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The Mountain-Pass Theorem of Ambrosetti and Rabinowitz (see [1]) and the Saddle
Point Theorem of Rabinowitz (see [21]) are very important tools in the critical point
theory of C'-functionals. That is why it is natural to ask us what happens if the functional
fails to be differentiable. The first who considered such a case were Aubin and Clarke (see
[6]) and Chang (see [12]), who gave suitable variants of the Mountain-Pass Theorem for
locally Lipschitz functionals which are defined on reflexive Banach spaces. For this aim
they replaced the usual gradient with a generalized one, which was firstly defined by
Clarke (see [13], [14]). As observed by Brezis (see [12, p. 114]), these abstract critical
point theorems remain valid in non-reflexive Banach spaces.

We apply some of these results to solve a multivalued problem with strong resonance
at infinity. We remark that it is not usual to consider nonlinearities which are strongly
resonant at +<« unless they are also strongly resonant at —o. The literature is very rich in
resonant problems; the first who studied such problems (in the smooth case) were
Landesman and Lazer (see [18]). They found sufficient conditions for the existence of
solutions for some single-valued equations with Dirichlet conditions. These problems,
which arise frequently in mechanics, were thereafter intensively studied and many
applications to concrete situations were given.

1. Abstract framework. Let X be a real Banach space and let f: X — R be a locally
Lipschitz function. For each x,v € X, we define the generalized directional derivative of f
at x in the direction v as

f(y+)\v)*f(y).

A

fox,v) =limsup
Ao

The generalized gradient (the Clarke subdifferential) of f at the point x is the subset df(x)
of X* defined by

of (x) ={x* e X*; f(x,v) = (x*,v), for all v € X}.
We also define the lower semi-continuous function
A(x) = min{fx*{; x* € 9f (x)}.

For further properties of these notions we refer to [12], [13], [14].

We say that a point x € X is a critical point of f provided that 0 € df(x), that is
f%x,v) =0 for every v € X. If ¢ is a real number, we say that f satisfies the Palais-Smale
condition at the level ¢ (in short, (PS).) if any sequence (x,), in X with the properties
lim f(x,) = c and lim A(x,) =0 is relatively compact.

We shall use in this paper the following result, which is an immediate consequence of
the Mountain-Pass Theorem proved in [12].
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THEOREM 1. Let f: X — R be a locally Lipschitzian function. Suppose that f(0) =0
and there is some v € X\{0} such that f(v)<0. Moreover, assume that f satisfies the
following geometric hypothesis: there exist R >0 and « >0 such that R <|v| and, for
each u € X with |ull = R, we have f(u)= a. Let P be the family of all continuous paths
p:[0,1]—> X that join 0 to v and

¢ = inf max f(p(r)).
pe®Piel0.1]

Then there exists a sequence (x,,) in X such that:
(i) lim f(x,)=c;
(ii) lim A(x,)=0.
Moreover, if f satisfies (PS). then c is a critical value of f.

The following saddle point type result generalizes the Rabinowitz’s theorem (see
[21]). Its proof is an easy exercise and is left to the reader.

THeEOREM 2. Let f: X — R be a locally Lipschitzian function. Assume that X =Y ® Z,
where Z is a finite dimensional subspace of X and for some zy € Z there exists R > ||z

such that
infyf(y +20)>max{f(z);z € Z, ||zl = R},
ye
Let
K={zeZ; |zl =R}
and

P={p e C(K,X);p(x)=x if |x| = R}

If ¢ is defined as in Theorem 1 and f satisfies (PS),, then c is a critical value of f.

2, Main results. Let M be a m-dimensional smooth compact Riemann manifold,
possibly with smooth boundary oM. Particularly, M can be any open bounded smooth
subset of R™. We shall consider the following multivalued elliptic problem

=Apu(x)— Aux) e [f(u(x)),f(u(x))] ae.xeM,
u=0 on oM,
u#0,

where:

(i) Ay is the Laplace-Beltrami operator on M;
(i) A, is the first eigenvalue of —A,, in Hy(M);
(iii) f e L*(R);
(iv) f(n)= lirr(1) essinf{f(s);|t — s| <&}, f(t) = lirr(l) esssup{f(s);lt —s| < e}.
- N £\
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As proved in [12], the functions f and f are measurable on R and, if

F(r) = f f(s) ds,

then the Clarke subdifferential of F is given by

IF(ty=[f(1),f(1)] ae.reR.

Let (g;(x));,; define the metric on M. We consider on Hy(M) the locally Lipschitz
functional ¢ = ¢, — ¢,, where

1
e (u) =§ fM (E gij(x)j—;j—; — )\,uz) dx and ¢,(u)= fM F(u) dx.
ij iOA;

By a solution of the problem (P) we shall mean any critical point of the energetic
functional ¢. Denote

f(£x)=ess lim f(r) and F(xx)= lim F(r).

f~es

Our basic hypothesis on f will be

f(+2)=F(+=)=0, (f1)
which makes the problem (P) a Landesman-Lazer type one, with strong resonance at
+oc.
The following formulates a sufficient condition for the existence of solutions of our
problem.

THEOREM A. Assume that f satisfies (f1) and either
F(-») =~ (F1)
or —x < F(—x)=<0 and there exists 1 > 0 such that
F is non-negative on (0, n) or (—n,0). (F2).
Then the problem (P) has at least one solution.

