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ON THE UNIQUENESS OF THE COEFFICIENT RING
IN A GROUP RING

ISABELLE ADJAERO AND EUGENE SPIEGEL

1. Introduction and notation. Let R; and R, be commutative rings with
identities, G a group and R ;G and R,G the group ring of G over R; and R,
respectively. The problem that motivates this work is to determine what
relations exist between R; and R, if R;G and R,G are isomorphic. For
example, is the coefficient ring R an invariant of R|G? This is not true in
general as the following example shows. Let H be a group and

G = @I H, with H,~ H.

a=
If R, is a commutative ring with identity and R, = R;H, then
R\G ~ R{(H® G) ~ RH(G) ~ R,G,

but R| needn’t be isomorphic to R».

Several authors have investigated the problem when G = <x>, the
infinite cyclic group, partly because of its closeness to R[x]. the ring of
polynomials over R. An exposition of many of the known results on the
problem appear as Chapter IV in [13]. Even in this special case the results
have been fragmentary. By imposing conditions on R, and on G several
cases of the problem are treated extending many of the known results.

In the following we will always assume all coefficient rings are
commutative with identity. If « € RG with a« = Z,c; a(g)g. a(g) € R.
we write

supp a = {g € G| a(g) # 0},

the augmentation map RG — R sending « — X a(g) will be denoted by 8z
and have kernel Ag(G) or 8(G). If H is a normal subgroup of G, and we
extend the natural map G — G/H to a map RG — R(G/H), this new map
has kernel Ax(G, H). Ag(G, H) is generated by {1-h| h € H}. For the
group G, G’ denotes its commutator subgroup and ©(G) the set of orders
of all finite subgroups. The ring R will have Jacobson radical J(R), Nill
radical N(R), characteristic ch(R), and units U(R).
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As usual, Z denotes the integers, Q the rationals, Z, either the ring of
integers modulo z or a cyclic group with n elements and ¢, a primitive D
root of unity.

2. Reduction to abelian groups.

LemMa 2.1. (Coleman) Ler I be an ideal of RG. Then the residue class
algebra RG/1 is commutative < A(G, G') € 1.

THEOREM 2.2. Let Ry and R, be commutative rings with unity and G u
group. Then

R]G = RzG = R](G/G’) = RQ(G/G,)
Proof. Let 0:R|G — R,G be the given isomorphism. For i = 1, 2 let
S = {l = R,G: R;G/I is commutative}.

By Lemma 2.1, Ag (G, G) is the unique minimal ideal in ..
Then
RG R,G
ARI(G* G’) o G(ARI(G, G'))

implying
a(Ag (G, G')) 2 Ag,(G. G).
By considering o~ ], we see
(A, (G. G')) = AR(G/G).
Hence
RiG RG

R " ~ ~
(&) =566~ 56, &)

~ Ry(G/G).

COROLLARY 2.3. If G is a group with G’ = G, then
R]G ~ RQG Ed R| ~ Rz.

Throughout the following we will assume that all groups are abelian.

3. Abelian p-groups.
Definition. An element a € R is regular if a is not a zero divisor in R.

PRrROPOSITION 3.1. Let R be a ring of characteristic p°. Then n € 2V nis
not regular in R < n is a multiple of p.
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Proof. Suppose n is a multiple of p. Say n = p't:(1,p) = 1. If r = e, then
n=p"pr=0inR 1-n=0andnisazerodivisor in R. So n is not
regular. If r < e, n = p¢ 'p't = 0. Conversely, suppose n is not a multiple
of p.So(n,p)=1=(np°). ThusIs, g € Z:ns + qp° = 1 = ns = 1 inR.
So nis a unit in R.

Lemma 3.2, (Cornell [8]). Let G be an abelian group and R ua

commutative ring with J(R) = 0. Suppose that all elements of O(G) are
regular in R. Then J(RG) = 0.

Lemma 3.3, (Passman [21]). Let G be an abelian group and R a

commutative ring with N(R) = 0. If all elements of ©(G) are regular in R.
then N(RG) = 0.

PrROPOSITION 3.4. Let R be a commutative ring of characteristic p¢ and

G an abelian group. If S, denotes the p-Sylow subgroup of G. then
R/J(R)G/S)) is semisimple.

