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Abstract

The concept of semi-bounded generalized hypergroups (SBG hypergroups) is developed. These hyper-
groups are more special than generalized hypergroups introduced by Obata and Wildberger and more
general than discrete hypergroups or even discrete signed hypergroups. The convolution of measures and
functions is studied. In the case of commutativity we define the dual objects and prove some basic theo-
rems of Fourier analysis. Furthermore, we investigate the relationship between orthogonal polynomials
and generalized hypergroups. We discuss the Jacobi polynomials as an example.
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1. Introduction

Locally compact hypergroups were independently introduced around the 1970's by
Dunkl [4], Jewett [7] and Spector [14]. They generalized the concepts of locally
compact groups with the purpose of doing standard harmonic analysis. Similar
structures had been studied earlier, in the 1950s, by Berezansky and colleagues, and
even earlier in works of Delsarte and Levitan.

Later on, results of harmonic analysis on hypergroups were transferred to different
applications. For example, a Bochner theorem is used essentially in the context of
weakly stationary processes indexed by hypergroups, see [9] and [11]. Hypergroup
structure is also heavily used in probability theory, see the monograph [2], and in
approximation with respect to orthogonal polynomial sequences, see [5] and [10].
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However, the whole set of axioms (see [2]) is not used in these application areas.
Concentrating on orthogonal polynomials, Obata and Wildberger [ 12] studied a very
general concept called 'generalized hypergroups'. The purpose of the present paper
is to derive results of harmonic analysis for generalized hypergroups in more detail.
Our main interest is to include all orthogonal polynomial systems with respect to a
compactly supported orthogonalization measure in our investigations.

2. Semi-bounded generalized hypergroups

The discrete structure of a generalized hypergroup was introduced by Obata and
Wildberger in [12]. Let us recall the basic definitions.

DEFINITION 2.1. A generalized hypergroup is a pair (7C, Ao), where Ao is a
*-algebra over C with unit c0 and /C = {ck,k e K] is a countable subset of Ao
containing c0 that satisfies the following axioms.
(Al) K*=K.
(A2) K is a linear basis of Ao, that is, every a e Ao admits a unique expression of
the form a = ^n ancn with only finitely many nonzero a, € C.

(A3) The structure constants or linearization coefficients g(n,m,k) e C, which are
defined by cncm — ̂  g(n, m, k)ck, satisfy the condition

> 0 if c* = cm,

= 0
g(n,m,0)

A generalized hypergroup is called hermitian if c* — cn, commutative if cncm = cmcn,
realifg(n, m, k) e R, positive if g(n, m,k) > 0, and normalized if ^ ; g ( n , m, y') = 1
for all n, m, k.

A bijection - on K is defined by

(2-1) Cn=C*.

Further, let

(2.2) 1

Due to (A3) we have h(ri) > 0 for all n and /i(0) = 1 . If /C is hermitian or
commutative, then h(n) = h{h). In the following lemma some useful properties of
the structure constants are summarized.
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LEMMA 2.2. The structure constants fulfill the following equalities:

(2.3) g(n, 0, k) = g(fl, n,k) = 8nk,

(2.4) g(n, m, k) = g{m, h, k),

(2.5) h(m)g(n,m,k) = h(k)g(k, n,m), and

(2.6) ^g{n,m,k)g(k,l, j) = ^g(n,k, j)g(m,l,k) for all n,m,l, j .
k k

PROOF. For (2.3)-(2.5) see [12, Lemma 1.1]. Now, on the one hand we have
(cncm)ci = J^k j g(n,m,k)g(k,l, j)Cj and on the other hand we have cn{cmc,) =
12k j 8(m< l< k)g(n, k, j)cj. From the associativity of AQ and the linear independence
of the set K, (2.6) follows. •

We define translation operators Ln, Ln for complex valued functions / on K by

and 17/(m) = ^g(n, m, k)f{k).
k

Given / , the function / is defined by f{n) = f(n).

LEMMA 2.3. For f, g with finite support and all n e K,

(2.7) J2 Lnf(m)g{m)h{m) = £ f(m)LAg{n)h(m) = J^ f(m)(L~Rg)(m)h(m).

PROOF. We use (2.4) and (2.5) to obtain

m,k

= J2f(k)g(n,k,m)g(m)h(k)
k.m

We write \>{k) = v({k}) for a discrete measure v on K. Let €„ denote the Dirac-
measure at n e K, that is, en(k) — 1 if k = n and en(k) — 0 otherwise.

DEFINITION 2.4. A positive discrete measure u> ^ 0 on K is called (left) Haar
measure if, for all / with finite support and all n e K,
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THEOREM 2.5. A Haar measure exists if and only if K, is normalized. In that case
all Haar measures co are determined byco — ah,a>0.

PROOF. Let us assume that there exists a Haar measure co. Due to (A3) we get

x(n) = ^2 g(n, m, O)co(m) = ]jP L-n€0(m)co{m)
m

) = co(0),

which yields co{n) = co(0)h(n). Now let co — ah. It suffices to consider / = €k. By
(2.5), we find

,n, m) = ^eA.(m)a>(/n) ^g(k, n, m).

Hence, co is a Haar measure if and only if /C is normalized. •

In order to develop their theory further, Obata and Wildberger took care of the
functional <f>0 : Ao -*• C defined by (po(J^n ocncn) = ot0, and focused on the following
property. A generalized hypergroup (K, Ao) is said to satisfy property (B) if for all n
there exists K{H) > 0 such that \<po(b*cnb)\ < K{n)<po(b*b) for all b € Ao. We focus
on a stronger property than Obata and Wildberger.

DEFINITION 2.6. A generalized hypergroup (/C, Ao) is called a semi-bounded
generalized hypergroup (SBG hypergroup) if, additionally, the following axiom is
valid.

(A4) For the structure constants, it is true that

(2.8) y(n) — sup Y^ \g(n, m, k)\ < oo for all n.
m k

A generalized hypergroup is called bounded if it is semi-bounded and y is bounded.

