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Abstract

It is known that for a given p ∈ [1,∞) and a given strictly stationary sequence of random variables, the
p-norms of the partial sums are bounded if and only if the sequence consists of successive differences
from another strictly stationary sequence with finite p-norm. Here this is generalized to random fields,
and the assumption of stationarity is relaxed. The index p =∞ is included.
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1. Introduction

In this paper, all random variables are defined on a given probability space (�, F , P),
and are real-valued.

The following theorem is due to Robinson [8] and Leonov [6] for p = 2, and due to
Aaronson and Weiss [1, p. 365] for general p ∈ [1,∞).

THEOREM 1.1. Suppose 1≤ p <∞. Suppose X := (Xk, k ∈ Z) is a strictly
stationary sequence of random variables. Then the following two statements are
equivalent: (i) supn≥1 ‖X1 + · · · + Xn‖p <∞. (ii) There exists a strictly stationary
sequence Y := (Yk, k ∈ Z) of random variables with ‖Y0‖p <∞ such that for all
k ∈ Z,

Xk = Yk − Yk+1. (1.1)

In Aaronson and Weiss [1, p. 365], as in Leonov [6] for the case p = 2, the sequence
Y is a function of the sequence X , say of the form Yk = f (Xk, Xk+1, Xk+2, . . .) (at
least almost surely) where f is a real Borel function on R×R× . . . .

In this note, Theorem 1.1 will be generalized to random fields X := (Xk, k ∈ Zd)

for an arbitrary positive integer d . The results will be given in Theorem 2.1 and
Corollary 2.2 in Section 2. In those results the index p =∞ will be included, and
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in Theorem 2.1 the assumption of strict stationarity will be relaxed. Equation (1.1) is
sometimes put in the form Xk = Yk − Yk−1 (with a trivial change in the sequence Y ).
However, (1.1) in its present form seems to be very convenient for generalizations to
random fields, as in Theorem 2.1 and Corollary 2.2 below.

Aaronson and Weiss [1, p. 365] refer to Theorem 1.1 as an ‘L p coboundary
theorem’. In the ergodic theory literature (see, for example, [1, 7, 9]), the term
‘coboundary’ is used in slightly different (but compatible) ways in connection with
random sequences X satisfying (1.1) (with Y strictly stationary). Without being more
specific, we shall simply refer to (1.1) (with Y strictly stationary) as a ‘coboundary
condition’ for the sequence X .

In Theorem 2.1 and Corollary 2.2, Equation (2.3) gives a particular generalization
of (1.1) to random fields indexed by Zd for an arbitrary d ≥ 1. However, in the case
d ≥ 2, Equation (2.3) (when, say, the random field (Yk , k ∈ Zd) is strictly stationary)
is not a ‘coboundary condition’, but is instead a ‘close relative’ or ‘cousin’ of one. For
a definition of ‘coboundary’ for random fields indexed by Zd for d ≥ 2, the reader is
referred to the paper of Moore and Schmidt [7] (with the group G there being Zd );
see especially Theorem 5.2 in that paper. The definition of ‘coboundary’ there is (for
index sets Zd for d ≥ 2) quite different from, and not in any sense ‘equivalent’ to,
Equation (2.3). We shall not give a ‘name’ to (2.3) (with, say, (Yk , k ∈ Zd) strictly
stationary), but will instead informally refer to (2.3) as a ‘cousin’ of a coboundary
condition. (An anonymous referee of an earlier version of this paper suggested the
possible term ‘strong coboundary’ in connection with (2.3).)

Theorem 1.1 is part of a broader ongoing study of ‘coboundaries’ in ergodic
theory. Schmidt [9, Lemma 11.7] showed that for a given strictly stationary sequence
X := (Xk, k ∈ Z), with no assumption of finite moments of any order, the family of
distributions of the partial sums (X1 + · · · + Xn, n ≥ 1) is tight if and only if there
exists a strictly stationary sequence Y := (Yk, k ∈ Z) such that (1.1) holds. One might
refer to this as a ‘no moments’ coboundary theorem. In Schmidt [9, Theorem 11.8],
Moore and Schmidt [7], Bradley [4, 5], and Aaronson and Weiss [1] that result was
generalized to sequences of random variables taking their values in more general
spaces than just the real numbers. Variations on it for nonstationary random sequences
were given by the author [3–5]. Moore and Schmidt [7, Theorem 5.2] proved a quite
general coboundary theorem which includes (as a special case) a generalization of
Schmidt’s [9] ‘no moments’ coboundary theorem to (strictly stationary) random fields
indexed by Zd . A possible quite different generalization, to a (‘cousin of coboundary’)
theorem involving (2.3), seems to be an open question. An anonymous referee of an
earlier version of this paper pointed out that, at least for d = 2, such a generalization
involving (2.3) can be obtained under an extra ‘ergodicity’ assumption, by combining
the methods in [1] and [3]. That will not be pursued further here.