Proof. R/J(R) is commutative and semisimple. If n € ©(G/S),). n is not

a multiple of p, and so by 3.1 it is regular in R/J(R). The result now
follows from 3.2.

LeMMA 3.4, If G is a p-group and R a ring with J(R) = 0 and p = 0 in
R. then J(RG) = A(G).

Proof. Since G is an abelian p-group and R is of characteristic p, A(G) is
nil as it is generated by nilopotent elements. Thus A(G) € J(RG).

Let « € J(RG), and r € R. There exists f € RG such that §zx(8) = r.
1—af € U(RG). So

SR(] - (XB) =1- (SR((X)I’ € U(R).
But r arbitrary implies
0(a) € J(R) and J(RG) € ker 6 = A(G).

LEMMA 3.5. Let R be a ring, I an ideal of R, G a group and H a normal
subgroup of G. Let the natural epimorphisms 1 and 7 be given by

RG 5 R(G/HY S RIIGIH).
Then Ker mq = Ar(G, H) + 1G.

Proof. Clearly kern + IG € ker 7. Leta € ker 7m with a = Xa(g) g
Write

G = U Hy - m(a) = 2 mn(e(g)g) = 0
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k
Sag) g = Z ag)g =0
=1 ¢g'€Hyg,

for some finite set g;, g5 . .. g of the g;’s. Thus

S oa€l i=1l.. . k

gEHg,
Write
5= > a, and B = X8 € IG.
g€ Hg,
Then
a=(a—p +B
(e — B) = n(a) — n(B)

k

ST - 2 sg

i=1

é(2 %)E,-‘Es,-g,:o

i=1 ‘geHg

Thus « € ker n + IG and the result follows.

THEOREM 3.6. Let G be an abelian group, S, its p-Sylow subgroup and R
a ring of characteristic p.

(a) N(RG) = N(R)G + Ag(G, S,);

(b) J(RG) € J(R)G + Ag(G. S,) with equality if G is torsion or if J(R)
= N(R) (e.g. if R is artinian).

Proof. N(R)G + Ag(G, S,) is generated by nilpotent elements, hence
contained in N(RG). Pumng R = R/N(R) and G = G/S,, we have by
(3.5)

RG/(N(R)G + Ag(G, S,)) ~ RG.
But by (3.3)

0 = N(RG) = N(RG/(N(R)G + Ar(G, S
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and (a) follows. Similarly, as J( (R/J(R))G = 0 by (3.2), it follows again
using 3.5 that

J(R)G € (J(R)G + Ar(G, S,)).

If J(R) = N(R). equality follows from (a). When G is torsion equality
follows since J(R)G < J(RG).

CoroLLARY 3.7. Let R; be a ring of characteristic a power of p, and let G,
be an abelian group with p-Sylow subgroup S; for i = 1. 2. Put R; =
Ri/N(R;) and G; = G;/S;, i = 1, 2. Then R\G, = R,G, = R\G, =
RZGZ.

4. Finite Abelian G.

LEMMA 4.1. Let E and F be fields of characteristics p or 0 such that F ~
E({,) and E ~ F({,). Then E ~ F.

Proof. E ~ F({,) ~ E({,. ;). Hence {,. {, € E and F ~ E({,) = E.

Definition. If E and F are fields put £ = Fif F ~ E({,) for some n. By
4.1 this defines a partial ordering on the isomorphism classes of fields.

THEOREM 4.2. Let F| and F, be fields and G, and G, torsion abelian
groups. Then

FlGl =~ FQ_GQ = Fl ~ Fz.

Proof. The residue class fields of F;G, are all cyclotomic extensions of F,
so F; is characterized, up to isomorphism, as the unique minimal element,
in the partial ordering of fields defined above, among these.

We can generalize this result as follows:

LEMMA 4.3. Let I be an ideal in the noetherian ring R, R = R/I and G a
finitely generated abelian group. Suppose RG ~ RG then I = 0 and R =
R.

Proof. Let $:RG — RG be the given isomorphism. Extend the natural
map R — R/1to p:RG — RG. From [8], p. 658, RG is Noetherian and thus
the surjective map

f=¢ 'op:RG— RG
is an injection. Hence I = 0.

