(
ϕ(q)

q
X + |S|(qT)1/2

)
( log (2qT))

∑
X<n≤2X
(n,q)=1

|an|2.

Proof. This is [15, lemma 7·4].

7·4. Large value theorems

There will be subsets of the domain of integration where a short Dirichlet polynomial
factor is large, in which case we apply the following large value theorem.

LEMMA 7·9 (Large value theorem). Let P ≥ 1, V > 0, |ap| ≤ 1 and F(s, χ) =∑
P<p≤2P apχ(p)/ps. Let S ⊂ [ − T , T] × {χ mod q} be a well-spaced set such that |F(1 +

it, χ)| ≥ V for all (t, χ) ∈ S . Then

|S| 
 (qT)
2 log (1/V)

log P V−2 exp

(
(1 + o(1))

log (qT) log log (qT)

log P

)
.

Proof. This is the Dirichlet character analogue of [28, lemma 6] and [19, lemma 8]. Also see
[15, lemma 7·5].

Remark 7·10. As remarked in [28, remark 6], this lemma can still be applied to polynomials
with coefficients not only supported on the primes as long as we have P � Xε, as will be the
case in our application.

Alternatively, in the case that we have a longer Dirichlet polynomial factor which is large,
we will apply a result of Jutila on large values.

LEMMA 7·11 (Jutila’s large value theorem). Let ε > 0 be fixed, |an| ≤ dr(n) for some fixed
r and F(s, χ) =∑

X<n≤2X anχ(n)/ns. Let k be a fixed positive integer and S ⊂ [ − T , T] ×
{χ mod q} be a well-spaced set such that |F(1 + it, χ)| ≥ V for all (t, χ) ∈ S . Then,

|S| 

(

V−2 +
(

qTV−4

X2

)k

+ qTV−8k

X2k

)
(qTX)ε.
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Proof. This is the first bound of the main theorem in [14].

7·5. Moments of Dirichlet polynomials

After decomposing the Dirichlet polynomial using the Heath–Brown decomposition
(Lemma 7·5), we can have a long polynomial which is the partial sum of a Dirichlet
L-function (or its derivative). In this case, we will apply the Cauchy–Schwarz inequality
to enable us to use the following bound on the twisted fourth moment of such sums:

LEMMA 7·12 (Twisted fourth moment estimate). Let Q0 ≤ Tε, Tε ≤ T0 ≤ T, 1 ≤ M, N ≤
T1+o(1) and define the Dirichlet polynomials

N(s, χ) =
∑

N<n≤2N

χ(n)

ns
or

∑
N<n≤2N

χ(n) log n

ns
,

M(s, χ) =
∑

M<m≤2M

amχ(m)

ms
,

with am any complex numbers. Then we have that

∑
q≤Q0

1

ϕ(q)

∑
χ(q)

∫ T

T0

|N(1 + it, χ)|4|M(1 + it, χ)|2dt



(

Q0T

MN2
(1 + M2(Q0T)−1/2) + 1

T0

)
(Q0T)ε max

M<m≤2M
|am|2. (7·4)

Proof. This is the Dirichlet character analogue of [28, lemma 9] and we follow the same
argument. In the case 1 ≤ qt ≤ N, we use partial summation and the hybrid result of Fujii,
Gallagher and Montgomery [7]

∑
n≤N

χ(n)nit = δχϕ(q)N1+it

q(1 + it)
+ O((qτ )1/2 log (qτ )),

with τ := |t| + 2 in place of the zeta sum bound to get that

∑
q≤Q0

1

ϕ(q)

∑
χ(q)

∫ T

T0

|N(1 + it, χ)|4|M(1 + it, χ)|2dt


 Tε max
M<m≤2M

|am|2
∑

q≤Q0

1

ϕ(q)

∑
χ(q)

∫ T

T0

(
ϕ(q)

q(1 + |t|)
)4

+ log4 (qτ )

(qτ )2
dt


 Tε

T0
max

M<m≤2M
|am|2,

providing the third term of (7·4).

In the case N ≤ qt ≤ Q0T , we apply in place of Watt’s twisted moment result its Dirichlet
character analogue [12, theorem 2] to obtain the first two terms of (7·4).

8. Bounding the mean value of a Dirichlet polynomial

We are now able to prove Proposition 6·5, completing the proof of Proposition 6·1 and
consequently Theorem 3·2. We will adapt the argument appearing in [28, sections 2-4].
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We first factorise the Dirichlet polynomial F(s, χ) before bounding the contribution of the
remainder terms, that is, the second term of (7·1).

LEMMA 8·1. Let ε > 0 be fixed sufficiently small and T0 = X1/100. Denote

Gv(s, χ) :=
∑

e
v
U <p≤e

v+1
U

χ(p)

ps
, Hv(s, χ) :=

∑
Xe− v

U <p≤2Xe− v
U

χ(p)

ps
,

then we have the bound

B3(X) 

∑

q≤Q0

(
qU2 log2 P

ϕ(q)

∑
χ(q)

∫ T

T0

|Gv0 (1 + it, χ)|2|Hv0 (1 + it, χ)|2dt

+ 1

Q0 log2+η X

(
qT log X

X
+ q

ϕ(q)

))
,

for some η= η(ε)> 0, where we take I = [U log P, (1 + δ)U log P], U := Q1+ε2

0 and v0 ∈ I
a suitable integer.

Proof. We factorise F(s, χ) using Lemma 7·4 to get that

F(s, χ) =
∑

v∈I∩Z
Gv(s, χ)Hv(s, χ) +

∑
k∈[Xe−1/U ,Xe1/U]
or k∈[2X,2Xe1/U]

dkχ(k)

ks
,

where I = [U log P, (1 + δ)U log P], U := Q1+ε2

0 and

|dk| ≤
∑

k=p1p2
P<p1≤P1+δ

1.