An SBG hypergroup satisfies property (B) with K(II) = y (n), see [12, Theorem4.1 ].
Then y(n) > max(/i(n)~', 1). By straightforward arguments we have that

(2.9)

If /C is hermitian or commutative, then y(n) = y(n). If K. is positive and normalized,
then y(n) = 1 for all n.
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3. Convolution of measures and functions

Clearly, both measures and functions on K can be identified with sequences indexed
by K. However, we make a distinction anyway, since the natural definition of a
convolution is different for measures and functions.

For discrete complex measures fi, v on K, we define a convolution by

(3.1) (JL * v)(k) = J^gin, m, k)fi(nMm)
n,m

whenever the sum on the right-hand side is finite for all A:. A short calculation shows
e0 * fj. = /x * €0 = fJ', that is, e0 is the unit element for this convolution. For two Dirac
measures we get en * em = Ylk 8(n<m> k)€k, and supp en * em is finite.

In order to investigate the convergence of the sum in (3.1) we introduce the spaces

M(K) = [n measure on K, \^\{K) = £ „ \n(n)\ < oo}, \\n\\ = \fi\(K),

MY{K) = {n e M(K), \Yfi\iK) = £ „ \fi(n)\y(n) < oo}, \\»\\y = \yn\(K).

The space My{K) and the norm \\ii\\y is defined analogously.

LEMMA 3.1. . (i) If n e My(K) and v € M{K), then \i * v € M(K) and
\\H*V\\<\\tl\\y\\v\\.

(ii) Ifn 6 M{K)andv e Mf(K), then /x * v e M(K) and \\/x * v\\ <

PROOF. (i)ByFubini,
( " ' w ' k)\\n(n)\\v(m)\ < J^ y(n)\fi(n)\\v{m)\ = \\fJ.\\r\\v\\.

n,m k n,m

The proof of (ii) is analogous using (2.9). •

LEMMA 3.2. The convolution * is associative, that is, (/x * v) * p = fi * (v * p)
whenever both expressions exist in the sense of Lemma 3.1.

PROOF. It suffices to prove the associativity for Dirac measures (en * em) * e: =
en * (em * e() For that purpose we use (2.6). •

LEMMA 3.3. (i) It holds that (en * emj = eA * es.
(ii) It holds that 0 e supp en * €„ if and only ifn = m

(iii) JfK. is normalized, then €„ * em(K) = 1 for all n, m.
(iv) // holds that en * eR(0) = h(h)~] > 0.
(v) It holds that \\€n * em|| < min(y(n), y(m)).
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PROOF. Using (2.5) we obtain (i), and application of axiom (A3) gives (ii). For (v)
we have by definition \\en *em\\ = ^ \g(n, m, k)\ < y(n). The second inequality is
achieved analogously, using (2.9). The assertions (iii) and (iv) are clear. D

Now, we are able to compare the concept of an SBG hypergroup with that of a
discrete hypergroup, see for example [5], or a discrete signed hypergroup, see [13].
Our previous results yield the following theorem.

THEOREM 3.4. (i) If K. is a real normalized and bounded generalized hyper-
group, then its index set K with convolution * as defined in (3.1) and involution - as
defined in (2.1) is a discrete signed hypergroup.

(ii) If K is a positive and normalized SBG hypergroup, then its index set K with
convolution * and involution - is a discrete hypergroup.

(iii) Let (K,*, ~) be a discrete signed hypergroup. Put K, — {ek,k e K} and let
Ao be the vector space of all finite linear combinations of Dirac measures ek e K.
Further, let * be the multiplication in Ao and put €*k — e-k as involution on /C, which is
linearly extended to Ao. Then (/C, Ao) is a real, bounded and normalized generalized
hypergroup.

(iv) If (K, *, ~ ) is a discrete hypergroup, then the construction in (iii) yields a
positive and normalized SBG hypergroup.

Next let us introduce the convolution of functions.

DEFINITION 3.5. Let / and g be functions on K with finite support. The convolution
of / and g is defined by

(3.2) ( / * g)(m) - Y, fin)(Ug)(m)h{n).
n

LEMMA 3.6. If f and g have finite support, then f * g has finite support.

PROOF. By definition ( / • g)(m) = J2n,k f(n)g(n, m, k)g(k)h(n). Hence,

supp/*gC [J Ma,k,
/IGSupp /
*esupp,g

with Mnk = {m, g(n, m, k) ^ 0}. By [12, Lemma 1.2], the set Mn_k is finite for
all n, k. •

For a function a and a discrete measure yx on K we denote the application of /x to a
by /j,(a) — J^k a(£)M&) whenever the sum exists. Furthermore, for a function / and
a measure \x we form the measure ffi by f/x(a) = /x(/a) for all functions a on K.
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THEOREM 3.7. If f, g are functions on K with finite support, then (f * g)h =
(fh) * (gh).

PROOF. Let a be an arbitrary function on K. Application of Lemma 2.3 yields

(f *g)h(a) - y\a(m)(f * g)(m)h(m)

k m,n

= E ( / A ) * (Sh)ik)a(k) = (fh) * (gh)(a). •
k

If /C is commutative, then * is commutative and by the last lemma we see that * is
then also commutative.

For a positive discrete measure a on A" and 1 < p < oo, we introduce the Banach
spaces

\ \f(n)\po{n) \ ,

= \f:K - • C, sup \f(n)\ < oo l ,
I n J

LEMMA 3.8. / / / € l°°, then Lnf e I00 for all n and WLnfW* < y(n)||/HO

PROOF. For all n, m,

\Lnf(rn)\ = Eg(n,m,k)f(k) <Y^\s{n,m,k)\\f(k)\<Y{n)\\f Woo- •

We now see that the sums in (2.7) converge if / € l\h), g e l°° or f e l°°,
g e lx(h), respectively, and Lemma 2.3 extends to these spaces.

THEOREM 3.9. The convolution * in (3.2) extends tol\yh) x / ' (h) and \\f*g\\ i,A <

Allgll LA-

PROOF. First, assume / , g have finite support and a is such that
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Theorem 3.7 yields

= 11/11 l.y.llglk*.