THEOREM 4.4. Suppose FG ~ RG where F is a field, R a ring and G ua
finite abelian group. Then F ~ R.
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Proof. Case (i): characteristic F{o(G). Then FG and RG are regular. So
R is regular and Vn ©(G). n is a unit in R. ([8]). Thus RG = A(G) @ A*
where A* = Ann. (A(G) ) and R = A* ([8]). As RG is semisimple and G is
finite abelian,

k

E; fields cyclotomic over F. R is a direct summand of RG,
14
R = @ E., <k

Now E,G ~ FG ®p E, as F-algebras since
FGQrE,=(F®D_.. @F) @OrE, = NE,) with A = 0(G)
as F-modules. Hence FG @ E, ~ E,G. Thus
14

RG = ’69] (EG) = ,63 (FG @ E;)

1=

I

4 k
&} ( EQ Ei).
i=1 \j=/ F

Thus RG has tk components. But RG >~ FG which has exactly k simple
components. Thus z = 1, i.e., R = E; is a field. So by 4.2, F >~ R.

Case (i1): char F = p and p | 0o(G). Let Sp be the p-Sylow subgroup of G.
From (3.7) we have

R
F(G/Sp) ~ —— (G/ S, d G/Sp).
(G/Sp) N(R)( p) and p{o(G/Sp)
From case (1) F ~ R/N(R). Thus RG ~ FG =~ R/N(R)G. As FG
is Noetherian then R is, too, and so Lemma 4.3 implies N(R) = 0, i.e.,
F ~ R.

If A is a commutative ring with 1 and a is a finite set of minimal ideals
of A we define an equivalence relation on a by /,, I, € a are equivalent if
I} =~ I, as rings. Write a/~ = D,. When A4 is semi simple artinian, then a
consists of fields and we make D into a partially ordered set by F| < F,
if and only if F, >~ F({;) for some positive integer k. F,; denotes the
equivalence class of F; € a.

THEOREM 4.5. Let R be a finite direct sum of fields, G a finite group and
S a ring. Suppose RG ~ SG. Then R ~ S.
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Proof. Case (1): RG is semisimple. RG semi simple implies SG is also. R
regular implies RG and thus SG is regular. Soif n € O(G), nisaunitin S
and S is a direct summand of SG =~ RG ([8]). We now see that S a finite
direct sum of fields.

Let R = F@...QOF.S =L O...0 L, with F; and £ fields.
Proceed by induction on n. If n = 1, then F|G =~ SG and F|, =~ S from
Theorem 4.3.

Suppose n > 1 and the theorem is true for n — 1. As RG is semi simple
sois F;G and E,G for all i and j.

In RG we consider the set .#, of minimal ideals and the associated
partially ordered set Dg,,. Similarly we consider Dg,,. Let F be a minimal
element in Dg. Then o(F) is a minimal element in Dg,. For let o(F) =
E({,) and suppose there exists E($) < E(§,). i.e.,

L) = E({)E) with § & E({).
Hence
F~o0 "(E(.¢))~ F (&) for some k.
But F # Fi({) since otherwise {, € F and {, € E,({,). Hence

F~o "E(. ¢)) =~ Fu&)  for some k.

But F # F,({) since otherwise {, € Fand ¢, € E/{). Hence Fi({) < F
contradicting the minimality of F.

Since F is minimal in Dg,,. F is isomorphic to a field in R, i.e.. F >~ F,
for some i. (Fin RG implies F = F;({,) for some k. But F minimal implies
(s € F, and Fis isomorphic to an ideal in R.) As o(F) = K has K minimal

in S. K >~ £, for some /. Write R = F;, ® R|. S = £, © S. Then
RG ~ F,G® R\G ~ SG = EG ® S|G.

But F; G, by a rearrangement of the original isomorphism. if necessary
(RG and SG have the same number of single components, similarly for
I G and E;G). we can assume R|G ~ §,G. But R contains n-1 minimal
ideals and so by induction R} =~ §,. Hence R ~ S.