Therefore, taking the maximum in the sum over I, the mean square of the Dirichlet
polynomial is bounded by

∫ T

T0

|F(1 + it, χ)|2dt



∫ T

T0

∣∣∣∣∣
∑

v∈I∩Z
Gv(1 + it, χ)Hv(1 + it, χ)

∣∣∣∣∣
2

dt +
∫ T

T0

∣∣∣∣∣
∑

k∈[Xe−1/U ,Xe1/U]
or k∈[2X,2Xe1/U]

dkχ(k)

k1+it

∣∣∣∣∣
2

dt


 |I|2
∫ T

T0

|Gv0 (1 + it, χ)|2|Hv0 (1 + it, χ)|2dt +
∫ T

T0

∣∣∣∣∣
∑

k∈[Xe−1/U ,Xe1/U]
or k∈[2X,2Xe1/U]

dkχ(k)

k1+it

∣∣∣∣∣
2

dt,
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where v0 ∈ I is the integer maximising the right-hand side. Applying Lemma 7·7 to the
second integral, we have that

∑
χ(q)

∫ T

T0

|F(1 + it, χ)|2dt


U2 log2 P
∑
χ(q)

∫ T

T0

|Gv0 (1 + it, χ)|2|Hv0 (1 + it, χ)|2dt

+ Tϕ(q)
∑

k∈[Xe−1/U ,Xe1/U]
or k∈[2X,2Xe1/U]

(k,q)=1

|dk|2
k2

+ Tϕ(q)
∑

1≤h≤ 2Xe1/U
T

q|h

∑
m−n=h

m,n∈[Xe−1/U ,Xe1/U]
or m,n∈[2X,2Xe1/U]

(mn,q)=1

|dm||dn|
mn

. (8·1)

We now bound the last two terms. We consider only the sums where k ∈ [Xe−1/U , Xe1/U],
with the sums over k ∈ [2X, 2Xe1/U] being treated analogously. For the first sum,

∑
k=p1p2

Xe−1/U≤k≤Xe1/U

P<p1≤P1+δ

1

k2

 e2/U

X2

∑
P<p1≤P1+δ

∑
Xe−1/U

p1
≤p2≤ Xe1/U

p1

1. (8·2)

By the Brun–Titchmarsh inequality, we have the bound

∑
Xe−1/U

p1
≤p2≤ Xe1/U

p1

1 
 X(e1/U − e−1/U)

p1 log X
.

Returning to (8·2), by Mertens’ theorem we have that

∑
Xe−1/U≤p1p2≤Xe1/U

P<p1≤P1+δ

1

(p1p2)2

 e3/U − e1/U

X log X

∑
P<p≤P1+δ

1

p

 1

XU log X
.

We will use Brun’s sieve to bound the second of these sums. We may trivially bound

|{n ≤ 2X:n = p1p2, p1 ∈ (P, P1+δ]}|

 |{n ≤ 2X:n = p1m, p1 ∈ (P, P1+δ], (m, P(z)) = 1}|,

where we define P(z) =∏
p<z p with z = X1/β and β > 1 suitably large. Let� be the product

of all primes in Ĩ := (P, P1+δ] ∩ [1, z) and P′(z) =∏
p<z,p�h p. Therefore, we have that

∑
1≤h≤ 2Xe1/U

T
q|h

∑
Xe−1/U≤m≤Xe1/U

|dm||dm+h|
m(m + h)


 e2/U

X2

∑
1≤h≤ 2Xe1/U

T
q|h

∣∣∣∣
{

m ∈ [Xe−1/U , Xe1/U]:

(
m(m + h),

P′(z)

�

)
= 1

}∣∣∣∣ .

https://doi.org/10.1017/S0305004122000251 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004122000251


330 N. EVANS

Brun’s sieve then gives the bound∣∣∣∣
{

m ∈ [Xe−1/U , Xe1/U]:

(
m(m + h),

P′(z)

�

)
= 1

}∣∣∣∣

 hX(e1/U − e−1/U)

ϕ(h)

∏
p<z
p/∈Ĩ

(
1 − 2

p

)


 X

U log2 z

h

ϕ(h)
.

Therefore we have

∑
1≤h≤ 2Xe1/U

T
q|h

∑
Xe−1/U≤m≤Xe1/U

|dm||dm+h|
m(m + h)


 e2/U

XU log2 z

∑
1≤h≤ 2Xe1/U

T
q|h

h

ϕ(h)


 1

ϕ(q)TU log2 X
.

Combining these estimates and applying the definition of U, these two sums contribute



(
ϕ(q)T log X

X
+ 1

)
1

Q0 log2+η X

to (8·1) for some η= η(ε)> 0, as needed.
It remains to estimate the integral appearing in Lemma 8·1. We split the domain of integra-

tion [T0, T] according to the size of the polynomial Gv0 . We will first bound the contribution
of S1 ⊂ [T0, T] × {χ mod q} defined by

S1 := {(t, χ) ∈ [T0, T] × {χ mod q}:|Gv0 (1 + it, χ)| ≤ e− α1v0
U }, (8·3)

where α1 := 3/34 − ε′ and ε′ > 0 is sufficiently small in terms of ε > 0. We may write

S1 =
⋃

χ mod q

{χ} × T1,χ (8·4)

for some T1,χ ⊂ [T0, T].

8·1. The contribution of S1

We first treat the contribution of the integral over T1,χ , where the polynomial Gv0 (1 +
it, χ) is pointwise small.