Hence, * is continuous on a dense subspace of I1 (yh) x /'(ft). Therefore, it can be
uniquely continued. •

Using (2.9), the convolution extends analogously to / ' (ft) x/1 (yh) with \\f*g\\i,h <
ll/lli./illglluy/i- If fc is bounded, that is, y(n) < M for all n, then the last theorem
gives \\f*gh.h < A#||/| | ,,B| |g||,,B. F o r / e l\h), define Lfg = f * g. Clearly, Lf

is a bounded operator on l'(h) and \\Lf\\ < Af||/| |i,B. With the norm | | / | | ' = \\Lf\\,
it holds that \\f*g\\' < Il/U'llgll'. Hence, if K is bounded, then (V(h), || • ||', •) is a
Banach algebra.

L E M M A 3.10. For all f e l\h) andall m,ne K,

(3.3) (Lnf)(m) =A(«)-'(6B * / ) ( « )

PROOF. Since / € /' (ft), the right-hand side of (3.3) exists by Theorem 3.9 and

h(n)~l(€fj * f)(m) = h(h)~x Y]€n(k)(L-kf)(m)h(k) = (Ln/)(m).

By Theorem 3.9, we further deduce that

THEOREM 3.11. 77u? convolution * m (3.2) e«end5 to l\yh) x I00, and

Wf*g\\oc<\\f\\l.fH\\g\\oo-

PROOF. Assume / , g have finite support. By Lemma 3.8, we obtain

Hence, • is bounded on a dense subspace of l\yh) x l°° and can be extended. •
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By (f*g)(m) — ^r,n(Lj,f){m)g(n)h{n), we prove analogously that the convolution
extends to /°° x l\yh) with | | / * gIL < ||/IUI«lli,>,*.

THEOREM 3.12. For 1 < p < oo, the convolution • in (3.2) extends to (ll(yh) f~l
l\yh)) x l?(h). With \/p + \/q = I,

(3.4) \\f*g\\P.k<\\f\\\%\\f\\\%\\g\\P.H.

If K, is hermitian or commutative, then (3 .4 ) simplifies to \ \ f * g \ \ p , h < l l / l l i , y* l l g | l p>

PROOF. For / €lx(yh)C\l\yh)pxilLfg = f*g. By Theorem 3.9,
ll/lli.y/, where B(ll(h)) denotes the Banach space of bounded operators from l\h)
into ll(h). Furthermore, by Theorem 3.11 we have ||L/||B(/=) < ||/lh,y*. Hence,
inequality (3.4) is a consequence of the Riesz-Thorin interpolation theorem, see for
example [16, page 72]. If K is commutative, then h = h and y = y. •

By defining an operator Rgf = f * g, we derive analogously that the convolution
• extends tol"(h) x (l^yh) nil(yh)) with | | / *g\\p,h <

LEMMA 3.13. For 1 < p < oo and (\/p + \/q = 1),

PROOF. The proof uses (3.3) and Theorem 3.12. •

THEOREM 3.14. Let \/p + \/q = 1. For f e lp(h), g e lq{h),

(3.5) \(f*g)(m)\ < ydnj'^j/^'/ 'H/H^llgll,.*.

PROOF. Applying Holder's inequality in the second equation yields

<y(m)1"'Y(m)1"\\f\\p,ll\\g\\qj,. D

If K, is hermitian or commutative, inequality (3.5) becomes \{f * g)(m)\ <
Y(m)\\f\\p,h\\g\\q,h- In this case we introduce the Banach space

(3.6) /°°(K)=(/:/s:^C,sup^^<ooj, ||/||oo., = sup
" 7 YW ^ J ' ^ V K(«)

Now, (3.5) becomes ||/*«||oo.y < H/llp.*llglU.*.
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4. Dual objects

We say that a generalized hypergroup (JC, A$) is a function realization, if A'o
is a dense subalgebra of the space C(S), where S is a compact Hausdorff space.
Using Gelfand theory, Obata and Wildberger proved that, for commutative generalized
hypergroups (fC, Ao) satisfying (B), there is an isomorphism a -+ a' onto a function
realization (/C\ AQ). Moreover, there is a positive Radon measure \x on S with
supp^i = 5, \i{S) = 1 and

= / a'(x)dn(x) for all a e Ao,
Js

and KJ is a complete orthogonal set for L2(*S, \i), see [12, Theorem 5.1].
From now on, we assume (JC, Ao) to be commutative and AQ to be a dense sub-

algebra of C(S) for some compact Hausdorff space S. Condition (B) now reads

\j < *:(ii) j \b(x)\2dfx{x) =cn(x)\b(x)\2dn(x)

for all b e C(S), and therefore, with K{H) = HcJIoo = sup,^ \cn(x)\ < oo, condi-
tion (B) is satisfied. The next lemma states that /c(n) cannot be chosen smaller.

LEMMA 4.1. Let (/C, Ao) satisfy condition (B) with constants K(n). Then

sup | c (*) | < K(n) for all n e K.
xeS

In particular, supxeS \cn(x)\ < y(n).

PROOF. Let us first remark that L2(S, /x) is the completion of Ao with respect to
|| • ||2,M, since /C is a complete orthogonal set for L2(S, n). The inequality

(4.1) f ca(x)\b(x)\2dix(x) < K(n) f \b(x)\2dix(x)
Js Js

is hence valid even for all b e L2(S, n). Now,let^0 € .Sand choose a family of neigh-
borhoods (V,),6/ of x0 such that V,- ->• {x0}. Further, let bt = XV;/||XV,I|2,M where \v:

denotes the characteristic function of the set V,. Clearly lim, fs cn(x)\bj(x)\2dii(x) =
cn{x0). Since, x0 € S is arbitrarily chosen, inserting into (4.1) gives the assertion.
Further, «-(«) = y(n) is a valid choice by [12, Theorem 4.1]. •

Let us now consider dual objects of commutative generalized hypergroups. Obata
and Wildberger already have defined characters [12, page 74], but their definition
seems to be too weak in order to develop harmonic analysis.
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DEFINITION 4.2. We define two dual spaces by

X\K) = {a € l°°(y), a ^ 0, Lna{m) = a{n)a{m)),

K = {aeXb{K), a(n) = £00}.