Case 2: RG not semi simple. For p a prime, let

R(p) = {x € Rl px =0} and S'(p) = {x € S| px = 0}.
S’(p) is an ideal in S and

{x € RG| px =0} = R'(p)G,

{x € SG| px =0} = S"(p)G
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then R'(p)G = §S'(p)G.
If P is the p-Sylow subgroup of G, by (3.7) we have that

S/ ,
R(pNG/P) ~ Nm—”p_))_) (G/P).

Apply case (1) to conclude
S'(p)
n(S'(p))

But as in the proof of the previous theorem, we have that S’(p) is
Noetherian and so by Lemma 4.3, R'(p) =~ S'(p).

Let py, po. ..., pi be the distinct primes dividing o(G). and let E,
denote the identity in R'(p,) or S’(p;). Write

e==FE, +...+E,.

R(p) ~

Then e is an idempotent, and
RG =~ ((1 —e)R®eR)G =~ ((1 — e)S ® eS)G.

Hence

By case (1), again (I — ¢)R ~ (1 — ¢)S and thus R ~ S.

5. Torsion free groups.

THEOREM 5.1. Let R be a regular ring, G a group with torsion subgroup T
and suppose that for n € O(T), n is a unit in R. Then RT is the unique
maximal regular ring of RG with 1g.

Proof. Case 1: G torsion free. Let L be a regular subring of RG with lg;
€ L and let a« € L. As L is regular there exist 8, y € L with

B =a and (1 —a)y =1 — a.

Let P be a prime ideal of R. Then in R/PG, a@B — 1) = 0 and
(I —a)((l —a)y = 1) = 0.

But R/PG is an integral domain and so either
a) a=0 or 1 —a=0
or
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If a) holds then « € PG or 1 — « € PG while if b) holds we must
have @ = ¢thand 1 — a = ug forcu € U(R/P)and h, g € G. Then
1 — ¢h = ugimplyingh = g=canda =¢ = 0,i.e,a — ¢ € PG.In any
case there exists ¢ € R with a« — ¢ € PG. Write « = 2 a(g)g. Then

a — ¢ =qal) — ¢+ 2 a(g)g € PG.
g#*1

But P is an arbitrary prime ideal so that a(g) for g # 1 is nilpotent. Thus
a(g) = 0if g # 1 and « = a(l). Hence L. € R.

Case 2: General G. Again let L be a regular subring of RG with 1, € L
andleta € L. Find B,y € Lwitha®8 = eand (1 — a)’y = 1| — a. Let I
be the subgroup of G generated by Supp(a) U Supp(B8) U Supp(y). Since
H is finitely generated, the torsion subgroup H* of H is a direct summand
of H.say H = H* @ W with W torsion free. We have

a, B,y € RH ~ RH*(W).
Since RH* is regular by case 1, «, 8, y € RH* C RT. Hence L C RT.

CoroOLLARY 5.2. Let Ry and R, be regular. If 6:R\G — R-G is an
isomorphism then o(R\T) = RyT. If in particular, G is torsion free, then
0(R|) = Rz.

CoROLLARY 5.3. Let R and R, be artinian and G torsion free. Then R|G
= RyG implies
R, R

J(R) — J(Ry)
Proof. Let

RG — G
e T S

be the natural maps for i = 1, 2. As R; is artinian, J(R;) is nilpotent and
J(R)HG € J(R;G). But R;/J(R;) G is semi-simple so

J(R,G) C ker n = J(R[)G
Thus

R, . _ RG
J(R) ~ J(RG)

and the result follows by 5.2.
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We do not know if Ry, R, artinian G torsion free and R|G =~ R,G
implies Ry =~ R,.

Definition. A ring is called reduced if its nil radical is 0.

LEMMA 5.4. Suppose R is a ring without non-trivial idempotents and G is
a torsion free group. Then

U(RG) = U(R) X (1 + N(R) - Ap(G)) X G.

If, in particular R is reduced, then U(RG) = U(R)G.