LEMMA 8·2. Let ε > 0 be fixed sufficiently small and T1,χ be defined as in (8·4). Then,
there exists some η= η(ε)> 0 such that

U2 log2 P
∑

q≤Q0

q

ϕ(q)

∑
χ(q)

∫
T1,χ

|Gv0 (1 + it)|2|Hv0 (1 + it)|2dt


 1

Q0 log2+η X

∑
q≤Q0

(
qPT log X

X
+ 1

)
.
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Proof. First we apply the definition of T1,χ , bounding pointwise |Gv0 (1 + it, χ)| ≤ e− α1v0
U ≤

P−α1 to bound the integral over T1,χ by∫
T1,χ

|Gv0 (1 + it, χ)|2|Hv0 (1 + it, χ)|2dt 
 P−2α1

∫
T1,χ

|Hv0 (1 + it, χ)|2dt.

Applying Lemma 7·7, we have that

∑
χ(q)

∫
T1,χ

|Gv0 (1 + it, χ)|2|Hv0 (1 + it, χ)|2dt


 P−2α1Tϕ(q)e2v0/U

X2

( ∑
X

ev0/U
<p≤ 2X

ev0/U

1 +
∑

1≤h≤ X

Tev0/U

q|h

∑
X

ev0/U
<p1,p2≤ 2X

ev0/U

p1−p2=h

1

)
.

By Chebyshev’s inequality, we have that

∑
X

ev0/U
<p≤ 2X

ev0/U

1 
 X

ev0/U log X
.

For the second term, we have by Lemma 2·1 that

∑
1≤h≤ X

Tev0/U

q|h

∑
X

ev0/U
<p1,p2≤ 2X

ev0/U

p1−p2=h

1 
 X

ev0/U log2 X

∑
1≤h≤ X

Tev0/U

q|h

S(h) 
 X2

e2v0/UqT log2 X
.

Combining these estimates, we have that

∑
χ(q)

∫
T1,χ

|Gv0 (1 + it, χ)|2|Hv0 (1 + it, χ)|2dt 
 ϕ(q)Pδ−2α1

q log2 X

(
qPT log X

X
+ 1

)
.

Thus the overall contribution to the sum B3(X) is

U2Pδ−2α1 log2 P

log2 X

∑
q≤Q0

(
qPT log X

X
+ 1

)
.

Now, by our choices of P, U and the definition of α1 with ε′ sufficiently small in terms of ε,
we have that

U2Pδ−2α1 log2 P

log2 X

 1

Q0 log2+η X
,

for some η= η(ε)> 0 as δ > 0 is sufficiently small.

8·2. The contribution of the complement of S1

It remains to consider the contribution of the complement of S1. We apply Lemma 7·5 to
Hv0 (1 + it, χ) with k = 3, decomposing this polynomial into

|Hv0 (1 + it, χ)| 
 ( logC X) (|Q1(1 + it, χ)| + · · · + |QL(1 + it, χ)|) ,
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where L ≤ logC X for some C> 0. Each Qj(s, χ) is of the form Qj(s, χ) =∏
i≤Jj

Mi(s, χ)
with Jj ≤ 6 for each 1 ≤ j ≤ L, where Mi(s, χ) are prime-factored Dirichlet polynomials of
the form ∑

Mi<n≤2Mi

χ(n) log n

ns
,

∑
Mi<n≤2Mi

χ(n)

ns
, or

∑
Mi<n≤2Mi

μ(n)χ(n)

ns
,

whose lengths satisfy M1 · · · MJj = X1+o(1), Mi � exp (log X/log log X) for each i. We will
treat the polynomials Qj(s, χ) according to the lengths Mi of the factors as follows:

Type II Sums. Suppose we have Qj(s, χ) =∏
i≤Jj

Mi(s, χ) for some 1 ≤ j ≤ L with

Mi ≤ X1/3+ε′ for some i ≤ Jj ≤ 6. Then, we rewrite Qj(s, χ) = M1(s, χ)M2(s, χ) with

exp (log X/log log X)
 M1 ≤ X1/3+ε′ and M2 = X1+o(1)/M1. Note we may write M1 = Xν

for some 0< ν ≤ 1/3 + ε′. Where the coefficient log n appears, we apply partial summation.
The polynomial M2(s, χ) is a product of polynomials, and the coefficients are given by con-
volving coefficients which are one of the sequences (μ(n)), (1). Thus the coefficients of the
polynomial M2(s, χ) are bounded in absolute value by 
 dr(n) with r ≤ 5.

Type I Sums. Otherwise, we may write Qj(s, χ) = N1(s, χ)N2(s, χ), where each Ni(s, χ)
is of the form ∑

Ni<n≤2Ni

χ(n) log n

ns
, or

∑
Ni<n≤2Ni

χ(n)

ns
,

with lengths satisfying N1N2 = X1+o(1). Note that if in fact only one of the lengths Ni satisfies

Ni > X1/3+ε′ , then one of N1(s, χ), N2(s, χ) can be the constant polynomial 1−s. Since we

have that N1N2 = X1+o(1), without loss of generality we may take that N1 > X1/2−ε′ , so that

X1/3+ε′ <N2 ≤ X1/2+ε′ .

8·2·1. Type II sums

To treat the contribution of these sums, we split the complement of S1 according to the
size of M1(1 + it, χ):

S2 := {(t, χ) ∈ [T0, T] × {χ mod q}:|M1(1 + it, χ)| ≤ M−α2
1 } \ S1,

S := ([T0, T] × {χ mod q}) \ (S1 ∪ S2),
(8·5)

with α2 := 2/17 − ε′ >α1. As before, we may write

S2 =
⋃

χ mod q

{χ} × T2,χ ,

S =
⋃

χ mod q

{χ} × Tχ ,
(8·6)

for some T2,χ , Tχ ⊂ [T0, T]. We first consider the contribution of the integral over T2,χ .