In Section 2, some notations will be given, and then Theorem 2.1 and Corollary 2.2
will be stated. Section 3 will be devoted to the proof of Theorem 2.1. (The derivation of
Corollary 2.2 from Theorem 2.1 is elementary and therefore omitted.) In the argument
in Section 3, a key role will be played by the Komlós ‘subsequence’ strong law of
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large numbers, somewhat similar to its role in arguments in [3–5] and (implicitly) in
the argument in Aaronson and Weiss [1] for Theorem 1.1 (for the case p = 1).

2. Notations and the results

Suppose that d is a positive integer (henceforth fixed). Let N denote the set of all
positive integers, and define the set N :=N ∪ {0}.

For each element j := ( j1, j2, . . . , jd) ∈Nd
, define the nonnegative integer ‖ j‖ :=

j1 + j2 + · · · + jd (the ‘1-norm’ of the element j).
Define C(d) := {0, 1}d , the set of ‘corner points’ of the d-dimensional unit cube.
The origin (0, . . . , 0) ∈ Zd will be denoted 0.
The usual partial ordering on Zd will be used: for given elements j := ( j1, . . . , jd)

and ` := (`1, . . . , `d) ∈ Zd , the notation j ≤ ` means that ju ≤ `u for every index
u ∈ {1, . . . , d}.

When a notation such as Nd
is used in a subscript or superscript, it will be

denoted N ↑ d for typographical convenience. Thus RN↑d denotes the set of all

mappings from Nd
to R. For a given function f :RN↑d

−→R and a given element

x := (xi , i ∈Nd
) ∈RN↑d , the real number f (x) will also be written f (xi , i ∈Nd

).
Now suppose X := (Xk, k ∈ Zd) is a random field. For any two elements j, ` ∈ Zd

such that j ≤ `, define the random variable (‘rectangular sum’)

S( j, `)= S(X : j, `) :=
∑

{i∈Z↑d| j≤i≤`}

X i .

This is the sum of the X i for
∏d

u=1(`u − ju + 1) indices i ∈ Zd .

THEOREM 2.1. Suppose d is a positive integer, and p ∈ [1,∞]. Suppose X :=
(Xk, k ∈ Zd) is a random field such that for every k ∈ Zd ,

θk := sup
j∈N↑d

‖S(k, k + j)‖p <∞. (2.1)

Then there exists a Borel function f :RN↑d
→R such that, defining for each k ∈ Zd

the random variable Yk := f (Xk+ j , j ∈Nd
):

∀ k ∈ Zd , ‖Yk‖p ≤ θk; and (2.2)

∀ k ∈ Zd , Xk =
∑

j∈C(d)

(−1)‖ j‖Yk+ j almost surely. (2.3)

Here of course [1,∞] := [1,∞) ∪ {∞}. In Theorem 2.1, the random field X is
not assumed to be strictly stationary, and the set of nonnegative numbers θk , k ∈ Zd ,
is not assumed to be bounded. By an elementary (if slightly tedious) argument,
(2.3) implies that for any pair k, ` ∈ Zd such that k ≤ `, S(k, `)=

∑
i (−1)γ (i)Yi

where the sum is taken over the 2d elements i := (i1, . . . , id) ∈ Zd such that iu = ku
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or `u + 1 for all u ∈ {1, . . . , d}, and for each such i , γ (i) denotes the number of
indices u ∈ {1, . . . , d} such that iu = `u + 1. For strictly stationary random fields
X := (Xk, k ∈ Zd), Equation (2.3) is (as described in Section 1) a ‘cousin’ of a
coboundary condition. The following statement generalizes Theorem 1.1 and is an
elementary corollary of Theorem 2.1.

COROLLARY 2.2. Suppose p ∈ [1,∞]. Suppose d is a positive integer and
X := (Xk, k ∈ Zd) is a strictly stationary random field. Then the following two
statements are equivalent: (i) sup j∈N↑d ‖S(0, j)‖p <∞. (ii) There exists a strictly

stationary random field Y := (Yk, k ∈ Zd) with ‖Y0‖p <∞ such that (2.3) holds.

3. Proof of Theorem 2.1

We shall take for granted all notations in Section 2. We start with two preliminary
lemmas.

LEMMA 3.1. Suppose d is a positive integer. Then for every i ∈Nd
− {0},∑

{`∈C(d)|`≤i}(−1)‖`‖ = 0.

That is just a well-known basic fact of arithmetic. Let us quickly review it here.

Suppose i := (i1, . . . , id) ∈Nd
− {0}. Define the set 0 := {u ∈ {1, . . . , d} | iu ≥ 1}.