Proof. U(RG) = U(R) X V where

V={eX e,g € U(RG)| > e, = le, € R}

If R is an integral domain, ' = G. Hence, if P is a prime ideal of R
egey = 8,pe, mod P

where 8, is the Krondeker delta function. Taking the intersection of all
prime ideals gives this congurence modulo N(R). But orthogonal
idempotents lift modulo the nil ideal N(R). As R has only trivial
idempotents, we must have

v =gwwithg e G and w = 1 mod (N(R)RGAR(G))).
Because
N(R)RGAR(G)) = N(R)AR(G),
we conclude w € 1 + N(R)Ag(G) which implies the lemma.
PROPOSITION 5.5. Let R be a reduced ring with no non-trivial idempotents

and G a torsion free abelian group. Then any local subring of RG. containing
1rg. is contained in R.

Proof. Let L be a local subring of RG containing lgg. Ifa € L1 —a €
L, and either @ is a unit or I — a is a unit. We can assume « is a unit. By
Lemma5.4,a = ugwithu € R, g € G. Alsoa + a lorl — (a + af')is
aunit. If 1 — (@ + a ") = v gy withv € U(R). g2 € G then

1 *ug*u*'g’I = Vg

which implies g = ¢ 7' = g, = eand a= u, u € U(R). Similarly if (a +

a 'yis a unit. Thus L € R.
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COROLLARY 5.6. If I is a local reduced ring, R a ring and G a torsion free
abelian group then IG L RG implies 6(I) S R.

Proof. N(RG) = N(R)G, so that R is reduced. IG has no non trivial

idempotents (see e.g. [25], p. 40) and so R does not. The result now follows
from Proposition 5.5.

CoROLLARY 5.7. Let Ry and R be local rings G|, G, torsion free abelian
groups and RiG ~ R,G. Then R)/N(R|) =~ R,/N>(R>).

Proof. Let 0:R|G| — R,G, be the given isomorphism. Write N; = N(R;).

Then
R,G . RG - R,G B R,G and
NG B N(R\G)  N(R,G) N N(Ry)G
_ R Ry
O.N—] G| = E Gz.

But R;/N, is local reduced. By Corollary 5.6
o(R;/N;) S R»/N,.

Similarly
6 ' (Ry/N;) € R|/N.

Hence R\/N|, =~ R,/N,.

THEOREM 5.8. Let R be a reduced ring with no non trivial idempotents.
S a ring and G a torsion free abelian group. Suppose RG L SG and a(R) C
S. Then there exist subgroups H, K of G such that
1)G~H
(1) G = HK (internal direct sum)
(i) S = o(RK).
Proof. As
0 = N(R)G = N(RG) = o (N(SG)) = o (N(S)G).

N(S) =0.1fe € SGand ¢ = e, '(e) € RG and o '(¢) € R ([24)]).
Thuso '(¢) = Oorlande = O or 1, and S is a reduced ring with no non
trivial idempotents. If g € G, o '(g) = Uz, with U, € U(R). hy € G
from Lemma 5.4. i.e.,

g = o(Ug)o(hy), o(Uy) € o(R) C S.
Letay = o(U, ') then a, is such that o"(agg) =h, € G. Thusif g € G
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there exists an @, € o(R) such that o'"'(agg) = h, € G. Let
H = {h € Go (a) = hfor some a € o(R) g € G}.
H is a subgroup of G and o(H) € o(R)G implying o(RH) € 6(R)G.

Let
K = {g € Gio(g) € Sl = S}.

K is a subgroup of G. Clearly H N K = {1}. Let g € G and o(g) = ug
(Lemma 5.4), g = o '(u)o '(g)). Write o~ (1) = vgs. 0~ '(g)) = wes with
v,w € U(R), 8,83 € G.So g = vgrowgyand vw = 1. As g, = gg_;l

o(g2) = ugio(gs ') .
= “glﬂ(Wﬂll(]gl ))

ugio(w)g)

= uo(w) € U(S),

and g € K

gy =w o (g) =ve lg) =0 '(a(v)g)
and g3 e H.

This shows G is the direct sum of H and K establishing (ii). 6(RH) €
o(R)G while 0 " '(6(R)G) € RH implying o(RH) = o(R)G. Then

olpy:RH — o(R)G
implies H ~ G via 6(h) = g if o(h) = ag. This shows (i). 6o(RK) € S.
SG = o(RG) = o(R(KH)) = o( (RK)H) € o(RK)G € SG.