LEMMA 8·3. Let ε > 0 be fixed sufficiently small. Let T2,χ be defined as in (8·6) and
M1(s, χ), M2(s, χ) be the prime-factored polynomials defined previously. Then∑

q≤Q0

q

ϕ(q)

∑
χ(q)

∫
T2,χ

|Gv0 (1 + it, χ)|2|M1(1 + it, χ)M2(1 + it, χ)|2dt 
 X−ε/1000.
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Proof. By definition of T2,χ , we have that (|Gv0 (1 + it, χ)|Pα1 )2(k−1) ≥ 1, where k =
�log M1/ log P�. Therefore, we have

∑
χ(q)

∫
T2,χ

|Gv0 (1 + it, χ)|2|M1(1 + it, χ)M2(1 + it, χ)|2dt


 M−2α2
1 P2α1(k−1)

∑
χ(q)

∫
T2,χ

|Gk
v0

(1 + it, χ)M2(1 + it, χ)|2dt. (8·7)

By the choice of k, we have that

P2α1k 
 exp

(
2α1 log P log M1

log P

)
= M2α1

1 .

Therefore (8·7) is bounded by


 M2α1−2α2
1 P−2α1

∑
χ(q)

∫
T2,χ

|Gk
v0

(1 + it, χ)M2(1 + it, χ)|2dt


 M2α1−2α2
1 P−2α1

∑
χ(q)

∫
T2,χ

|A(1 + it, χ)|2dt,

where we define

A(s, χ) :=
∑
n∈J

Anχ(n)

ns
,

with J := (M2ekv0/U , 2M2ek(v0+1)/U] and the coefficients An satisfying

|An| ≤
∑

n=p1···pkm
ev0/U<pi≤e(v0+1)/U

i=1,...,k
M2<m≤2M2

dr(m),

where r ≤ 5, as before. Note that the primes p1, . . . , pk are not necessarily distinct and m
may also have prime factors in the range (ev0/U , e(v0+1)/U]. Applying Lemma 7·6 to the
integral, we have that

∑
χ(q)

∫
T2,χ

|A(1 + it, χ)|2dt 

(
ϕ(q)T + ϕ(q)

q
M2ekv0/U(2ek/U − 1)

) ∑
n∈J

(n,q)=1

|An|2
n2

.

Following [19, lemma 13], for the coefficients An of A(s, χ), we have the bound

|An| 
 Mo(1)
2

∑
n=p1···pkm

ev0/U<pi≤e(v0+1)/U

i=1,...,k
M2<m≤2M2

1.
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The number of ways we can write d = p1 · · · pk with pi not necessarily distinct is at most k!.
Then we have the bound

|An| 
 Mo(1)
2 k!

∑
n=md

p|d⇒ev0/U<p≤e(v0+1)/U

1,

trivially extending the range of summation for m. We write g(n) for the latter sum, which is
multiplicative and satisfies

g(pa) =
{

a + 1, if ev0/U < p ≤ e(v0+1)/U ,

0, otherwise.

Therefore, we clearly have g(n) 
 d(n) 
 no(1) and thus

∑
n∈J

(n,q)=1

|An|2
n2


 Xo(1)k!
ekv0/UM2

∑
n∈J

(n,q)=1

|An|
n


 Xo(1)k!
ekv0/UM2

∑
M2<m≤2M2

dr(m)

m

⎛
⎝ ∑

ev0/U<pi≤e(v0+1)/U

1

p

⎞
⎠

k


 Xo(1)k!
ekv0/UM2

k

v0
,

noting that ( log M2)r−1 
 ( log X)4 is negligible. By the definition of k and since v0 ∈ I, we
have that

k

v0

 log M1

U log2 P

 1.

By the definition of k, we also have that

k! 
 ( log M1)
log M1
log P 
 exp

(
log log M1 log M1

(17 + ε) log log X

)

 M

1
17+ε
1 .

Therefore, we can bound the integral over T2,χ by

∑
χ(q)

∫
T2,χ

|A(1 + it, χ)|2dt 

(
ϕ(q)

T

ekv0/UM2
+ ϕ(q)

q
(2ek/U − 1)

)
Xo(1)M

1
17+ε
1 .

Since v0 ∈ I, we have that ekv0/U � Pk � M1 by the definition of k. We also have that
2ek/U − 1 
 1 and therefore we can bound the above integral by

∑
χ(q)

∫
T2,χ

|A(1 + it, χ)|2dt 

(
ϕ(q)

T

M1M2
+ ϕ(q)

q

)
Xo(1)M

1
17+ε
1 
 ϕ(q)Xo(1)M

1
17+ε
1 ,

as we have M1M2 = X1+o(1) and T ≤ X1+o(1). Returning to (8·7), we have the bound∑
χ(q)

∫
T2,χ

|Gv0 (1 + it, χ)|2|M1(1 + it, χ)M2(1 + it, χ)|2dt


 ϕ(q)Xo(1)M
1

17+ε+2(α1−α2)
1 P−2α1 .
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With our choices of α1, α2, we have that 2α1 − 2α2 = −1/17. Summing over q introduces
a factor of Q2

0. Recalling that we may write M1 = Xν , for some 0< ν ≤ 1/3 + ε′, we find
that

∑
q≤Q0

q

ϕ(q)

∑
χ(q)

∫
T2,χ

|Gv0 (1 + it, χ)|2|M1(1 + it, χ)M2(1 + it, χ)|2dt 
 Q2
0P−2α1X− εν

300 +o(1),

and choosing ε′ > 0 sufficiently small in terms of ε > 0 ensures the above is bounded by
X−ε/1000, as needed.

We now treat the contribution of the integral over Tχ , applying the Halász–Montgomery
inequality and the large value theorems.

LEMMA 8·4. Let Tχ be defined as in (8·6). Let E> 0 be fixed sufficiently large. Then, we
have that

∑
q≤Q0

q

ϕ(q)

∑
χ(q)

∫
Tχ

|Gv0 (1 + it, χ)M1(1 + it, χ)M2(1 + it, χ)|2dt 
 1

logE X
.