Then card 0 ≥ 1. An element ` := (`1, . . . , `d) ∈ C(d) satisfies `≤ i precisely
if `u ∈ {0, 1} for all u ∈ 0 and `u = 0 for all other u ∈ {1, . . . , d}. For a given
integer v ∈ {0, 1, . . . , card 0}, there are precisely

(card 0
v

)
such elements ` such that

‖`‖ = v. Hence, the left-hand side of the equality asserted in Lemma 3.1 equals∑card 0
v=0

(card 0
v

)
· (−1)v . That equals 0 by the Binomial theorem (since card 0 ≥ 1).

Thus Lemma 3.1 holds.
Next, recall the Komlós ‘subsequence’ strong law of large numbers. (See, for

example, Berkes [2] for a generalization of it.) As a simple corollary, via a routine
‘Cantor diagonal’ argument (left to the reader), we can state the following well-known
embellishment of it.

LEMMA 3.2. Suppose that 3 is a countably infinite set, and, for each λ ∈3,
(ζ
(λ)
1 , ζ

(λ)
2 , ζ

(λ)
3 , . . .) is a sequence of random variables such that supn∈N E |ζ (λ)n |<

∞. Then there exists a strictly increasing sequence (t (1), t (2), t (3), . . .) of positive
integers, and a family (η(λ), λ ∈3) of random variables with E |η(λ)|<∞ for
all λ ∈3, such that for every λ ∈3 and every strictly increasing subsequence
(a(1), a(2), a(3), . . .) of the integers (t ( j), j ∈N), n−1 ∑n

j=1 ζ
(λ)
a( j)→ η(λ) almost

surely as n→∞.

PROOF OF THEOREM 2.1. As in the statement of Theorem 2.1, suppose that d is a
positive integer, p ∈ [1,∞], and X := (Xk, k ∈ Zd) is a random field such that for
every k ∈ Zd , (2.1) holds.

To prove Theorem 2.1, we (i) construct the random variables Yk , k ∈ Z, and
verify (2.2), then (ii) construct the Borel function f on RN↑d and verify that

Yk = f (Xk+ j , j ∈Nd
) for all k ∈ Zd , and finally (iii) verify (2.3).
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Construction of the Yk’s and proof of (2.2). For each positive integer n, define the
set

F(n) := {0, 1, . . . , n − 1}d . (3.1)

For each k ∈ Zd and each positive integer n, define the random variable

W (k, n) := n−d
∑

j∈F(n)

S(k, k + j). (3.2)

For each k ∈ Zd and each positive integer n, by (2.1), (3.2), Lyapunov’s and
Minkowski’s inequalities, and the fact that card F(n)= nd (see (3.1)),

‖W (k, n)‖1 ≤ ‖W (k, n)‖p ≤ θk . (3.3)

Applying (3.3) and Lemma 3.2, let (t (1), t (2), t (3), . . . ,) be a strictly increasing
sequence of positive integers with t (1)≥ 2, and let (Yk, k ∈ Zd) be a family of random
variables such that, for every k ∈ Zd ,

n−1
n∑

j=1

W (k, t ( j))−→ Yk almost surely as n→∞. (3.4)

Now ‖n−1 ∑n
j=1 W (k, t ( j))‖p ≤ θk for all k ∈ Zd and all n ≥ 1 by (3.3) and

Minkowski’s inequality. Hence, ‖Yk‖p ≤ θk for all k ∈ Zd by (3.4) (and Fatou’s lemma
if 1≤ p <∞). Thus (2.2) holds.

Construction of the function f . First, for each j ∈Nd
, define the (Borel) function

s j :RN↑d
→R as follows: for x := (xi , i ∈Nd

) ∈RN↑d , define

s j (x) :=
∑

{i∈N↑d|0≤i≤ j}

xi .

Next, for each positive integer n, define the (Borel) function wn :RN↑d
→R by

(see (3.1))
wn(x) := n−d

∑
j∈F(n)

s j (x).

Finally, define the (Borel) function f :RN↑d
→R by

f (x) :=

{
limn→∞ n−1 ∑n

j=1 wt ( j)(x) if that limit exists in R,
0 otherwise.

Obviously, for every ω ∈�, k ∈ Zd , j ∈Nd
, and n ∈N, by (3.2) and (3.4),

S(k, k + j)(ω) = s j (Xk+i (ω), i ∈Nd
),

W (k, n)(ω) = wn(Xk+i (ω), i ∈Nd
),
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and (excluding the ω’s in a set of probability zero)

Yk(ω)= f (Xk+i (ω), i ∈Nd
). (3.5)

For each k ∈ Zd , redefining Yk on a set of probability zero, one can have the equality
in (3.5) hold for every ω ∈�. That does not affect (3.4) or (2.2) (proved above). Now
to complete the proof of Theorem 2.1, all that remains is to prove (2.3).