For positive values of F(—2) it is necessary to impose additional restrictions on f.
Our variant for this case is the following theorem.

THEOREM B. Assume (f1) and 0 < F(—x)< +x. Then the problem (P) has at least
one solution provided the following conditions are satisfied:

f(==)=0

and

Ay—A
F(1) 5—15—112 for each t € R.

For the proof of Theorem A we shall make use of the following non-smooth variants
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of Lemmas 6 and 7 in [15] (see also [3] for Lemma 1) which can be obtained in the same
manner.

Lemma 1. Assume f € L*(R) and there exist F(x>) e R. Moreover, suppose that

(i) f(+x)=0if F(+=) is finite,

(i) f(—=)=0if F(—x) is finite.
Then

and

R\{a. meas(M);a = —F(xx)} < {c e R; ¢ satisfies (PS).}.
LemMA 2. Assume f satisfies (f1). Then ¢ satisfies (PS)., whenever c¢#0 and
¢ < —F(—=). meas(M).
Here meas(M) denotes the Riemannian measure of M.

Proof of Theorem A. We shall develop some of the ideas used in [26]. There are two
distinct situations.

Case 1. F(—x) is finite, that is —c < F(—2>)=<0. In this case, ¢ is bounded from
below since

1 ou du
o) =3 | (380 2w — [ Py ax
M Nij ox; 0x; M
and, by our hypothesis on F(—c<),
sup F(u)dx < +.
ue HY(M) 'M

Therefore,

~o<g:= inf ¢u)=0=¢0).
ue HYM)

Choose ¢ small enough in order to have F(ce;) <0 (note that c may be taken positive
if F>0 in (0,7n) and negative if F<0 in (—7,0)). Here e, >0 denotes the first
eigenfunction of —A,, in Hy(M). Hence ¢(ce;) <0, so a <0. It follows now from Lemma
2 that ¢ satisfies (PS),. The proof ends in this case by applying Theorem 1.

Case 2. F(—»)= —x. Then, by Lemma 1, ¢ satisfies (PS), for each ¢ #0. Let V be
the orthogonal complement of the space spanned by e; with respect to Hy(M), that is

Hy(M) = Sple,}® V.
For fixed 1, > 0, denote
Vo={ne,+viveV} and aq= inf ¢(v).
veVy

Note that ¢ is coercive on V. Indeed, if v € V, then

1 A
‘P(v)z-z-(l—/\—l) ”U”%ﬁ)_J' Fv)— +x as vl — +,
2 M
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because the first term has a quadratic growth at infinity (1, being fixed), while [, F(v) is
uniformly bounded (in v), in view of the behaviour of F near . Thus, g, is attained,
because of the coercivity of ¢ on V. From the boundedness of ¢ on H)(M) it follows that
—x<a=0=¢(0) and a =a,.

Again, there are two possibilities.

(i) a <0. In this case, by Lemma 2, ¢ satisfies (PS),. Hence a <0 is a critical value
of ¢.

(ii) a =0=a,. Then, either ag=0 or a;,>0. In the first case, as we have already
remarked, a, is attained. Thus, there is some v € V such that

0= ag = (p([oe] + U).

Hence, u = tye; + v € Hy(M)\{0} is a critical point of ¢, that is a solution of (P).
If ay >0, notice that ¢ satisfies (PS), for each b#0. Since lim ¢(te;) =0, we may

t— +x

apply Theorem 2 to conclude that ¢ has a critical value ¢ = ay> 0.
Proof of Theorem B. Assume V has the same definition as above, and let
V,={te,+v;1>0,v eV}

It will be sufficient to show that the functional ¢ has a non-zero critical point. To do this,
we shall make use of two different arguments. If u = te; + v € V, then

1
o) =3 [ (9= av) = [ Fe+v)
2 M M
In view of the boundedness of F it follows that

—o<g,:= inf ¢(u)<0.
ueV,

We analyse two distinct situations.

Case 1. a, =0. To prove that ¢ has a critical point, we use the same arguments as in
the proof of Theorem A (the second case). More precisely, for some fixed 7, > 0 we define
in the same way V; and a,. Obviously, ag=0=a., since Vyc V,. The proof follows from
now on as in Case 2 of Theorem A, by reconsidering the two distinct situations a, > 0 and
ag = 0.

Case 2. a,<0. Let u, =t,e, + v, be a minimizing sequence of ¢ in V,. We observe
that the sequences (u,), and (v,), are bounded. Indeed, this is essentially a compactness
condition and may be proved in a similar way to Lemma 1. It follows that there exists
w e V., such that, going eventually to a subsequence,

u,—-w weakly in Hy(M),
u,—w strongly in L%(M),
u,—w ae.

Applying the Lebesgue dominated convergence theorem we obtain

'El‘l_nw @2(un) = @x(ut).
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On the other hand,

e(w)=liminf ¢(x,) — lim ¢,(u,) =liminf o(u,) =a..

It follows that, necessarily, ¢(w) = a, <0. Since the boundary of V, is V and

inf o(u) =0,

ueV

we conclude that w is a local minimum of ¢ on V, and w e V.,
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