Proof. Let M1 = Xν for some 0< ν ≤ 1/3 + ε′. We first replace the integral over Tχ with
a sum over a well-spaced set. For each character χ mod q, cover Tχ with intervals of unit
length and from each interval take the point which maximises the integral over that interval.
This set is not yet necessarily well-spaced, but we can split it into O(1) well-spaced subsets.
Therefore we may write

∑
χ(q)

∫
Tχ

|Gv0 (1 + it, χ)M1(1 + it, χ)M2(1 + it, χ)|2dt



∑

(t,χ)∈T ′
|Gv0 (1 + it, χ)M1(1 + it, χ)M2(1 + it, χ)|2,

where T ′ is the well-spaced subset which maximises the right-hand side. We now apply the

prime-factored property |M1(1 + it, χ)|2 
 log−F′
X with F′ > 0 sufficiently large and then

Lemma 7·8 to get that

∑
(t,χ)∈T ′

|Gv0 (1 + it, χ)M1(1 + it, χ)M2(1 + it, χ)|2


 log−F′
X

∑
(t,χ)∈T ′

|Gv0 (1 + it, χ)M2(1 + it, χ)|2


 log−F′
X

(
ϕ(q)

q
X1−ν+ε′ + |T ′|(qT)1/2

) ∑
ev0/U<p≤e(v0+1)/U

1

p2

∑
M2<m≤2M2

d2
r (m)

m2


 log−F X

(
ϕ(q)

q
+ |T ′|(qT)1/2

X1−ν+ε′
)

,
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where F> 0 is suitably large and r ≤ 5. If we can show that |T ′| 
 X1/2−ν−ε2
, then we will

have that ∑
χ(q)

∫
Tχ

|Gv0 (1 + it, χ)M1(1 + it, χ)M2(1 + it, χ)|2dt 
 log−E′
X

for some suitable E′ > 0. Summing over q, we have that

∑
q≤Q0

q

ϕ(q)

∑
χ(q)

∫
Tχ

|Gv0 (1 + it, χ)M1(1 + it, χ)M2(1 + it, χ)|2dt 
 1

logE X
,

where E> 0 is sufficiently large.
Thus, it remains to prove that |T ′| 
 X1/2−ν−ε2

. Applying Lemma 7·11 with M1(1 +
it, χ)l, V = M−α2l

1 , k = 2, and l ∈ {2, 3}, we have that

|T ′| 
 Xε
3
(

M2α2l
1 + X2M4l(2α2−1)

1 + XM4l(4α2−1)
1

)



⎧⎨
⎩

Xmax ( 8
17 ν,2− 104

17 ν,1− 72
17 ν)−2ε2

, (l = 2),

Xmax ( 12
17 ν,2− 156

17 ν,1− 108
17 ν)−2ε2

, (l = 3).

We have that ν ≤ 1/3 + ε′. The inequality 8ν/17 ≤ 1/2 − ν holds when ν ≤ 17/50 and we
have that 2 − 104ν/17 ≥ 8ν/17 when ν ≤ 17/56. Note that 2 − 104ν/17 ≤ 1/2 − ν fails if
ν < 17/58, so the inequality with l = 2 provides the bound |T ′| 
 X1/2−ν−ε2

in the range
17/58 ≤ ν ≤ 1/3.

Similarly, 12ν/17 ≤ 1/2 − ν holds for ν ≤ 17/58 and 2 − 156ν/17 ≥ 12ν/17 when ν ≤
17/84. We have that 2 − 156ν/17 ≤ 1/2 − ν fails when ν < 51/278, so the inequality with
l = 3 gives the required bound for |T ′| when 51/278 ≤ ν ≤ 17/58.

For the remaining range ν < 51/278, we apply Lemma 7·9 with V = M−α2
1 to get that

|T ′| 
 (qT)2α2X2να2+ε 
 X
4
17 (1+ν)+100ε 
 X1/2−ν−ε2

,

as required.

8·2·2. Type I sums

It remains to treat the contribution of the sums of form (7·3), applying the Cauchy–
Schwarz inequality and a result on the twisted fourth moment of partial sums of Dirichlet
L-functions.

LEMMA 8·5. Let ε > 0 be fixed sufficiently small. With N1(s, χ), N2(s, χ) as defined
above, we have that

∑
q≤Q0

q

ϕ(q)

∑
χ(q)

∫
[T0,T]\T1,χ

|Gv0 (1 + it, χ)|2|N1(1 + it, χ)N2(1 + it, χ)|2dt 
 X−ε/2.

Proof. We split the domain of integration into dyadic intervals [T1, 2T1] such that T0 ≤ T1 ≤
T . As we are in the complement of S1, we have that |Gv0 (1 + it, χ)Pα1 |2(l−1) ≥ 1, where we
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define l = �ε log X/ log P�. Therefore, we have that∑
q≤Q0

q

ϕ(q)

∑
χ(q)

∫
([T0,T]\T1,χ )∩[T1,2T1]

|Gv0 (1 + it, χ)|2|N1(1 + it, χ)N2(1 + it, χ)|2dt


P2α1(l−1)
∑

q≤Q0

q

ϕ(q)

∑
χ(q)

∫ 2T1

T1

|Gv0 (1 + it, χ)|2l|N1(1 + it, χ)N2(1 + it, χ)|2dt.

Applying the Cauchy–Schwarz inequality three times (to the integral and the sums over χ
and q), we have that the sum over q above is bounded by



⎛
⎝∑

q≤Q0

1

ϕ(q)

∑
χ(q)

∫ 2T1

T1

|Gv0 (1 + it, χ)|4l|N1(1 + it, χ)|4dt

⎞
⎠

1
2

×
⎛
⎝∑

q≤Q0

q2

ϕ(q)

∑
χ(q)

∫ 2T1

T1

|N2(1 + it, χ)|4dt

⎞
⎠

1
2

.

