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The Mountain-Pass Theorem of Ambrosetti and Rabinowitz (see [1]) and the Saddle
Point Theorem of Rabinowitz (see [21]) are very important tools in the critical point
theory of C1-functional. That is why it is natural to ask us what happens if the functional
fails to be differentiable. The first who considered such a case were Aubin and Clarke (see
[6]) and Chang (see [12]), who gave suitable variants of the Mountain-Pass Theorem for
locally Lipschitz functionals which are denned on reflexive Banach spaces. For this aim
they replaced the usual gradient with a generalized one, which was firstly defined by
Clarke (see [13], [14]). As observed by Brezis (see [12, p. 114]), these abstract critical
point theorems remain valid in non-reflexive Banach spaces.

We apply some of these results to solve a multivalued problem with strong resonance
at infinity. We remark that it is not usual to consider nonlinearities which are strongly
resonant at +<* unless they are also strongly resonant at — °°. The literature is very rich in
resonant problems; the first who studied such problems (in the smooth case) were
Landesman and Lazer (see [18]). They found sufficient conditions for the existence of
solutions for some single-valued equations with Dirichlet conditions. These problems,
which arise frequently in mechanics, were thereafter intensively studied and many
applications to concrete situations were given.

1. Abstract framework. Let A' be a real Banach space and let / : A'—» R be a locally
Lipschitz function. For each x,v s X, we define the generalized directional derivative of/
at x in the direction v as

The generalized gradient (the Clarke subdifferential) of / a t the point x is the subset df(x)
of X* defined by

bf{x) = {x* G X*;f°(x, v) > (x*, v), for all v e X).

We also define the lower semi-continuous function

For further properties of these notions we refer to [12], [13], [14].
We say that a point x E X is a critical point of / provided that 0 e d/(.x), that is

f°(x, v) ^ 0 for every v s X. If c is a real number, we say that / satisfies the Palais-Smale
condition at the level c (in short, (PS)C) if any sequence (xn)n in X with the properties
lim/(jcn) = c and lim A(*n) = 0 is relatively compact.
n—»i* n—>=

We shall use in this paper the following result, which is an immediate consequence of
the Mountain-Pass Theorem proved in [12].
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THEOREM 1. Let f:X^>R be a locally Lipschitzian function. Suppose that /(0) = 0
and there is some v E A"\{0} such that / (v)sO. Moreover, assume that f satisfies the
following geometric hypothesis: there exist R>0 and a >O such that R < \\v\\ and, for
each u e X with \\u\\ = R, we have /(«) > a. Let & be the family of all continuous paths
p: [0,1] —>X that join 0 to v and

c = inf max f(p(t)).
pe9>re[0,l]

Then there exists a sequence (xn) in X such that:
(i) li

(ii) lim A(xn) = 0.

Moreover, iff satisfies (PS)C then c is a critical value off.

The following saddle point type result generalizes the Rabinowitz's theorem (see
[21]). Its proof is an easy exercise and is left to the reader.

THEOREM 2. Let f:X-^>Rbea locally Lipschitzian function. Assume that X = Y@Z,
where Z is a finite dimensional subspace of X and for some Zoe Z there exists R > \\zo\\
such that

inf f(y + z0) > max{/(z); z e Z, || z \\ = R},

Let

and

If c is defined as in Theorem 1 and f satisfies (PS)C, then c is a critical value off.

2. Main results. Let M be a m-dimensional smooth compact Riemann manifold,
possibly with smooth boundary dM. Particularly, M can be any open bounded smooth
subset of Rm. We shall consider the following multivalued elliptic problem

-bMu(x) - \Mx) E [f(u(x))J(u(x))] a.e. x e M,
u = 0 on dM,

where:

(i) LM is the Laplace-Beltrami operator on M;
(ii) A] is the first eigenvalue of -AM in HQ(M);

(iii) / E L"(R);
(iv) f(t) = lim essinf{/(s); |f - s| < e}, f(t) = lim esssup{/(s); \t - s\ < e}.

c\0 e\0
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As proved in [12], the functions / and / a r e measurable on R and, if

F(t)=\'f(s)ds,

then the Clarke subdifferential of F is given by

= [ /« . / ( ' ) ] a.e. / e R

Let (gjj(x))ij define the metric on M. We consider on H\,(M) the locally Lipschitz
functional <p = <p, - ip2, where

<Pi(") = ~ S ^ W r r " ^irjdx and <p2(u) = /="(w)rf*.

By a solution of the problem (P) we shall mean any critical point of the energetic
functional <p. Denote

/(±oc) = ess lim f(t) and F(±«*)= lim F(r).
t—*±x t—*±x

Our basic hypothesis on/will be

) = 0, (fl)

which makes the problem (P) a Landesman-Lazer type one, with strong resonance at

The following formulates a sufficient condition for the existence of solutions of our
problem.

THEOREM A. Assume that f satisfies (fl) and either

F ( - » ) = -oc (Fl)

or -oc < f ( - = ) s 0 fl/id r/iere ejc/5f5 TJ > 0 «<c// //JG/

F is non-negative on (0,77) or (-17,0). (F2).