This shows SG = o(RK)G. If s € §, S = X a,;g, witha; € o(RK), g; € G.
But each a; € S. So s = «; with gy = e and s = o(RK).

COROLLARY 5.9. If F is a field, S a ring and G a torsion free abelian
group then FG ~ SG < there exist subgroups H, K of G with G ~ H © K,
H ~ G and S ~ o(FK).

Proof. If the right hand side holds,
FG~ FK® H) ~ FK(H) ~ SH ~ SG.
Conversely, from 5.6, o(F) € S. Theorem 5.8 now implies the result.
Similarly using 5.6 and 5.8, it follows that

CoRrROLLARY 5.10. If R is a local reduced ring, S a ring and G a torsion

https://doi.org/10.4153/CJM-1983-037-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1983-037-0

666 I. ADJAERO AND E. SPIEGEL

[ree abelian group then FG ~ SG < there exist subgroups H and K of G with
HO®K>~GH >~ Gand S = o(RK).

CorROLLARY 5.11. If S is a ring. G a torsion free abelian group then ZG
~ SG < there exist subgroups H and K of G with H ® K ~ G, H ~ G and
S = o(ZK).

THEOREM 5.12. Let
n

be a direct sum of fields. S a ring and G a torsion free abelian group. Then
RG ~ SG if and only if there exist subrings S|, S, . . .. S, of S, subgroups

H\. K\, Hy K>, . ... H,K, of G with
MHmsS=505...085,
G =~H, i=12 ..., n
(i) G~ H,®K. i=1.... n
(iv) S; ~ FK,.

Proof. (<) This follows as in Corollary 5.9. (=). Let
n o
RG = ®1 F.G = SG

be the given isomorphism. Since G is torsion free every idempotent of RG
belongs to R. T et oo o5 ., e, be the orthogonal primitive idempotents of
R numbered so that ¢,R = F;. Then {o(¢e;) = fi. i = 1...., n} is the
unique set of orthogonal primitive idempotents in S. Let S; = /:S. Then

o(F,G) ~ o(e;RG) ~ [;SG = S,G, i =1

From Corollary 5.9, there exist subgroups H;, K; of G with H;, ~ G, G ~
]1,‘ S K,‘ and S,‘ = O'(F,K,‘). Then

SG = o(F,G®...® F,G) = o(F| G) ® ... o(F,G)
SGO...®S,G
~ (5 0...05,)G C SG.

SoSG =(5,®©..®S5,)Gandas S, ®...® S, S S we have
S,®...08, = S.

6. Mixed groups. In this section, we give some applications and
extensions of the previous theorems to mixed groups.
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ProprosITION 6.1. Let R and S be finite direct sums of fields. G a group
with RG, and SG semi-simple. If RG =~ SG then RT ~ ST where T denotes
the torsion subgroup of G.

Proof. Let R = @ F; with F; a field. Then F;T is regular (F,G is regular if
and only if G is locally finite and has no element of order p if char F = p.
See e.g. [23]). Soif n | |T|. nis a unit in F; for all i. From Theorem 5.1 RT is
the maximal subring of RG with 1. Similarly for ST and RT ~ ST.

PROPOSITION 6.2. Let Ry and R, be perfect rings of characteristics p, S, the
p-Sylow subgroup of group G and Ry G ~ R, G. Then

Ry
Tk (6150 = S5 (675

Proof. (For the definition of perfect ring see [26], p. 127.) Since R; is
perfect, J(R;) is T nilpotent and hence nil. From Corollary 3.6,

J(RG) = MG, S,) + J(R)G and
RG R
J(R,G) Jm)

Sp)-

Since R|\G ~ R,G implies R|G/J(R,G) ~ R,G/J(R,G) we have the
result.

CoROLLARY 6.3. Ler F\ and F, be fields of characteristic p, S, the
p-Sylow subgroup, and T the torsion subgroup, of the group G. Then

FIG = F,G = F(T/S,) = Fx(T/S,).

Proof. By Proposition 6.2, F|(G/S,) =~ F)G/S,) with F(G/S,)
semi-simple. As 775, is the torsion subgroup of G/S,, Corollary 7.2 gives
our conclusion.

THEOREM 6.4. Let F|, Fy be fields and G\, G, groups with F\G| = F>G,.
Then F| ~ F>.