(8·8)

We apply Lemma 7·6 to the second integral. Noting that N2(1 + it, χ) either has coefficients
1 or log n, we find that

∑
q≤Q0

q2

ϕ(q)

∑
χ(q)

∫ 2T1

T1

|N2(1 + it, χ)|4dt 
 Xε/10
∑

q≤Q0

q2

(
T1 + N2

2/q

N2
2

)


 Xε/10

(
T1 + N2

2

N2
2

)
.

We next treat the first term appearing in (8·8). We have that

|Gv0 (1 + it, χ)|4l =
∣∣∣∣∣∣

∑
ev0/U<p≤e(v0+1)/U

χ(p)

p1+it

∣∣∣∣∣∣
4l

=
∣∣∣∣∣∣

∑
e2lv0/U<n≤e2l(v0+1)/U

χ(n)a(n)

n1+it

∣∣∣∣∣∣
2

,

where a(n) = 0 unless n is a product of 2l primes, not necessarily distinct, each lying in the
interval (ev0/U , e(v0+1)/U]. Writing n in terms of its prime factorisation n = pa1

1 · · · pab
b with

b ≤ 2l, we have that a(n) = ( 2l
a1,...,ab

)
when it is non-zero and therefore that a(n) 
 (2l)!. Now

we can apply Lemma 7·12 with M(1 + it, χ) = G2l
v0

(1 + it, χ), M = P2l and N corresponding
to N1 to get that

∑
q≤Q0

1

ϕ(q)

∑
χ(q)

∫ 2T1

T1

|Gv0 (1 + it, χ)|4l|N1(1 + it, χ)|4dt


 Xε/10(2l)!2
(

Q0T1

N2
1P2l

(
1 + P4l(Q0T1)−1/2

)
+ 1

T1

)


 Xε/10(l!)4+ε
(

Q0T1

N2
1P2l

+ 1

T1

)
,
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as the definition of l ensures that P4l(Q0T1)−1/2 
 1. Returning to (8·8), we have that

∑
q≤Q0

q

ϕ(q)

∑
χ(q)

∫
(T \T1)∩[T1,2T1]

|Gv0 (1 + it, χ)|2|N1(1 + it, χ)N2(1 + it, χ)|2dt


 P2α1(l−1)Xε/10(l!)2+ε
(

Q0T1

N2
1P2l

+ 1

T1

)1/2 (
T1 + N2

2

N2
2

)1/2


 P2α1(l−1)Xε/10(l!)2+ε
(

Q0T1

N2
1N2

2P2l
(T1 + N2

2 ) + 1

N2
2

+ 1

T1

)1/2

.

We have that N1N2 = X1+o(1) with N1 ≥ X1/2−ε′ and X1/3+ε′ ≤ N2 ≤ X1/2+ε′ . As we also
have that X1/100 = T0 ≤ T1 ≤ T ≤ X1+o(1), the above is bounded by


 P2α1(l−1)Xε/10(l!)2+ε
(

1

Pl
+ 1

N2
+ 1

T1/2
0

)
.

Summing the contribution of each of the integrals over the dyadic intervals multiplies the
above estimate by log X. By the definition of l, we have that (l!)2+ε 
 ( log2 X)l(1+ε), and so
we also have that

(P2α1−1 log2 X)l(1+ε) 
 exp

(
(1 + ε)ε

(
2α1 − 1 + 2

17 + ε

)
log X

)

 X−2ε/3.

Overall we have the bound∑
q≤Q0

q

ϕ(q)

∑
χ(q)

∫
[T0,T]\T1,χ

|Gv0 (1 + it, χ)|2|N1(1 + it, χ)N2(1 + it, χ)|2dt 
 X−ε/2,

as needed.

8·3. Completing the proof of Proposition 6·5
We may now combine these estimates to complete the proof of Proposition 6·5.

Proof of Proposition 6·5. By Lemma 8·1, we have that

∑
q≤Q0

q

ϕ(q)

∑
χ(q)

∫ T

T0

|F(1 + it, χ)|2dt



∑

q≤Q0

(
qU2 log2 P

ϕ(q)

∑
χ(q)

∫ T

T0

|Gv0 (1 + it, χ)|2|Hv0 (1 + it, χ)|2dt

+ 1

Q0 log2+η X

(
qT log X

X
+ q

ϕ(q)

))



∑

q≤Q0

(
qU2 log2 P

ϕ(q)

∑
χ(q)

( ∫
T1,χ

|Gv0 (1 + it, χ)|2|Hv0 (1 + it, χ)|2dt
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+
∫

[T0,T]\T1,χ

|Gv0 (1 + it, χ)|2|Hv0 (1 + it, χ)|2dt

)

+ 1

Q0 log2+η X

(
qT log X

X
+ q

ϕ(q)

))

for some η= η(ε)> 0 and some suitable integer v0 ∈ I. We apply Lemma 8·2 to bound the
contribution of the integral over T1,χ , finding that the above is bounded by



∑

q≤Q0

(
qU2 log2 P

ϕ(q)

∑
χ(q)

∫
[T0,T]\T1,χ

|Gv0 (1 + it, χ)|2|Hv0 (1 + it, χ)|2dt

+ 1

Q0 log2+η X

(
qTP log X

X
+ q

ϕ(q)

))
.

Combining Lemmas 8·3 to 8·5, we bound the contribution of the complement of S1 by


 U2 log2 P

logE X

 1

logF X

for some sufficiently large F> 0, which is negligible. Thus, we have that

∑
q≤Q0

q

ϕ(q)

∑
χ(q)

∫ T

T0

|F(1 + it, χ)|2dt 
 1

Q0 log2+η X

∑
q≤Q0

(
qTP log X

X
+ q

ϕ(q)

)
,

as required.