The elements of Xb(K) are called characters and the elements of K hermitian char-
acters.

Consider an element x of S. It can be seen that ax(n) = cn(x) defines an element
of K. Hence K ^ 0. Since Ao is dense in C(S) and S is a compact Hausdorff
space, it follows that for different x, y e S we obtain different characters ax ^ ay,
see also [12, Theorem 6.4]. Thus, we can identify <S with a subset of K and we get
the inclusion relations

(4.2) SCK cXb(K).

The latter relation is well known for hypergroups and signed hypergroups. In contrast,
to the group case, these inclusions may be proper, as is illustrated by some known
examples for hypergroups.

From a(n) — Loa(n) = a(0)a(n), it follows that a(0) = 1. Furthermore, since
y(0) = 1, ||a||oo,)' > 1- By Lemma 4.1, |cn(jc)| < y(n), which implies Halloo,,, = 1
for all x e S. For r > 1 let us define the following subsets of the duals

Xr\K) = {ae X\K), \\a\Uy < r), Kr - ja e K, \\a\Uy < r J .

If K is bounded, then Xb{K) = Xh
R(K) and K = KR, where R = supn y(n) < oo.

In fact, in that case l°°(y) — I00 setwise and for a character a e l°°,

(4.3) |a(n)|2 = \a(n)a(n)\ = \Lna(n)\ < y(/i)||a||oo.

Taking the supremum over all n e K yields ||a||oo 5 supn y(n). Since y(ri) > 1, we
further deduce that

(4.4) 1 < Halloo.,, < Halloo < R.

We equip Xb(K) with the topology of pointwise convergence and subsets of Xb{K)
with the induced topologies. With these topologies the functions sn : Xb{K) —> C,
sn (a) = a{ri) and their restrictions to the other duals are continuous. We state without
proof that the Gelfand topology on S is the topology induced by Xb(K), that is, the
topology of pointwise convergence.
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5. Fourier transform

Due to our dual objects, we are able to perform some Fourier analysis in the context
of commutative SBG hypergroups.

DEFINITION 5.1. For /x e MY{K) we introduce the following two versions of the
Fourier-Stieltjes-transform

jx{a) = Y^a(«)/i(«) for a e K,
n

n) for a € Xh(K).

For x € S c K, we write jx{x) = jx{ax) — J^n cn(x)fi(n).

The following lemma states that our definition makes sense.

LEMMA 5.2. If a e Xr
h(K), then \J{ix)(<x)\ < r\\^\\y and T(fx) is a continuous

function from X^{K) into C.

PROOF. Let a e Xr
b(K), that is, |a(n)| < ry (n) for all n. We obtain

Since the functions sn(ot) — a(n) are continuous on Xr
b{K) for fixed n, it follows that

is continuous on Xj'(K). O

DEFINITION 5.3. For / e ll(yh) we define two versions of the Fourier transform
by

/(a) = (fh)(a) = 2 ] f(n)a(n)h(n) for a € K,

a) = T(fh){a) - Y, f(n)a(n)h(n) for a 6 *»

For JC e S, we write /(JC) = / ( a , ) = £„ f(n)cn(x)h{n).

By interpreting measures on AT as functions on AT we clearly have l\yh) =
{/, / / i € Mx(/O} and hence, Lemma 5.2 immediately implies that the Fourier trans-
form is continuous on Xb(K) for all r > 1 and that fora € Xb{K),

(5.D l/(a)l
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In order to define the Fourier transform for / e / 2 ( / i )we note that {*Jh(n)cn ,neK]
is a complete orthonormal set for L2(S, /z), see [12, Corollary 3.4]. Therefore, the
series ^ n f(n)cnh(n) converges in L2{S, /x) by Parseval's identity

(5.2) ]Tf(n)cn(x)h(n) dpi{x) =

2
2.h-

Hence, we define the Fourier transform of / € I2(h) by f — £ n f(ri)cnh{n), where
convergence of the sum is understood in L2(S, /x). In (5.2) we already proved
Plancherel's theorem.

THEOREM 5.4. The Fourier transform is an isometric isomorphism from I2(h) into
L2(S,n). In particular, for f el2 (h), ||/||2,M = ||/||2.A.

As a consequence of Plancherel's theorem we obtain a uniqueness theorem for the
Fourier transform on /' (yh).

THEOREM 5.5. / / / e l\yh) and F(f)\S = 0, then / = 0.

PROOF. Let / e ll(yh). Since y(n) > 1 we have / 6 V{h). Set N = {n e K,
\f(n)\ > 1}. Since y(n) > h{n)~\ this set is finite. We obtain

2^\f(,n)\zh{n)<^\f{n)\zHn)
neK neN

hh < oo,

which means / e I2(h). The Fourier transform on lx(yh) coincides with the one on
I2{h) /^-almost everywhere and by Plancherel's theorem

We therefore obtain / = 0. D

Let us turn our attention now to the relation of Fourier transform and convolution.

THEOREM 5.6. / / / , g e ll{yh) such that f *g e l\yh), then

(5.3) W **)(«) = W)(« ) .F ( s ) ( a ) for all a e Xb{K).
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PROOF. We use Lemma 2.3 and Fubini's theorem to obtain

* g)(a) = YiSf *8)(n)a(nMn)

. D

COROLLARY 5.7. 77ie convolution * extends to l\yh) x /'(y/i) -> /2(/i). It holds
that

(5.4) Il/*«ll2.*<ll/ll i,y*ll«lli.y*.

PROOF. First suppose f, g € l\yh) such that / • g e l](yh). Using Plancherel's
Theorem 5.4, Theorem 5.6 and (5.1), we obtain

H/*Sll2.* = ll7^il l2,M = II/III2.M < ll/lloo.5llilloo.5 < \\fh,yh\\gh,yh.