Proof of (2.3). Let k ∈ Zd be arbitrary but fixed.
For each j ∈Nd (all indices positive), by Lemma 3.1,∑

`∈C(d)

(−1)‖`‖S(k + `, k + j)

=

∑
`∈C(d)

(−1)‖`‖
∑

{i∈N↑d|`≤i≤ j}

Xk+i

=

∑
{i∈N↑d|i≤ j}

Xk+i

[ ∑
{`∈C(d)|`≤i}

(−1)‖`‖
]

= Xk+0 · 1+
∑

{i∈N↑d−{0}|i≤ j}

Xk+i · 0= Xk . (3.6)

Now a few more index sets are needed. For each integer n ≥ 2 and each ` ∈ C(d),
referring to (3.1), define the set

A(n, `) :=
{

h ∈Nd
| h − ` ∈ F(n)

}
. (3.7)

For each integer n ≥ 2, define the set

G(n) := {1, . . . , n − 1}d . (3.8)

Trivially, for each n ≥ 2 and each ` ∈ C(d), by (3.1), (3.7), and (3.8), card A(n, `) is
equal to nd ,

A(n, `)⊃ G(n) and card[A(n, `)− G(n)] = nd
− (n − 1)d . (3.9)

Now for each integer n ≥ 2, by (3.2), (3.7) and (3.9),∑
`∈C(d)

(−1)‖`‖W (k + `, n)=
∑
`∈C(d)

(−1)‖`‖n−d
∑

j∈F(n)

S(k + `, k + `+ j)

= n−d
∑
`∈C(d)

(−1)‖`‖
∑

h∈A(n,`)

S(k + `, k + h)

= n−d
∑
`∈C(d)

(−1)‖`‖
[ ∑

h∈G(n)

S(k + `, k + h)+
∑

h∈A(n,`)−G(n)

S(k + `, k + h)

]
= n−d

∑
h∈G(n)

∑
`∈C(d)

(−1)‖`‖S(k + `, k + h)

+ n−d
∑
`∈C(d)

(−1)‖`‖
∑

h∈A(n,`)−G(n)

S(k + `, k + h). (3.10)
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Now (1− 1/n)d ≥ 1− d/n, for each n ≥ 2 and hence

1− (n − 1)d/nd
= 1− (1− 1/n)d ≤ d/n.

Also, for each integer n ≥ 2, by (3.6) and (3.8), the equality of random variables

n−d
∑

h∈G(n)

∑
`∈C(d)

(−1)‖`‖S(k + `, k + h)= n−d
∑

h∈G(n)

Xk =

[
(n − 1)d/nd

]
Xk

holds. Hence for each n ≥ 2, by (3.10), (3.9), and (2.1) with Lyapunov’s inequality,

E

∣∣∣∣Xk −
∑
`∈C(d)

(−1)‖`‖W (k + `, n)

∣∣∣∣
≤ E

∣∣∣Xk −

[
(n − 1)d/nd

]
Xk

∣∣∣
+ E

∣∣∣∣ [(n − 1)d/nd
]

Xk −
∑
`∈C(d)

(−1)‖`‖W (k + `, n)

∣∣∣∣
= (1− (n − 1)d/nd)E |Xk |

+ E

∣∣∣∣− n−d
∑
`∈C(d)

(−1)‖`‖
∑

h∈A(n,`)−G(n)

S(k + `, k + h)

∣∣∣∣
≤ (d/n)E |Xk | + n−d

∑
`∈C(d)

card[A(n, `)− G(n)] · θk+`

≤ (d/n)θk + n−d(nd
− (n − 1)d)

∑
`∈C(d)

θk+`

≤ (1/n)

[
d · θk + d ·

∑
`∈C(d)

θk+`

]
.

Hence for each n ≥ 1 (since 2≤ t (1) < t (2) < t (3) < . . .),

E

∣∣∣∣Xk −
∑
`∈C(d)

(−1)‖`‖n−1
n∑

j=1

W (k + `, t ( j))

∣∣∣∣
= E

∣∣∣∣n−1
n∑

j=1

[
Xk −

∑
`∈C(d)

(−1)‖`‖W (k + `, t ( j))

]∣∣∣∣
≤ n−1

n∑
j=1

(1/t ( j)) ·

[
d · θk + d ·

∑
`∈C(d)

θk+`

]
.

This last term converges to 0 as n→∞ by Toeplitz’s lemma. Hence

∑
`∈C(d)

(−1)‖`‖n−1
n∑

j=1

W (k + `, t ( j))−→ Xk in probability as n→∞. (3.11)
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Also, by (3.4), the left-hand side of (3.11) converges almost surely to∑
`∈C(d)

(−1)‖`‖Yk+` as n→∞.

Hence (2.3) holds by (3.11). That completes the proof of (2.3) and of Theorem 2.1. 2
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