9. Proof of theorem 1·3
We now briefly outline how to adjust the argument to prove Theorem 1·2. The problem

can be reduced to the set of E2 numbers which factorise in the “typical” way. By Mertens’
theorem, almost all products of exactly two primes p1p2 ≤ X with p1 ≤ p2 satisfy

p1 ∈
[
exp

(
( log X)ε(X)

)
, exp

(
( log X)1−ε(X)

)]
=: [P1, P2], (9·1)

where ε(X) = o(1). We define E′′
2 := E′′

2(X) to be the set of E2 numbers n = p1p2 ∈ (X, 2X]
which factorise in the typical way. Using a sieve theory argument, we have that

1

X

∑
X<n≤2X

1E2(n)1E2(n + h) − o

(
S(h)( log log X)2

( log X)2

)
≤ 1

X

∑
X<n≤2X

1E′′
2
(n)1E′′

2
(n + h)

≤ 1

X

∑
X<n≤2X

1E2(n)1E2(n + h).

Therefore, we can reduce the problem to considering the correlations of n, n + h ∈ E′′
2.

We modify every definition featuring (P, P1+δ], replacing this interval with [P1, P2]. We
will once again apply the Hardy–Littlewood circle method and in (3·6) and (3·8) we take

Q0 := logA′
X, A′ > 4, Q := P2 logC X, H ≥ Q logD X, (9·2)
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where C is chosen sufficiently large in terms of A′ and D is chosen sufficiently large in terms
of A′ and C. In Lemma 8·1 we instead define I := [U log P1, U log P2] where U := QE

0 ,
E> 0 and we define α1 := ε′ > 0 sufficiently small in terms of ε > 0.

The applications of the Cauchy–Schwarz inequality to sums over products of exactly two
primes in the proofs of Proposition 3·5 and Proposition 6·3 are now too inefficient. To over-
come this, we split the sum over p1 ∈ [P1, P2] into dyadic intervals before applying the
inequality. We now outline how to modify the proof of Proposition 3·5.

PROPOSITION 9·1. Let A> 3, B> 1 be fixed and m be defined as in (3·8) with Q0, Q as in
(9·2). Let Q logD X ≤ H ≤ X log−A X with D> 0 sufficiently large. For α ∈m we have that∫

m∩[α− 1
2H ,α+ 1

2H ]
|S(θ)|2dθ 
 X

logB X
.

Proof. As before, we apply Lemma 2·2 to the minor arc integral so that we need to bound

I 
 1

H2

∫ 2X

X

∣∣∣∣∣∣
∑

x<n≤x+H

�2(n)e(nα)

∣∣∣∣∣∣
2

dx + H log2 X.

The second term is acceptable by our choice of H, so it remains to bound the first term.
Now before applying Cauchy–Schwarz to the integrand we split the sum over p1 into dyadic
intervals [P,2P] with P1 ≤ P ≤ P2 so that we instead need to integrate( ∑

P<m1≤2P

|1P(m1)|2
)( ∑

P<m2≤2P

∣∣∣∣∣
∑

x<m2p≤x+H

( log p)e(αm2p)

∣∣∣∣∣
2)

.

The first term is 
 P
log P , while the second term is equal to

∑
x<mp1,mp2≤x+H

P<m≤2P

( log p1)( log p2)e(αm(p1 − p2)).

Next, we perform the integration on this sum and split into the diagonal (p1 = p2) and off-
diagonal terms (p1 
= p2) as before. The diagonal terms now contribute

S1 
 P

H log P

∑
P<m≤2P

∑
X
m<p≤ 3X

m

log2 p 
 XP log X

H log P

 X

logC+D−1 X
. (9·3)

Once again applying Lemma 2·5 followed by Lemma 2·1 and Lemma 2·6, the off-diagonal
terms contribute

S2 
 X log log X log X

log P

(
1

Q0
+ 1

P
+ Q

H

)

 X

logB′
X

(9·4)

for B′ > 3 by our choice of Q0, P, Q and H. Combining the contributions of the dyadic
intervals [P,2P] gives that

I 
 X

logB X

for B> 1, as claimed.
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PROPOSITION 9·2. Let A> 3, B> 0 be fixed. Let ε > 0 be fixed and exp (( log X)1−ε) ≤
H ≤ X log−A X. Let M be defined as in (3·6) with Q0, Q as in (9·2). Then, for all but at most
O(HQ−1/3

0 ) values of 0< |h| ≤ H we have that

∫
M

|S(α)|2e( − hα)dα =S(h)X

⎛
⎝ ∑

P1≤p≤P2

1

p

⎞
⎠

2

+ O

(
X

logB X

)
.

Proof. Recalling Lemma 5·1, we have the expansion

S(α) =μ(q)

ϕ(q)

∑
P1<p≤P2

1

p

∑
X<n≤2X

e(βn)

+ 1

ϕ(q)

∑
χ(q)

τ (χ )χ(a)
∑

X<n≤2X

⎛
⎝�2(n)χ(n) − δχ

∑
P1≤p≤P2

1

p

⎞
⎠ e(βn)

=a(α) + b(α)

(9·5)

and following the argument of Section 5 we have that

∫
M

|S(α)|2e( − hα)dα =S(h)X

⎛
⎝ ∑

P1≤p≤P2

1

p

⎞
⎠

2

+ O

(
X

logB X
+ A(X)B(X) + B2(X)

)
.