Hence, the convolution is continuous on C = {(/, g), f,ge l\yh), f *g e l\yh)}.
Since functions of finite support are dense in /' (yh) and the convolution of two such
functions has again finite support, we see that C is dense in /' (yh) x /' (yh). Thus •
uniquely extends to /' (yh) x ll(yh) and (5.4) holds. •

Implicitly we used the commutativity of K, in this proof. Immediately, we obtain
that the convolution Theorem 5.6 holds for all f,ge l](yh) with the slight adjustment
that in general (5.3) holds only for /^-almost all a e Xh(K).

An involution on /' (h) is given by f*(n) = f(n), which is preserved by the Fourier
transform on K, that is,

/•(a) = Y f(n)a(n)h(n) = ^f{ii)a(n)h(n) =./(«) for all a e K.
n n

The inverse Fourier transform for F e L](S, fx) is defined by

F(n) = I F(x)cn(x)d/x(x), for all n e K.
Js
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We can even extend this definition to a larger space. Let M(S) denote the space
of complex bounded Radon measures on S with the total variation as norm. For
p e M (S) we define the inverse Fourier-Stieltjes transform by

p{ri) — l cn(x)dp(x), for all n e K.
Js

V

Clearly, (F/xJ = F. Parseval's identity immediately gives the following inversion
theorem.

THEOREM 5.8. (i) If f €f{h), then (/)"= / .

(ii) If F 6 L2(S, /x), then (F) = F fx-almost everywhere.

THEOREM 5.9. For the inverse Fourier-Stieltjes transform the following are true.

(i) Forp e M(S) we have p e /°°(j/) and HplU,, < ||p||.
(ii) For F eL](S, ix) it holds that ||F||0Oi>' < \\F\U.,*-

(iii) For F e L^S, /x) we have F e co(y) where co(y) denotes the closure with
respect to || • H^,, of the set of all functions with finite support. Furthermore, the
image of the inverse Fourier transform of LX(S, /x) is dense in co(y).

PROOF, (i) For p e M(S) and n e K we have

\Hn)\ - I*
Js

(x)dp(x) < \\cn\\oo,s\\P\\<y(n)\\p\\.

Statement (ii) is a consequence of (i) by observing (F/xJ= Fand||F||,,M = \\Ffj,\\.
(iii) Let e > 0 and choose G e C(S) such that ||F - G||,,M < e/2. Since

C(S) C L2(S, ix), it holds that G e I2(h). Hence, there exists <j) with | supp</>| < oo
such that ||G — 0||2,/, < e/2. Using y(n) > max{l, h(n)~1} we deduce, for arbitrary
/ el2(h),that

I/WI2 ' " ^ ' 2

, ,2 < ^ r 5 l/(n)l Mn) - 2 - l / ( n ) l A(n) =

y(n)2 y(n) *-f
yielding ||/||cx),x < ll/lk*- We hereby derived /2(/i) c /°°(y). Now, using this
estimation, we obtain ||G — 0||oo,x < IIG — 0H2,/, < c/2 and further

- <f>{k)\ < |F(*) - G(A)| + \G{k) -

which is equivalent to ||F — <j)\\oo,y < e- Hence, F can be approximated with respect
to II • lloo,y by functions with finite support. Since all function with finite support are
contained in the image of the inverse Fourier transform of L'(<S, /x), the image of
L\S, ix) is dense in co(y). •
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The last result generalizes the Riemann-Lebesgue lemma. We also have a unique-
ness theorem for the inverse Fourier transform.

THEOREM 5.10. Let p e M(S). lfp = 0, then p-0.

PROOF. Assume that p ^ 0, but p = 0. By [12, Theorem 5.1]

.4o= {As, |supp/| <ooj

is a dense subalgebra of C(S). Hence, there is some / with finite support such that
fs f(x) dp{x) T̂  0. However, we have

f f(x)dp(x) = y"/(n) I ~^(x)dp(x)h{n) = Yf{n)p(h)h(n) = 0. n

Denoting pn{x) = €n(x)/h(n), we have pn(x) = cn{x) and (pnj= pn yielding

£(«) = / cn(x)dfi(x) = p-n{0) = eo(n),
Js

that is, jx = e0. Another important property was shown in the proof of Theorem 5.10
above. Suppose / has finite support and p e M(<S). Then

(5.5) I f{x) dp(x) = Y) f(n)p(n)Hn).

We can extend the uniqueness theorem to the following result.

THEOREM 5.11. Let f 6 l\yh) and p € M{S). Then p = f if and only if
P =

PROOF. For p = f/x we already know by Theorem 5.8 that p = (fj= f. Now
suppose f — p and let g have finite support. With (5.5) and (g)v = g we obtain

f g(x)f(x)dn(x) = I g(.x)Y^f{n)cn{x)h(n)dix{x)
Js Js .

g(x)cn(x)dfx(x)h(n)

= J2 /("> f g(x)^(x)dfi(xMn)

h(n) = f g{x)dp(x).

Since {g\s, I supp^l < 00} is dense in C{S), we see that p = fix. •
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A rewriting of the last result gives the inversion theorem.

THEOREM 5.12. The following two inversion formulae hold.

(i) Let f € ll(yh). Then for every n e K, / («) = fs f(x)cn(x)d(i(x).
(ii) Let F e L\S, /x) such that F e ^(yh). Then for (x-almost every x e S,

(5.6)

If in addition F is continuous, then (5.6) holds for all x € S.

