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Abstract
The latest generation of radio surveys are now producing sky survey images containing many millions of radio sources. In this context it is
highly desirable to understand the performance of radio image source finder (SF) software and to identify an approach that optimises source
detection capabilities. We have created Hydra to be an extensible multi-SF and cataloguing tool that can be used to compare and evaluate
different SFs. Hydra, which currently includes the SFs Aegean, Caesar, ProFound, PyBDSF, and Selavy, provides for the addition of new SFs
through containerisation and configuration files. The SF input RMS noise and island parameters are optimised to a 90% ‘percentage real
detections’ threshold (calculated from the difference between detections in the real and inverted images), to enable comparison between
SFs. Hydra provides completeness and reliability diagnostics through observed-deep (D) and generated-shallow (S) images, as well as other
statistics. In addition, it has a visual inspection tool for comparing residual images through various selection filters, such as S/N bins in
completeness or reliability. The tool allows the user to easily compare and evaluate different SFs in order to choose their desired SF, or a
combination thereof. This paper is part one of a two part series. In this paper we introduce the Hydra software suite and validate its D/S
metrics using simulated data. The companion paper demonstrates the utility of Hydra by comparing the performance of SFs using both
simulated and real images.
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1. Introduction

With the advent of new facilities, radio surveys are becoming
larger and deeper, providing fields rich in sources, in the tens of
millions (Norris 2017), and delivering data at increasing rates,
in the hundreds of gigabytes per second (Whiting & Humphreys
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2012). The Evolutionary Map of the Universe (EMU, Norris et al.
2011, 2021) is expected to detect up to 40 million sources, expand-
ing our knowledge in areas such as galaxy evolution and star
formation. This outstrips surveys like the Karl G. Jansky Very
Large Array (JVLA, or VLA) Sky Survey (VLASS, Lacy et al. 2020;
Gordon et al. 2021) and the Rapid Australian Square Kilometre
Array (SKA) Pathfinder (ASKAP) Continuum Survey (RACS,
McConnell et al. 2020; Hale et al. 2021) by a factor of up to 30.
Furthermore, the Variable and Slow Transients (VAST, Banyer
et al., 2012; Murphy et al., 2013, 2021) survey, operating at a
cadence of 5s, surpasses VLASS transient studies by several orders
of magnitude, opening up areas of variable and transient research:
e.g., flare stars, intermittent pulsars, X-ray binaries, magnetars,
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extreme scattering events, interstellar scintillation, radio super-
novae, and orphan afterglows of gamma-ray bursts (Murphy et al.,
2013, 2021). This places complex requirements on source finder
(SF) software in order to reliably handle compact,a extended,
complex, and faint or diffuse sources, along with demands for
high data throughput for radio transients (e.g., Hancock et al.,
2012; Hopkins et al., 2015; Riggi et al., 2016; Hale et al., 2019;
Boyce, 2020; Bonaldi et al., 2021). No current SF fits all of these
requirements.

Hydra is an attempt to get the best of all worlds: it is an exten-
sible multi-SF comparison and cataloguing tool, which allows
users to choose the appropriate SF for a given survey, or take
advantage of its collectively rich statistics by combining results.
The Hydra software suiteb currently includes Aegean (Hancock
et al. 2012; Hancock, Cathryn, & Hurley-Walker 2018), Caesar
(Compact And Extend Source Automated Recognition, Riggi et al.
2016, 2019), ProFound (Robotham et al. 2018; Hale et al. 2019),
PyBDSF (Python Blob Detector and Source Finder, Mohan &
Rafferty 2015), and Selavy (Whiting & Humphreys 2012).

This paper is part one of a two part series, (referred to here-
after as Papers I and II). Here we provide a brief overview of
SFs, relevant to our implementation of Hydra. This is then fol-
lowed by a description of the Hydra software suite. The software
produces new metrics for handling real source components (or
sources, herein), such as, completeness (C) and reliability (R),
based on sources detected in a shallow (S) image (e.g., a real image
with artificial noise added) wherein real (sometimes referred to
as ‘deep’ or D) image detections are considered as true sources.
We use simulated data, where the true sources are known, to val-
idate these metrics. In Paper II we use the simulated images along
with real data to evaluate the performance of the six different SFs
included withHydra. A preliminary discussion on SF performance
is presented in this paper.