Note that A2(X) 
 X( log log X)3, so it remains to bound B2(X). Following Proposition 6·2,
we have that B2(X) 
 B1(X) + B2(X) where B1(X) is defined in (6·1) and B2(X) is defined in
(6·2) with (P, P1+δ] replaced with [P1, P2]. With our choices of (9·2) and P1, P2, following
the arguments of Proposition 6·4 and Proposition 6·5 we now have that

B1(X) 
 X

logB X
.

The proof of Proposition 6·3 requires modifying in a similar way to Proposition 3·5. In
(6·4) we split the sum over P1 ≤ p1 ≤ P2 into dyadic intervals P< p1 ≤ 2P before applying
Cauchy–Schwarz, Lemma 2·3 and then combining the contributions of the dyadic sums.

We are now able to complete the proof of Theorem 1·3.

Proof of Theorem 1·3. By partial summation and Mertens’ theorem we have the bound∫ 1

0
|S(α)|2dα =

∑
X<n≤2X

� 2
2 (n) 
 log X

∑
X<n≤2X

�2(n) 
 X log X
∑

P1≤p≤P2

1

p


 X log X log log X.

Therefore, following the proof of Theorem 1·1, the result may be deduced from combining
this bound with Proposition 9·1, an application of Chebyshev’s inequality and Proposition
9·2 followed by an application of partial summation.
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10. Proof of Proof of Theorem 1·4
We outline the modifications needed to prove Theorem 1·4. When applying the Hardy–

Littlewood circle method, in (3·6) and (3·8) we now choose

Q0 := logA′
X, A′ > 6, Q := X1/6+ε/2, H ≥ QXε/2. (10·1)

As in Section 9, in Lemma 8·1 we instead define I := [U log P1, U log P2] where U := QE
0 ,

E> 0 and we define α1 := ε′ > 0 sufficiently small in terms of ε > 0. Analogously to the
almost prime case, we may write

∑
X<n≤2X

�(n)�2(n + h) =
∫ 1

0
S(α)S′(α)e( − hα)dα + O(h log2 X),

where for α ∈ (0, 1) we define the exponential sum S′(α) := ∑
X<n≤2X �(n)e(nα). The error

term is acceptable by our choice of H. We have the following result for the major arcs.

PROPOSITION 10·1. Let A> 5, B> 0 be fixed and let ε > 0 be fixed sufficiently small. Let
X1/6+ε ≤ H ≤ X log−A X. Let M be defined as in (3·6) with Q0, Q as in (10·1). Then, for all
but at most O(HQ−1/3

0 ) values of 0< |h| ≤ H we have that

∫
M

S(α)S′(α)e( − hα)dα =S(h)X

⎛
⎝ ∑

P1≤p≤P2

1

p

⎞
⎠+ O

(
X

logB X

)
.

Proof. We can expand S′ in terms of Dirichlet characters (see for example [24]):

S′(α) =μ(q)

ϕ(q)

∑
X<n≤2X

e(nβ) + 1

ϕ(q)

∑
χ(q)

τ (χ̄ )χ(a)
∑

X<n≤2X

(�(n)χ(n) − δχ )e(nβ)

+ O( log2 X)

=c(α) + d(α) + O( log2 X),

say. Therefore, using the expansion (9·5) and Cauchy–Schwarz, we may write the integral
over the major arcs as∫

M
S(α)S′(α)e( − hα)dα

=
∫
M

a(α)c(α)e( − hα)dα

+ O
(
A(X)D(X) + B(X)(C(X) + D(X)) + (A(X) + B(X)) log2 X

)
, (10·2)

where we define C2(X) = ∫
M |c(α)|2dα with D(X) defined analogously. Evaluating∫

M a(α)c(α)e( − hα)dα as in Section 5 gives the required main term and an acceptable
error. Mikawa [24, section 3] proves that C2(X) 
 X log log X and that

D2(X) 

∑

q≤Q0

q

ϕ(q)

∑
χ(q)

( ∫ 2X

X

∣∣∣∣∣ 1

qQ

∑
x<n≤x+qQ/2

(�(n)χ(n) − δχ )

∣∣∣∣∣
2

dx + qQ log2 X

)
.
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The second term is negligible by the definition of Q. Noting that we have chosen Q =
X1/6+ε/2, we apply Lemma 2·3 to the first term to get

D2(X) 
 X

logB X

for B> 0, as required. Combining this with our estimates for A(X),B(X) (from Proposition
9·2) and C(X) we have that the error term in (10·2) is O(X log−B X), as required.

Proof of Theorem 1·4. Analogously to the proof of Theorem 3·2, by [21, proposition 3·1] we
have that

∑
0<|h|≤H

∣∣∣∣∣∣
∑

X<n≤2X

�(n)�2(n + h) −
∫
M

S(α)S′(α)e( − hα)dα

∣∣∣∣∣∣
2


 H
∫
m

|S(α)||S′(α)|
∫
m∩[α− 1

2H ,α+ 1
2H ]

|S(β)||S′(β)|dβdα.

By Cauchy–Schwarz, we have that the above is bounded by


 H

(∫ 1

0
|S′(α)|2dα

)(∫ 1

0
|S(α)|2dα

)1/2 (
sup
α∈m

∫
m∩[α− 1

2H ,α+ 1
2H ]

|S(β)|2dβ

)1/2

.

Trivially, we have that∫ 1

0
|S(α)|2dα
 X log X log log X,

∫ 1

0
|S′(α)|2dα
 X log X,

so, combining these estimates with Proposition 9·1 (suitably adjusting for the choices of
Q0, Q, H), we have that

∑
0<|h|≤H

∣∣∣∣∣∣
∑

X<n≤2X

�(n)�2(n + h) −
∫
M

S(α)S′(α)e( − hα)dα

∣∣∣∣∣∣
2


 HX2

logB X
.

Therefore, applying Chebyshev’s inequality and Proposition 10·1 followed by partial
summation gives the result.
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