Proof. If F| and F, are fields of characteristic p with p a prime or zero,
then, using (6.3) we have

FU(T/S),) = F)T3/S,,).

P

From Theorem 4.2, the result now follows.

Theorem 6.4 is not valid if F, is a field and F is the finite sum of fields
as the following example shows.
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Example. Let
o0
G = (—D] Zs.
i=
Then G ~ 7, © G and

QG = Q(Z3)G
=~ (Q + Q(3))G
=~ QG © Q({3)G
=~ QG © Q(£3)G © Q(£3)G
=~ (Q @ Q({3)) © Q({3)G.

If R = Q@ Q(3) @ Q(£3), then Q and R are each finite direct sums of
fields and R is not isomorphic to QH for any subgroup H of G. In fact, R
is not isomorphic to a group ring, over Q, for any group, as R # QZs and
dim R/Q = 5.

THEOREM 6.5. Let G be an abelian group with finite torsion group T. Let
R be a finite sum of fields and S a ring. Suppose RG ~ SG.

(a) If S is artinian. then R =~ S/N(S).

(b) If G is finitely generated, then R ~ S.

Proof. As T is finite, we can find a torsion free subgroup G, with G =~
T X G,

R(T)G, ~ RG ~ SG ~S(T)G,.

Case (1): RG semi-simple. Then RT is semi-simple and thus a finite sum
of fields RT = F; ©®...@® F,. By Theorem 5.12 there exist subrings,
AYTON Y N S, of S and subgroups H,, K; of G{(i = [, ..., k) such that

H ®K ~G, H =G, S ~F(K) and
S,®... @S, =S

If G is finitely generated, then G| is free abelian of finite rank. Since rank
(H;) + rank (K;) = rank (G)) and rank (H;) = rank (G;), we have K; =
{1}.i=1,...,k.SoS; >~ F;and ST ~ RT. By Theorem 4.5, we now have
R = S.

If S, and hence S,, is artinian, as S; =~ F;(K;), K; must be finite ([8]) and
thus K; is again {1}. i.e., RT ~ ST. By Theorem 4.5 we have in either case
R =~ S.

Case (ii): RG is not semi-simple. Let py, p,, . . . px be the distinct primes
dividing o(T). Let

https://doi.org/10.4153/CJM-1983-037-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1983-037-0

GROUP RINGS 669

R'(p;) = {x € Rl px =0} and
S(p)y={x€ S| px =0}

S’(p;) is an ideal of S and R'(p;,)G =~ S’(p;)G. Let P; be the p;-Sylow
subgroup of G. Since o(P;) < co, we can write G in the form G ~ P; X G..
then, from (3.7)

S/( [71)
N(S'(pi))
and from case (1) we conclude

S'(pi)
N(S'(pi))

If G is finitely generated, then R’(p;)G is noetherian. We have a surjective
homomorphism

S'(pi)
N(S'(pi))
with kernel N(S’(p;) )G;. From Lemma 4.3, N(S’(p;)) = 0.

Continue, as in the proof of Theorem 4.5, to conclude R ~ S in this
case.

R(p;)G; ~ (Gi/Py)

R'(p;) =~

G— R(p)G— S'(p)HG

COROLLARY 6.6. Let G be an abelian group with finite torsion group T.
Let R and S be finite sums of fields. If RG ~ SG then R ~ S.

COROLLARY 6.7. Let G be an abelian group with finite torsion group T.
Suppose R is a finite sum of fields and S an artinian ring. If RG is
semi-simple and RG ~ SG then R ~ S.

Proof. This has been shown in the proof of Theorem 6.5.

7. Integral group rings.

LeEMMA 7.1. Let G be an abelian group with torsion subgroup T and R a
ring. Suppose ZG =~ RG, then
(1) u(R) N O(G) = {1};
(ii) if n € O(G), n is regular in RG;
(iii) o (ZT) C RT;
(iv) if R is an integral domain and x is a torsion element in U(R), then
x = *x 1.
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Proof. 1) If n € U(R) N O(G), then there exists an r € R with nr = 1.
Then o Y(nr) = no '(ry = 1. Write 0 '(r) = 3 ng, n € L. Sol =
2 nng. If g = 1, we have nn; and nn; = O fori # 1. Asn = 1, n =
np = 1.