77ien r/je problem (P) /ias af /ec5f one solution.

For positive values of F(-^) it is necessary to impose additional restrictions on /.
Our variant for this case is the following theorem.

THEOREM B. Assume (fl) and 0 < F ( - = ) < +*. 77?^ rfte problem (P) /ias fl
o/ie solution provided the following conditions are satisfied:

F(t) < A 2 ~ A l r2 /or each t e R.

For the proof of Theorem A we shall make use of the following non-smooth variants
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of Lemmas 6 and 7 in [15] (see also [3] for Lemma 1) which can be obtained in the same
manner.

LEMMA 1. Assume f e L"(K) and there exist F(±&) e R. Moreover, suppose that
(i) /(+<*) = 0 ifF(+<x) is finite;

and
(ii) / ( - » ) = 0 if F (-<*>) is finite.

Then

R\{a. meas(M);fl = -F(±x)}cz{c e R; ip satisfies (PS)C}.

LEMMA 2. Assume f satisfies (fl). Then <p satisfies (PS)C, whenever c^O and
c < -/="(-!»). meas(M).

Here meas(M) denotes the Riemannian measure of M.

Proof of Theorem A. We shall develop some of the ideas used in [26]. There are two
distinct situations.

Case 1. F( — &) is finite, that is -oo <F(—oo)<0. In this case, <p is bounded from
below since

and, by our hypothesis on F(-<*),

sup F(u)dx <+<*>.
u eH^(M) ^M

Therefore,

-oo<a;= inf <p(w)<0 = <p(0).

Choose c small enough in order to have F{cex) < 0 (note that c may be taken positive
if F>0 in (0, TJ) and negative if F < 0 in (—17,0)). Here e ,>0 denotes the first
eigenfunction of -AM in HQ(M). Hence <p(ce,) < 0, so a < 0. It follows now from Lemma
2 that <p satisfies (PS)a. The proof ends in this case by applying Theorem 1.

Case 2. F(-°°) = -00. Then, by Lemma 1, <p satisfies (PS)C for each c 5^0. Let V be
the orthogonal complement of the space spanned by e, with respect to Hb(M), that is

For fixed /0 > 0, denote

K) = {'o î +v;v e V} and a0 = inf <p(v).
veV0

Note that <p is coercive on V. Indeed, if v e V, then

[ F(vH+oc as
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because the first term has a quadratic growth at infinity (f0 being fixed), while JM F(v) is
uniformly bounded (in v), in view of the behaviour of F near ±00. Thus, a0 is attained,
because of the coercivity of <p on V. From the boundedness of <p on HX

O{M) it follows that
-oo<a < 0 = <p(0) and a <a0 .

Again, there are two possibilities.
(i) a < 0. In this case, by Lemma 2, ip satisfies (PS)a. Hence a < 0 is a critical value

o f <p.
(ii) a = 0^a 0 . Then, either a0 = 0 or ao>0. In the first case, as we have already

remarked, a0 is attained. Thus, there is some v e V such that

0 = fl0 =

Hence, u = roea + v e HQ(M)\{0} is a critical point of <p, that is a solution of (P).
If 00^*0, notice that <p satisfies (PS)fe for each fc^O. Since lim <p(fe1) = O, we may

I—» + x

apply Theorem 2 to conclude that ^ has a critical value c 2 a0 > 0.

Proof of Theorem B. Assume V has the same definition as above, and let

V+ ={tei+v;t>0,v sV}.
It will be sufficient to show that the functional <p has a non-zero critical point. To do this,
we shall make use of two different arguments. If u = re, + v e V+ then

</>(") = \\ (|Vw|2-A,v2)-f

In view of the boundedness of F it follows that

- o o < a + : = inf (p(u)^0.

We analyse two distinct situations.
Case 1. a+ = 0. To prove that <p has a critical point, we use the same arguments as in

the proof of Theorem A (the second case). More precisely, for some fixed r o >0we define
in the same way Vo and a0. Obviously, a o > 0 = a+, since Voa V+. The proof follows from
now on as in Case 2 of Theorem A, by reconsidering the two distinct situations a0 > 0 and
ao = 0.

Case 2. a+ < 0. Let un = tnex + vn be a minimizing sequence of <p in V+. We observe
that the sequences {un)n and (vn)n are bounded. Indeed, this is essentially a compactness
condition and may be proved in a similar way to Lemma 1. It follows that there exists
w e.V+, such that, going eventually to a subsequence,

un —* w weakly in Hb(M),

un -* w strongly in L2(M),

un—*w a.e.

Applying the Lebesgue dominated convergence theorem we obtain

lim <p2(un) = <p2(u).
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On the other hand,

<p(w) :£ lim inf <P\(un) - lim <p2(un) = lim inf (p(un) = a+.
n—•<* n—•« n—»*

It follows that, necessarily, <p(w) = fl+ < 0. Since the boundary of V+ is V and

inf <p(u) = 0,

we conclude that w is a local minimum of <p on V+ and w e V+.
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