2. Source finders

The growing sizes and data rates of modern radio surveys have
increased the need for automated source finding tools with fast
processing speeds, and high completeness and reliability. One
impetus for this came through the ASKAP EMU source find-
ing data challenge (Hopkins et al. 2015), which explored a
community-submitted set of eleven SFs: Aegean (Hancock et al.
2012), Astronomical Point source EXtractor (APEX, Makovoz
& Marleau 2005), BLOBCAT (Hales et al. 2012), Curvature
Threshold Extractor (CuTEx, Molinari et al. 2011), Duchamp
(Whiting 2012), IFCA (International Federation of Automation
Control) Biparametric Adaptive Filter (BAF, López-Caniego &
Vielva 2012)/Matched Filter (MF, López-Caniego et al. 2006),
PyBDSF (Mohan & Rafferty 2015), Python Source Extractor
(PySE, Spreeuw 2010; Swinbank et al. 2015), Search and Destroy
(SAD, Condon et al. 1998, with an honourable mention of its vari-
ant HAPPY, White et al. 1997), Selavy (with Duchamp at its core,
Whiting &Humphreys 2012), Source Extractor (SExtractor, Bertin
& Arnouts 1996), and SOURCE_FIND (Arcminute Microkelvin
Imager (AMI) pipeline, AMI Consortium: Franzen et al. 2011).
More recent SFs include Caesar (Riggi et al. 2016, 2019) and

aHerein, compact refers to point sources.
bHydra is available, along with the data products presented in this paper, by navigating

through the CIRADA portal at https://cirada.ca. A more permanent home is expected,
once VLASS data product development has been completed.

Table 1. SF general design characteristics (re., Hopkins et al. 2015;
Hale et al. 2019; Bonaldi et al. 2021). NXGEN indicates multiprocessing
capabilities.

SF Source type NXGEN

Compact extended diffuse

Aegean
√ √

APEXa
√

BLOBCAT
√ √

Caesar
√ √ √ √

CuTExa
√

IFCA BAF/MF
√

Selavy
√ √

ProFounda
√ √ √

PyBDSF
√

PySE
√

SAD
√

SExtractora
√

SOURCE_FIND
√

aOptical SF.

ProFound (Robotham et al. 2018; Hale et al. 2019; Boyce 2020).
APEX, CuTEx, ProFound, and SExtractor have their origins in
optical astronomy. Our focus will be on 2D SFs, such as those
above, although there are also 3D packages like SoFiA (Source
Finding Application, Serra et al. 2015; Koribalski et al. 2020;
Westmeier et al. 2021) optimised for detecting line emission in
data cubes, which can also function as 2D SFs.

By and large there is no ‘one SF fits all’ solution. Each is
typically optimised for specific tasks (Hopkins et al. 2015; Hale
et al. 2019; Bonaldi et al. 2021). In the broadest sense, there are
SFs designed to handle sources that are compact, or extended
and diffuse, see Table 1. They also have their specialisations: for
example, BLOBCAT for linear polarisation data (Hales et al. 2012),
Duchamp for HI observations (Whiting 2012), CuTEx for images
with intense background fluctuations (Molinari et al. 2011), and
PySE for transients (Fender et al. 2007; van Haarlem et al. 2013).
There are also ‘Next Generation’ (NXGEN) SFs (see Table 1), which
utilise multiple processors for handling high data throughput
(Hancock et al. 2012; Riggi et al. 2016; Whiting & Humphreys
2012). Qualitatively different types of source finding and char-
acterisation tools are being developed that use machine learning
approaches (e.g., Bonaldi et al. 2021; Lao et al. 2021; D. Magro
et al., in preparation), as well as citizen science approaches to clas-
sifying radio sources (e.g., Banfield et al. 2015; Alger et al. 2018),
although it is beyond the scope of Hydra to attempt to incorporate
all such efforts.

In general, SFs typically analyse an image in 3 stages: (1)
background and noise estimation, (2) island detection, and (3)
component modelling.