PROOF, (i) follows by Theorem 5.8 (i). For(ii)putp = F/x. Thenp = F e lx{yh).
By Theorem 5.11, we have p = (Fffi, which is equivalent to F — (F)" in Ll(S, n).
Since the right-hand side of (5.6) is continuous, equality holds for all x e S if F is
continuous. •

6. Orthogonal polynomials on the real line

Let fi be a probability measure on the real line. We denote the support of pi by S
and assume card(<S) = oo. Furthermore, let (PnJ^LQ denote an orthogonal polynomial
sequence with respect to /x, that is f PnPmd/u, ^ 0 if and only if n = m. The
polynomials Pn are assumed to have real coefficients with deg(Pn) = n and Po — 1.
It is well-known that the sequence (Pn)nehi0 satisfies a three term recurrence relation
of the following type

(6.1) Pi(x)Pn(x) = a n P n + l ( x ) + b n P n ( x ) + c n P n - l ( x ) , n > \ ,

with Po(x) = 1 and P\(x) = (x — b)/a, where the coefficients are real numbers with
cx > 0, cnan_i > 0, n > 1. Conversely, if we define (Pn)^Lo by (6.1), there is a
measure /x with the assumed properties, see [3].

The linearization coefficients g(n,m, k) are uniquely defined by

(6.2) PnPm = YJSin,m,k)Pk = ] T g(n,m,k)Pk.
k=0 k=\n-m\

The linearization coefficients are obtained recursively based on the coefficients of the
three term recurrence relation. The corresponding formulae are written down in the
following lemma for ease of reference.

LEMMA 6.1. We have g(0,m,m) = 1. In case m > 1, g{\,m,m — 1) = cm,
g(l,m,m) = bm and g(l,m, m + 1) = am. In casern >n>2, we get the recurrence
relation:
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(i)

(6.3) gin, m,n + m) = gin — \,m,n + m — 1) n+m~ = •
an-\

(6.4) gin,m, m — n) — gin — \,m,m — n + 1) m~"+' = -

(ii) gin,m,n + m-\) = gin~\,m,n+m-\)b"+m~i ""'

gin - 1, m,n + m — 2)
an-\

an+m-2

an-\

gin,m,m — n + 1) = gin — \,m,m - n + 1) m~"'1

+ gin - \,m,m — n + 2)
an-\

Cm—n+2

an-\
(iii) Fork = 2, 3 2n-2,

gin, m, m — n + k) — gin -\,m,m — n + k — 1)- m " + ~

+ gin — 1, m, m — n + k)

an-\
t>m-n+k ~ bn-\

+ gin— \,m,m — n + k + l)

C i

an-i
cm-n+k+]

— gin — 2, m, m — n +
an-\

PROOF. In case m > n > 2, we have

Pn — P\Pn-\ Pn-\ Pn-2-
an_, afl_, an_.

So
m+n — 1 / A

m + n —1 m+n —2

^ g(n-2,m,k)Pk,
a"-] m-n+i °"-] m-n+2

which implies the recurrence formulae (i)-(''i)- The second equations in (i) are proven
by induction. •

We easily derive

(6.5) hin) = gin, n, 0)"1 = ^f P2
nix)
2i )
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Let tC = [Pn,n e No}, Ao be the set of polynomials with complex coefficients in
one real variable and * be the complex conjugation".

THEOREM 6.2. We have the following classification.

(i) (IC, Ao) is a hermitian and commutative generalized hypergroup.
(ii) (JC, Ao) satisfies property (B) if and only ifS is compact. S is compact if and

only if the sequences (cnan_i) and (bn) are bounded.
(iii) (K,, Ao) is an SBG hypergroup if and only if the sequences {an), (Jbn) and (cn)

are bounded.

PROOF. For (i) and (ii) see [3] and [12].

If K. is semi-bounded, then there is a bound for g(l , n,n + \) — an,g(\,n,n) = bn

andg(l, n, n — 1) = cn. Let \an\, \bn\, \cn\ < B. It is sufficient to prove \g(n, m,k)\ <
Mn for all m, k e No, which implies £*=£-m| \g{n,m,k)\ < {In + \)Mn for all
m 6 No. Then Mo = 1 and M\ = B is a proper choice. Now let us assume that for
n > 2 there exist proper Mo, M\,..., Mn_\. According to the recurrence relation of
the linearization coefficients, see Lemma 6.1, we get

4fi B
\g(n,m,k)\<- r Af B _,+ - -Mn_2 = M«. •

\an-\\ K_i|

Therefore we call K a generalized polynomial hypergroup or an SBG polynomial
hypergroup, respectively. In order to get normalized generalized hypergroups, Obata
and Wildberger have investigated renormalizations in [12]. The following lemma
shows that there always exists a renormalization of a generalized polynomial hyper-
group K, = {Pn;n e No} with property (B), which is semi-bounded.

LEMMA 6.3. Suppose (z has compact support S. Then the monic polynomials Qn

and the orthonormal polynomials pn = ^/h(n)Pn with respect to /x constitute an SBG
polynomial hypergroup.

PROOF. Let the monic polynomials be defined by Qo = 1, Q\{x) = x — b' and
QiQn = Qn+\ + b'nQn + c'nQn-i, n > 1, where c'n > 0. Since // has compact sup-
port, (b'n) and (c'n) are bounded sequences. By Theorem 6.2 (iii), the corresponding
generalized hypergroup is semi-bounded. Now, it is simple to derive that the corre-
sponding orthonormal polynomials are defined by p0 — \, px — (x — b')/yfc\ and
PiPn = a>»+i +b'n/yMPn+a'n-\P>-i< where < = y/c'n+l/c\. Since (c'n) is bounded,
by Theorem 6.2 (iii), the corresponding generalized hypergroup is semi-bounded. •

Now, we are looking for an OPS (Rn)neN0
 w i t n Ylk £*("> m,k) = \ for all n,m &

No, which is equivalent to the existence of XQ 6 K with Rn(x0) = 1 for all n e No-
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THEOREM 6.4. Suppose \i has compact support and let (Pn)neM0 be an arbitrary
orthogonal polynomial sequence with respect to /x. Denote by [d, e] the smallest
interval containing S. Choose x0 6 IR \ (d, e) and define Rn(x) = Pn{x) / Pn{x0),
n e No. Then K. = {Rk, k e No} is a normalized SBG hypergroup.

PROOF. Let (Qn)neNo be the monic orthogonal polynomials with respect to /x as in
the proof of Lemma 6.3. Then

Let

g n + 1(*0) p , ^ ff | CnQn-l(X0)
K\Kn = 7 7 7 — 7 7 7 7 — r « « + i + 7 7 7 — r ^ n + 7 7 7 — 7 7 7 7 — 7 " « - ' ' n>l.