(11) Suppose n is not regular in RG. Then there is an r # 0 in RG with nr
=0. o 'ry=no '(r)=0.1If6 '(r) = 2 ng. X nng; = 0and nn, =
0 for all i. Thus n, = 0 for all / and o ry = 0, 0or r = 0. a
contradiction.

(ii1) Let r € T with " = 1. From (ii) n is regular in RG. Write o(1) = a,
so that " = 1. From [17], Proposition 5, « € RT, and o(T) = RT. Hence

o(ZT) = RT.
(iv) Suppose x" = 1. If 6" '(x) = «, then & € Z(T) by Theorem 5.1.
Since @« € ZT, «" = 1, we have that « = = ¢ for some t € T (see, e.g.

[12)). Suppose. 6~ '(a) = . Then " = 1 implies
G-+ 1+ 2+ ...+ H=0
with 1 + ¢+ 2 + ...+ "' % 0. Similarly
(1—-—a(l+a+ad+...+a H=0

witheither ] —a =0o0r1 +a+ a> + ...+ d" ' = 0(R is an integral
domain). But 1 + 1 + > + ... + "~ # 0 implies

(I+e+2+. .+ Y =l+a+d+...+d "#0

guaranteeing @ = 1. Similarly if 6~ '(¢) = —1. theno ™ '(—a) = rand —a
= lora = —1. Hence t(UR)) = *=1.

THEOREM 7.2. Let G be a torsion group, and R a ring. Then ZG ~ RG if
and only if there exist subgroups H, K of G with

()H ~ G
()HOK~G
(iii) R ~ ZK.

Proof. If subgroups H, K exist satisfying (i), (ii), (iii), then ZG ~ RG as
in Corollary 5.9.

Conversely, suppose 6:ZG — RG is the given isomorphism. If x € = G,
o '(x) € = G. Note that we cannot have o Y(g) =hando Y(g) = — h
for g, g2 € G. So let

H={heG o Yg)= = hforsomeg € G)}.
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Then H is a subgroup of G and H ~ G, since o(ZH) € ZG and o (Z6)

C ZH implying o|zy:ZH — ZG is an isomorphism. By [25], Corollary
2.10, G ~ H. This shows (1).

Let
K = {g € G

a(g) € R}.
K is a subgroup of G and o(ZK) € R.

We prove (ii) by showing that G is the internal direct sum of H and K.
Clearly H N K = {1}. Let

L=1{ge€ Gl o(g) =uhforsomeh € G,u € (UR))}

L is a subgroup of G and H, K are subgroups of L. Let g € L. Then o(g)
uh for some h € G and u € U(R) ), and

o uh) = o Yuye Y(h) = g.
But

o (u) =+ k ke K and
o Yhy==%xh.h €H

implying o~ '(u) = kando ™ '(h) = hyoro '(u) = —kand o Yhy = —h
and g = kh;. Thus L
L=G

HK (direct sum), and we must check that
Let S, denote a p-Sylow subgroup of G. Define

Sup G = {p € Z| paprimeand S, # 1},

InvR = {p € Z paprimeandp € UR)}
and

ZdR = {p € Z| paprime and p is a zero divisor in R}.
From Lemma 1.1

SupGNInvR=@ and Sup G N Zd R = 4.
Thus from [17], p. 494, ¥ = V), where V), denotes the p component of
U(RG).
Let g € G. Then o(g) = u - a; withu € U(R), a; € U(RG) ([17]) and
a) = 1 for some n. Then
e 3] < V[)[ X ... X VPA =

SPIX...XS,,ACG
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for some finite k. i.e., a; € G. Thus o(g) € U(R) - G. As g is of finite
ordero(g) = ug,u € U(R), g € G, thenu € 1(U(R)). Thus g € L. This
shows L = G and establishes (i1).

Finally

RG = R(KH) ~ o(ZKH) ~ o(ZK)o(H) =~ o(ZK)G S RG
and so RG = o(ZK)G. Thus R = o(ZK).

Modifications of Theorem 7.2 can be given if G is not torsion.
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