For the background estimation most SFs used in radio astron-
omy such as Aegean, PyBDSF, and Selavy, tend to use a sliding box
method, where background noise estimates are calculated at a spe-
cific location using neighbouring pixels within a given box size,
and estimated again for adjacent locations based on the sliding-
step size. It is important that the box size be set so as not to be
too small around bright sources, which would overestimate the
background noise, or too large, so as to wash out any varying back-
ground structure that is important for reliable detection of faint
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sources (e.g., Huynh et al 2012). This is discussed further below in
Section 3.1.3.

Background noise estimation can be performed through vari-
ous metrics such as the inter-quartile range (IQR) used by Aegean
(with median background and IQR noise spread, Hancock et al.
2012), mean background (μ) and RMS noise (σ ) used by PyBDSF
(Mohan & Rafferty 2015), or median background and Mean
Absolute Deviation From the Median (MAD, or MADFM herein:
e.g., Riggi et al. 2016; Hopkins et al. 2015) noise used by Selavy
(which also has a μ/σ option, Whiting & Humphreys 2012).
SExtractor, on the other hand, uses κ .σ -clipping and mode esti-
mation (see Section 3.1.1; Da Costa 1992; Bertin & Arnouts 1996;
Huynh et al. 2012; Akhlaghi & Ichikawa 2015; Riggi et al. 2016)
over the entire image; while PySE performs σ -clipping locally
(see Hopkins et al. 2015). ProFound, an optical SF shown to be
useful for radio images (Hale et al. 2019), also uses a σ -clipping
schema (via. the MAKESKYGRID routine, Robotham et al. 2018)
Caesar provides several options: μ/σ , median/MADFM, biweight
and σ -clipped estimators (Riggi et al. 2016). The final stage typ-
ically involves bicubic interpolation to obtain the background
noise estimates as a function of pixel location. It is important that
these estimates are optimal as they have a significant effect on SF
performance (Huynh et al. 2012).

There are various methods for island detection within an
image. Perhaps the simplest is thresholding, in which the pixel
with the highest flux is chosen along with neighbouring pixels
down to some threshold above the background noise, defining an
island. Variants of this method are used by Duchamp (Whiting &
Humphreys 2012), ProFound (Robotham et al. 2018), Selavy
(Whiting 2012), and SExtractor (Bertin & Arnouts 1996). Once
the initial set of islands are chosen, they are sometimes then
grown down to a lower threshold according to certain rules. For
instance, ProFound uses a Kron/Petrosian-like dilation kernel,
that is, it uses an island-shaped aperture (Kron 1980; Petrosian
1976) to grow the islands according to a surface brightness profile,
in an iterative process, until the desired profile or lower thresh-
old limit is reached (Robotham et al. 2018). It then separates out
the islands into segments, through a watershed deblending tech-
nique.c Another method is flood-fill, wherein islands are seeded
above some threshold and then grown down to a lower threshold,
according to a set of rules. Aegean (Hancock et al. 2012), BLOBCAT
(Hales et al. 2012), Caesar (Riggi et al. 2016), PyBDSF (Mohan &
Rafferty 2015), and PySE (Swinbank et al. 2015) use variations on
this theme.

The component extraction phase is perhaps the most varied
in terms of modelling. The simplest is the top down raster-scan
within an island to find flux peaks given some step size, or tol-
erance level. This method is utilised by Duchamp (Whiting &
Humphreys 2012), and, in turn, is also employed by Selavy. These
peaks are then fitted by elliptical Gaussians producing a compo-
nent catalogue. The choice of elliptical Gaussians is motivated by
the fact that point sources, or sources that are only very slightly
extended, are well-modelled in this way as it corresponds to the
shape of the telescope’s synthesised beam. More complex source
structures, on the other hand, tend to be poorly fit by this choice,
leading to variations in fitting approach. Some SFs, for example,

cThe term ‘watershed’ refers to drainage basins formed from streams running between
mountains (islands), during a rainfall, following the steepest descent (Beucher &
Lantuejoul 1979).

use multiple Gaussians to fit to an island, using various criteria.
PyBDSF (Mohan & Rafferty 2015) and PySE (Spreeuw 2010;
Swinbank et al. 2015) fall into this category.