Q\(xo)Qn(xo) Qx(x0) Q(x)Q{x)

b'n
"„ — ~z~, r a n Q

Qi(xo)Qn(xo)

Since {b'n) is bounded, (^")n€^ is bounded, too. By [3, page 110, Theorem 2.4], for
x0 <£ (d,e), we have

6.+i(*b) < ! n > 0

Hence, \a'^'\ < \(xo — b'n — b')/Qi(x0)|, which shows the boundedness of (a'^'). Finally,
a'n + K + c"n = ] yields the boundedness of (c"). By Theorem 6.2 (iii), the proof is
complete. •

Now, let us examine the duals of an SBG polynomial hypergroup. We define the
sets

(6.6) Dr = {z € C, \Pn(z)\ < ry(n) for all n e No}, D = ( J Dr,

(6.7) Ds
r = Dr n K, and Ds = [J Ds

r.

Furthermore we define for some z € C the function az(n) = Pn(z) for all n e No.
Then the following theorem holds.

THEOREM 6.5. Let JC — {Pn, n e No} be an SBG polynomial hypergroup.

(i) It holds that Xb(N0) = {az, z 6 D] and No = {ax, x € Ds}.
(ii) The mappings

D -+ Xb(N0), z\-+ a, and Ds -> No, x i->- a*

are homeomorphisms.
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(iii) Xh(N0) and N^ are bounded.

PROOF, (i) For z e Dr it holds that llajco.y < r, az ^ 0, see [3, Chapter I,
Theorem 5.3], and Lnaz(m) = az(n)a,(m), hence {a., z e Dr] c <¥r*(N0).

Now suppose a e ^ ( N o ) and put z = flo«(J) + ^o- We obtain a(\)a(n) =
Lia(n) = ana(n + 1) + bna(n) + cna(n — 1). Sincea(0) = 1 anda(l) = (z-bo)/ao,
a(n) satisfies the same recurrence relation as Pn(z), hence they must be equal. This
yields Xr

b(MQ) c {az, z e Dr). Note that Pn(z) = Pn(z) for all n e No implies z e l .
(ii) Let V(oa, € , / ! „ . . . , nt) = {a e ^ » ( ^ ) , |a(n,-) -«„(/!,)! < e, i = 1, . . . , * } .

Clearly, its inverse under the mapping z i->- a : is the set

which is open. Since Xh(N0) is equipped with the topology of pointwise convergence
the mapping ^ (No) -> £>, a, t-> aoaz(l) + b0 is continuous, too. The second
statement follows since No bears the induced topology.

(iii) Let B denote the bound of (K| ) , {\bn\) and (|cj), and choose M > 0 such
that the zeros zn,\, zn.2, • • •, zn,n of any Pn are elements of the interval [—M, A/].
We have Pn(z) = an \\"={{z - znJ) with an = (an f]-",1 a,-)"1- Choose z € D and
assume |z| > M. Then there exists r > 1 such that |anin"=i \z ~ zn.r I < '•/(«)•
Since \z — zn,,\ > \z\ — M we get (\z\ - M)n < ry(n)/an. By Lemma 6.1, we are
able to deduce y(n) = O(n(\a\B)"\an\). Therefore there exists C > 0 such that
\z\ - M < \a\Bl/rCn for all n e N, which implies \z\ < M + \a\B. D

We would like to mention the question of whether the dual of an SBG polynomial
hypergroup that is compact is still open.

7. Jacobi polynomials

The Jacobi polynomials P^"-P) are orthogonal with respect to the measure

7t(x) = (1 -x)a(\ +x)$dx, for all a, B > - 1 ,

with supp n = [— 1, 1] = S. According to Theorem 6.4 they form a normalized SBG
polynomial hypergroup when normalizing at a pointy i ( -1- 1).

In case x0 = 1, the three term recurrence relation coefficients are given by

2(a + l) , y S - a
a — , b = a + 6 + 2'
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_ in + a + P + l)(n + a + l)(a + P + 2)
fl" ~ (2n + a + P + 2)(2« + a + y3 -

n(n + j6)(« + P + 2)
C" ~ {In + a + p + l)(2n + a + P)(a + 1) '

see [8]. The corresponding normalized polynomials are denoted by R(">/!) and we
compute

_ (2n+a + p + \)r(a + p+n + \)r(a+n + \)r(p + n+\)
(n+l)r(a + y3+2)r(a+l)r(y6+l) ' " G

By using Stirling's formula we get

(7.1) h(n) = O(n2a+l).

If (a, P) e V = {(a, p), a > £ > - 1 , a > -1/2} then y is bounded, see [1,
Theorem 1], that is, (Rj,a'^)neN0 constitutes a discrete signed hypergroup. Furthermore,
if

(a, P) 6 W = {(a, 0), a > 0, a(a + 5)(a + 3)2 > (a2 - la - 2A)b2)

D {(a, /8),a >/5 > - l , a + /J + 1 > 0},

wherea = ct+p+1 andb = a — 6̂, then (/?^aP))neNo constitutes a discrete hypergroup,
see [6, Theorem 1].

By switching the normalization point JC0 to — 1 and denoting the corresponding
polynomials by 5^-w, we have Sj,a-I>)(x) = R(/a)(-x), see also [6, page 585]. Hence,
when ()S, a) € V, then 5^a/3) constitute a discrete signed hypergroup and when
(P, a) e W they form a discrete hypergroup.

The remaining region is G = {(a,P), —\<a,p< —1/2}. Making use of
Theorem 6.4, (7.1) and y(n) > max(/i(«)~', 1) we deduce for (a, P) e G that both
{/?^"^), n € No} and {S^-p\ n e No} form an SBG polynomial hypergroup which is
not bounded.

For the ultraspherical polynomials, that is, a = p, we will determine y (n) explicitly
for —1 < a < - 1 / 2 .