There are also a class of SFs that use curvature maps to deter-
mine radio source components. Aegean searches for local maxima
within an island which in turn are fitted by Gaussians, constrained
by negative curvature valleys (Hancock et al. 2012). Caesar is
rather unique in that it first searches for peaks and then uses water-
shed deblending to create sub-islands, for seeding and constrain-
ing Gaussian fits, respectively (Riggi et al. 2016). Extended sources
are then extracted from the resulting residual image, using wavelet
transform, saliency, hierarchical-clustering, or active-contour fil-
tering. Consequently, Caesar is capable of extracting extended
sources with complex structure.

The aforementioned SF algorithms are just the tip of the ice-
berg of possibilities (c.f., Hancock et al. 2012; Hopkins et al. 2015;
Wu et al. 2018; Lukic, de Gasperin, & Brüggen 2019; Sadr et al.
2019; Bonaldi et al. 2021; D. Magro et al., in preparation). In our
initial implementation of Hydra we have chosen to explore a rep-
resentative set of commonly used SFs: Aegean, Caesar, ProFound,
PyBDSF, and Selavy

3. Hydra

Hydra is a software tool capable of running multiple SFs. It is
extensible, in that other SFs can be added in a containerised fash-
ion by following a set of straightforward template-like rules. It
provides diagnostic information such as C andR. Statistical analy-
sis can be based on injected (J ) source catalogues from simulated
images or on realD-images used as ground truths for detections in
their S counterparts. Hydra is innovative in that it minimises the
False Detection Rate (FDR, Whiting 2012) of the SFs by adjusting
their detection threshold and island growth (and optionally RMS
box) parameters. This is an essential step in automation, especially
when dealing with large surveys such as EMU (Norris 2017; Norris
et al. 2021).

3.1. The hydra software suite

UponHeracles shield wrought Homados (Tumult), the din of
battle noise, and riding alongside Cerberus, the unruly mas-
ter of mayhem. Only the wrath of Cerberus’s father Typhon,
a controlling force, can temper their chaos. And hitherto,
Typhon’s son Hydra, was tasked with bringing the chaos to
bear fruit, while his mother Echidna, a hidden force, plucked
the fruit from the vines to make wine. (Inspired from Powell,
2017, and Buxton, 2016.)

Fig. 1 shows an overview of the Hydra software suite, which con-
sists of the following software components: Homados, Cerberus,
Typhon, and Hydra. Homados is used for providing image statis-
tics such as μ/σ , and image manipulation such as inversion
and adding noise. Cerberus is an extensible multi-SF software
suite. It currently includes Aegean (Hancock et al. 2012, 2018),
Caesar (Riggi et al. 2016, 2019), ProFound (Robotham et al. 2018;
Hale et al. 2019), PyBDSF (Mohan & Rafferty 2015), and Selavy
(Whiting & Humphreys 2012). Typhon is a tool for optimis-
ing the SF parameters and then producing output catalogues. It
uses Homados and Cerberus to do this task. Hydra is the main
tool which uses Typhon to produce data products, including
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Figure 1. High level schematic representation of the Hydra software suite workflow.
Homados provides D and S-image channels for simulated/real images (‘dancing
ghosts’ example image, see Norris et al. 2021). Each channel is run separately through
the Typhon optimiser, which uses the SF interface provided by Cerberus. Hydra coordi-
nates all of these activities, building catalogues and compiling statistics at the end of
the process.

catalogues, residual images, and region files.d Echidna is a planned
catalogue stacking and integration tool, to be added to Hydra.

3.1.1. Homados

The main purpose of Homados is to add noise to images. We shall
often refer to the original image, as the D-image, and the noise-
added image, as the S-image. These ‘deep-shallow’ (DS) image
pairs can be used to create statistics such as DS-completeness
(CDS) andDS-reliability (RDS), based on the assumption that the
sources detected in the D-image are real. These statistics are used
for real images, where the source inputs are unknown.