THEOREM 7.1. Let -1 < a < -1 /2 . For y corresponding with R{°-a) it holds that
y(0) = y(\) = 1 and for n > 2

\g(n, n,k)\ =
k
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In particular, there exist constants C\,Cj > 0 such that

(7.2) Cn"2"-1 < y{n) < C2n-2—1.

PROOF. We make use of Theorem 6.4, (7.1) and y(n) > max(h(n)~\ 1) to show
the correspondence with an SBG hypergroup which is not bounded.

It is clear that y (0) = y (1) = 1. We use Lemma 6.1 to deduce for n > m > 2 that
g(n, m, n — m + 2j — 1) = 0, j — 1, 2 , . . . , m, g{n, m,n — m), g(n, m, n — m) > 0
and g(n, m,n — m + 2j) < 0, j — 1, 2 , . . . , m - 1. Hence, for all n, m > 2,

(n,m,k)\ =2{g{n,m, \n - m\) + g(n,m,n + m)) - 1.

Let 2 < m < n. Using (6.3) and (6.4) we derive

* k

Now suppose 2 < n < m and set rm = 1 1 * ^ " ' a* + nr=m-n+i c*- Since

aj -1,
/

the inequality rm+l < rm yields ^ lg(«> m + 1, fc)| < £ * |g(n, m, *)|. Finally, we
derive

- 1 f o r a i 1

By using Ull'n ak < FIt=i c* t h i s y i e l d s *(")" ' ^ XW < 4A(n)-' - 1. With (7.1)
we get the last assertion. •

Now it is straightforward to determine the dual objects of the generalized hyper-
groups generated by ultraspherical polynomials.

THEOREM 7.2. Let - 1 < a. Then the duals of the generalized hypergroup {Rj?-a\
n € No} of ultraspherical polynomials coincide, S — No — ^ ( N o ) — [—1, 1].

PROOF. We have to show S D Xb(K). Assume z e € \ [ -1 , 1]. From [15,
Equation (8.21.9)], we deduce that Rn(z) grows exponentially with n. From (7.2) we
know that y{n) grows only polynomially. Hence, there does not exist a constant r
such that \Rn{z)\ < ry{n), which means a, i ^*(N0). •
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One might ask the question what happens in the case (a, /?) € G when choosing
the normalization point c $. [— 1, 1]. Surprisingly, [1, Theorem 2] immediately yields
the following theorem.

THEOREM7.3. Let (a, £) € G and choose c € K \ [ - l , 1]. The Jacobi polynomials
Tf?-fi) normalized atc( T^a-P) (c) = 1) constitute a normalized and bounded generalized
hypergroup, that is, a discrete signed hypergroup. The duals are given by

" ) •

Hereby, the branch ofy/z2 — 1 is chosen such that \z + Vz2 — 11 > 1.

Acknowledgement

We thank Ryszard Szwarc for fruitful discussions with respect to the boundedness
properties of the dual of an SBG polynomial hypergroup.

References

[1] R. Askey and G. Gasper, 'Linearization of the product of Jacobi polynomials III', Canad. J. Math.
23(1971),332-338.

[2] W. R. Bloom and H. Heyer, Harmonic analysis of probability measures on hypergroup (de Gruyter,
Berlin, 1995).

[3] T. S. Chihara, An introduction to orthogonal polynomials (Gordon and Breach, New York, 1978).
[4] C. Dunkl, "The measure algebra of a locally compact hypergroup', Trans. Amer. Math. Soc. 179

(1973), 331-348.
[5] F. Filbir, R. Lasser and J. Obermaier, 'Summation kernels for orthogonal polynomials', in: Hand-

book on analytic-computational methods in applied mathematics (ed. G. Anastassiou) (Chapman
and Hall, Boca Raton, 2000) pp. 709-749.

[6] G. Gasper, 'Linearization of the product of Jacobi polynomials II', Canad. J. Math. 22 (1970),
582-593.

[7] R. I. Jewett, 'Spaces with an abstract convolution of measures'. Adv. Math. 18(1975), 1-101.
[8] R. Lasser, 'Orthogonal polynomials and hypergroups". Rend. Mat. (7) 3 (1983), 185-209.
[9] R. Lasser and M. Leitner, 'Stochastic processes indexed by hypergroups I', / Theoret. Probab. 2

(1989), 301-311.
[10] R. Lasser and J. Obermaier, 'On the convergence of weighted Fourier expansions', Acta. Sci. Math.

(Szeged) 61 (1995), 345-355.
[11] M. Leitner, 'Stochastic processes indexed by hypergroups IP. / Theoret. Probab. 4 (1991), 321—

331.
[12] N. Obata and N. J. Wildberger, 'Generalized hypergroups and orthogonal polynomials', Nagoya

Math. J. 142 (1996), 67-93.

https://doi.org/10.1017/S144678870003617X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003617X


[25] Generalized hypergroups and orthogonal polynomials 393

[13] K. A. Ross. 'Signed hypergroups — a survey', Contemp. Math. 183 (1995), 319-329.
[14] R. Spector, Apercu de la Theorie des Hypergroupes, Lecture Notes in Math.. Vol. 497 (Analyse

Harmonique sur les Groupes de Lie, Sem. Nancy-Strasbourg 1973-1975) (Springer, Berlin, 1975).
[15] G. Szego, Orthogonal polynomials (Amer. Math. Soc, New York, 1959).
[16] D. Werner, Funktionalanalysis (Springer, Berlin, 1995).

GSF—National Research Center University of Vienna
for Environment and Health Faculty of Mathematics

Institute of Biomathematics and Biometry NuHAG
Ingolstadter Landstrasse 1 Nordbergstr. 15
D-85764 Neuherberg A-1090 Vienna
Germany Austria
e-mail: lasser@gsf.de e-mail: holger.rauhut@univie.ac.at

josef.obermaier@gsf.de

https://doi.org/10.1017/S144678870003617X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003617X


J. Aust. Math. Soc. 82 (2007) 394

https://doi.org/10.1017/S144678870003617X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003617X