An S-image is created by adding to the D-image a Gaussian
noisemap that has been convolved with the corresponding synthe-
sised beam (i.e., BMIN, BMAJ, and BPA). The noise map is created
with mean noise, μimage, and RMS noise, nσimage (≡ σnoise map),
where n is the desired noise level (i.e., factor), andμimage and σimage
are obtained from the D-image using σ -clipping (Akhlaghi &
Ichikawa 2015). This is then convolved with the synthesised beam,
fromwhich its RMS noise, σconvolved, is computed. For convergence,
this process is repeated using the convolved image as input, but
with n replaced by σnoise map n/σconvolved. The final convolved image
is then added to the D-image, obtaining the S-image.

Fig. 2 shows an example of an S-image generated by Homados
from an Australia Telescope Large Area Survey (ATLAS) Chandra
Deep Field South (CDFS) Data Release 1 (DR1) tile (Norris et al.
2006). The noise level was scaled by a factor of n= 5. This factor
is assumed for the S-image generation in the rest of this paper.

In addition, Homados uses σ -clipping to compute image statis-
tics, such as, m (median), μ (mean), σ (RMS), Imin (minimum
pixel value), and Imax (maximum pixel value). It also does image
inversion for FDR calculations.

dHydra refers to both the software suite and the software tool hydra.py. There should
be no source of confusion in this regard, as only hydra.py is used to create the data
products.

Figure 2. HomadosS-image generation example, using an image cutout sample from
an ATLAS CDFS DR1 2.2◦ × 2.7◦ tile (Norris et al. 2006). The figures showD (left) andS
(right) images, zoomed in. The noise level scale factor, n, was set to 5 to generate the
shallow image.

3.1.2. Cerberus

Cerberus is an extensible interface for running SF modules within
the Hydra software suite. It currently supports Aegean, Caesar,
ProFound, PyBDSF, and Selavy, as indicated by its command-line
interface.e

New modules are added through code generation, using Jinja
template-codef in conjunction with Dockerg and YAMLh configu-
ration files. The workflow is as follows:

• Create a containerised SF wrapper:

– Create a SF wrapper script
– Create a Docker build file wrapper
– Update the master docker-compose build file
– Build the container image

eThe command-line interface for all Hydra tools is standardised using Click,
https://click.palletsprojects.com. Click allows direct interface calls within a script, through
its standalone_mode (=True) flag, which allows for interoperability between Hydra
tools while preserving their user interfaces.

fJinja (https://jinja.palletsprojects.com) is similar to Django (https://www.
djangoproject.com) templates for dynamically creating webpages, but can also be
applied to software.

gDocker (https://www.docker.com) is used to hide the complexity of installing and
operating SFs, by wrapping them inside their own mini-operating system environment.

hYAML (https://yaml.org) configuration files are used to store Python-like data struc-
tures, but in human readable form.
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Table 2. Cerberus RMS and Island parameter definitions in units of σ with respect to the background, with soft constraint σIsland < σRMS.

Source RMS parameter Island parameter

Finder Name Default Description Name Default Description

Aegeana seedclip 5.0 The clipping value for seeding islands floodclip 4.0 The clipping value for growing islands

Caesarb seedThr 5.0 Blob finding threshold mergeThr 2.6 Blob growth threshold

ProFoundc skycut 2.8 Island threshold tolerance 4.0 Defines island separation height

PyBDSFd thresh_pix 5.0 Source detection threshold thresh_isl 3.0 Threshold for the island boundary

Selavye snrCut 4.0 Detection threshold growthCut 3.0 Threshold value to grow detections down to
ahttps://github.com/PaulHancock/Aegean/wiki/Simple-usage.
bhttps://caesar-doc.readthedocs.io/en/latest/usage/app_options.html#input-options.
chttps://cran.r-project.org/web/packages/ProFound/ProFound.pdf.
dhttps://pybdsf.readthedocs.io/en/latest/process_image.html.
ehttps://www.atnf.csiro.au/computing/software/askapsoft/sdp/docs/current/analysis/selavy.html.

Figure 3. Cerberus code generation workflow.

• Update the cerberus.py script:

– Create a YAML metadata file
– Update the master YAML metadata file
– Run the Jinja script generator tool

• Test the Hydra software suite
• Update the Giti repository

Fig. 3 summarises this high-level workflow: containers for each
SF are shown under Container Images and the Docker and YAML
configuration files are shown under Configuration Management.
The developer must follow a fixed set of rules when adding a new
SF, in order for the Jinja template-driven script generator to update
Cerberus. (For the purpose of reproducibility, Appendix A pro-
vides architectural design notes, using Aegean as an example.) All

ihttps://git-scm.com.

of this is transparent to the user, who has access to a simple inter-
face, so one does not have to be an expert at using SFs in order to
use Hydra.

Hydra’s modular design requires that the user has access to
the key elements of a SF’s interface; in particular, access to its
‘RMS-like’ and ‘Island-like’ parameters. In the case of Aegean, for
example, this would be seedclip and floodclip (Hancock et al.
2012), respectively. It is important to note that the parameters are
not necessarily equivalent between SFs;j regardless, they do affect
thresholding and island formation. Consequently, they have the
strongest influence on FDR calculations. Table 2 summarises the
parameters for the currently supported SFs. These parameters are
used by Typhon to baseline the SFs, by minimising their FDRs.

Hydra also requires that SF modules provide optional RMS
box and step size parameters, even if they are dummies. Some SF
softwaremanuals recommend these parameters be externally opti-
mised, under certain conditions. PyBDSF is an example of such a
case.k Regardless, this is also a good way of baselining (i.e., cali-
brating, Huynh et al. 2012; Riggi et al. 2016) SFs for comparison
purposes.

3.1.3. Typhon

Typhon is a tool for optimising the SFs to a standard baseline
that can be used for comparison purposes. We have adopted the
Percent Real Detections (PRD)metric, as used by Hale et al. (2019)
in a comparative study of Aegean, ProFound, and PyBDSF: that is,

PRD= Nimage −Ninv. image

Nimage
100 (1)

where Nimage is the number of detections in the original image,
and Ninv. image is the number of detections in the inverted image.l
Basically, if one assumes the image noise is predominately
Gaussian, then the peaks detected in the inverted image should
statistically match the noise-peaks detected in the non-inverted
image. Thus the FDR can be reduced by optimising the PRD. This
approach is not suitable for non-Gaussian (or non-symmetric)
noise properties, such as the Ricean noise distribution in polari-
sation images.

Typhon uses the RMS and island parameters to optimise the
PRD for each SF. Fig. 4 shows Typhon generated PRD curves for a
2◦ × 2◦ simulatedD-image along with its corresponding S-image.

jAppendix B delineates these differences.
kSee rms_box discussion at URL in footnote d of Table 2.
lthat is, negative pixel values.
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Figure 4. Example Typhon PRD of a 2◦ × 2◦ simulated D-image (left) and its corresponding S-image (right). The variation in the PRD with the RMS parameters (in σ units) is
represented along the horizontal axis, and the variation in the PRD with the island parameters is represented by the error bars. The data points represent average values: that is,
Aegean and ProFound indicate the true shape of the curves, due their insensitivity to their island parameters. The SF parameters are listed in Table 2. The dotted horizontal lines
indicate the 90% PRD levels.

Typhon identifies the optimal parameters to be those that cor-
respond to the 90% PRD threshold. This threshold is motivated
by the desire to use the knee of the PRD curve, whose position
appears to be scale-invariant above a certain image size. Although
the shape of the curve is not always guaranteed to be smooth, this
crude method appears to be quite effective at framing the region of
interest around the desired 90% PRD. The 90% to 98% PRD range
has been investigated and the former threshold seems to provide
reasonable results. Hale et al. (2019) use a 98% PRD to baseline
their SFs, beyond which the detection rate degrades. At that cut-
off, however, we tend to find a non-scale-invariant increase in the
RMS threshold with image size.

Typhon uses the image statistics output from Homados to
determine the RMS parameter range over which to optimise the
PRD:

1.5σ ≤ RMS≤ RMSmax , (2)

where

RMSmax =
⌈
Imax − μ

σ

⌉
σ .

with μ, σ , and Imax determined through σ -clipping (re. Section
3.1.1). The 1.5σ lower limit is where the FDR starts to degrade. In
general, Typhon samples the PRD from high values to low values
in the RMS parameter, while varying the island parameter at each
step, until the 90% threshold is reached.

The island parameters are SF-specific, and are typically defined
over a finite range. Table 3 shows the parameter ranges used by
Hydra, which are stored in its ConfigurationManagement (Fig. 3).
Typhon uses this information along with the constraint σisland <

σRMS (otherwise, σisland = 0.999 σRMS), as it searches the parameter
space.

Typhon will also perform an initial RMS box optimisation
before optimising the PRD, if it is configured to do so. This is
of particular importance for extended objects or around bright
sources (Mohan & Rafferty 2015), especially for Gaussian-based
extraction SFs such as Aegean, PyBDSF, and Selavy. Typhon

Table 3. Configured island parameters.

SF Island parameter Range

Aegean floodclip [2,5]

Caesar mergeThr [2,3]

ProFound tolerance [2,5]

PyBDSF thresh_isl [2,5]

Selavy growthCut [2,5]

uses Aegean’s background/noise image generation tool, BANE
(Hancock et al. 2018), to search the RMS box size (box_size) and
step size (step_size) parameter space,

3≤ box_size
[4(BMAJ + BMIN)/2]

≤ 6

1
4

≤ step_size
box_size

≤ 1
2

⎫⎪⎪⎬
⎪⎪⎭

, (3)

for the lowest background level, μ (c.f., Riggi et al. 2016). The
4(BMAJ + BMIN)/2 factor represents the BANE default box size,
where we assume a square box, for simplicity. The limits 3 and
6 are consistent with the rule of thumb that the box size should
be 10–20 times larger than the beam size (Riggi et al. 2016). The
1/4 and 1/2 bounds are used for providing a smoothly sliding box
(Mohan & Rafferty 2015).

The Typhon optimisation algorithm can be summarised as
follows.
• If the RMS box μ-optimisation is desired:

– Minimise μ over a 6× 3 box_size by step_size search grid,
constrained by Equation (3)

• Select a centralised n× n image sample-cutout:

– Use an n2-area rectangle, if non-square image
– Use the full area, if image is too small
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Figure 5. Clustering Algorithm Infographic: The left panel shows the results of 3 hypothetical SFs (red, green, and gold). Themiddle panel shows the results after clustering, result-
ing in two clumps, assigned clump_id 1 (upper panel) and clump_id 2 (lower panel). A clump is defined through the spatial overlap between SF detections (i.e., components), in
theD andS-images together. The components are numbered independently and can be associatedwith the clump they end up in. For instance, components 1, 2, and 3 are linked
together in theD-image, and, in addition, 1 overlaps with 6, and 3 overlaps with 8, 9, and 10 in the S-image. Together this set of components populate clump_id 1. Similarly,
clump_id 2 is composed of components 4, 5, and 7. Clumps are centred in the Hydra Viewer (Fig. 7), with unassociated components greyed out. The right panel shows the results
after the clumps are decomposed into closest (i.e., overlapping centre-to-centre) matches between SFs, in theD and S-images, such that there is only one SF with a match in
theD and S-images. These matched sets are assigned match_ids, with boxes enclosing the extremities of the components. The Hydra Viewer displays these numbers at the
centre of the boxes (which are coloured differently here, for emphasis). So clump_id 1 contains match_id 1= {1, 2, 6} and match_id 2= {3, 8, 9, 10}, while clump_id 2 contains
match_id 3= {4, 5, 7}.

• Determine the RMS parameter bounds (Equation (2))
• For each SF:

– If applicable, set the RMS box parameters to the optimised
values

– Extract the island parameter bounds from Configuration
Management (re. Table 3)

– Optimise the PRD of the sample-cutout:

∗ Iterate the RMS parameter backwards from RMSmax

∗ At each RMS step, iterate the island parameter, such
that, σisland < σRMS, otherwise set σisland = 0.999 σRMS

∗ For each RMS-island parameter pair compute the PRD
∗ Terminate iterations just before the PRD passes below

90%
If the PRD is always below 90% choose the highest value.

• Run the SFs on the full image using their optimised parameters
• Archive the results in a tarball

For our initial studies, we have chosen to set n= 2.5◦ to provide
a sufficiently large region of sky to ensure the finder parameters are
not biased by small-scale structure in a given image. Also Aegean,
PyBDSF, and Selavy are configured to use the RMS box optimisa-
tion inputs from BANE, with Selavy only accepting the RMS box
size. Appendix B provides details of the SFs and their settings used
herein.

For the purposes of placing the SFs on equal footing, we have
chosen to restrict Aegean, Caesar and Selavy to single threaded
mode, so as to keep the background/noise statistics consistent, at

the cost of computational speed. In addition, we keep all of the
internal parameters of all of the SFs fixed, instead of tweaking them
by hand for each use case. Every effort has been made to keep each
SF module as generic as possible.

3.1.4. Hydra

Hydra is the main tool that glues everything together, by running
Typhon forD and S images, and producing data products such as
diagnostics plots and catalogues. One of main underlying features
of Hydra is that it uses a clustering algorithm (Boyce 2018) to relate
information between SF components in both D and S images. In
addition, Hydra will also accept simulated catalogue input, under
a source-finder pseudonym.

Fig. 5 shows an example of how the clustering algorithmworks.
All components between all D and S SF detections (i.e., catalogue
rows) are spatially grouped together, with their overlaps forming
clumps with unique clump_ids. The clumps are also decomposed
into the closest DS matches, and assigned unique match_ids.
The matches are further broken down by SF into subclumps (not
shown), and assigned unique subclump_ids. All of this infor-
mation is compiled into a cluster catalogue (or table), containing
the following key reference elements (columns): cluster catalogue
ID, clump ID, match ID, subclump ID, SF D/S catalogue cross-
reference ID, and image depth (=D, S). In addition, the catalogue
contains common SF output parameters, such as RA, Dec, flux
density, etc. There is also a clump catalogue, consisting of rows
by unique clump_id, of cluster centroid positions, cutout sizes,
total number of components, number of components per SF, SFs
with the best residual statistics, etc.
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Figure 6. Derivation of the distance metric used for clustering. Here we assume that the space is locally flat, so that�(Ci , Cj)≈ (δ2RAij + δ2Decij )
1/2, where δRAij = (RAj − RAi) cos (Deci)

and δDecij = Decj − Deci . The distances from the centres of components Ci and Cj to their edges, along a ray between them, is given by ri and rj , respectively: that is, rμ, is a standard
geometrical expression in terms of angle βμ = π/2− (θμ − η) with respect to the ray and the semi-major axis aμ, where θμ is the position angle, η = − tan−1 (δDecij /δRAij ), and
μ = i, j. The grey area outside the ellipses is the skirt, whose extent is determined by f .

Fig. 6 shows the derivation of the distance metric used in the
clustering algorithm. The algorithm uses the following distance
metric constraint to determine the overlap between two elliptical
components, Ci and Cj, with centre-to-edge distances, ri and rj,
along an adjoining ray.

�(Ci, Cj)≤ ri + rj (4)

where

�(Ci, Cj)=
√
(RAj−RAi)2 cos2 (Deci)+(Decj−Deci)2 ,

is the distance metric, and

rμ = aμbμ√
a2μ cos2 (θμ − η)+ b2μ sin2 (θμ − η)

,

are the centre-to-edge distances, for μ = i, j, with

η = − tan−1
[

Decj − Deci

(RAj − RAi) cos (Deci)

]
,

aμ is the semi-major axis, bμ is the semi-minor axis, and θμ

is the position angle (defined in the same manner as the beam
PA, Greisen 2017). So components satisfying this constraint are
clumped together.

Hydra also provides a web-viewer (known as the Hydra
Viewer) for exploring image and residual image cutouts by
clump_id, along with corresponding cluster table information.
Fig. 7 provides a detailed description of the Hydra Viewer’s cutout
interface. As indicated in the figure, the viewer has radio compo-
nent annotations that can be toggled on/off. Fig. 8 provides a more

detailed example. Table 4 describes the annotation colours, which
are stored as metadata in Hydra’s Configuration Management
(Fig. 3).

The following is a list of the data products produced by Hydra:
• Typhon Metrics

– D/S Diagnostic Plots of

∗ PRD
∗ PRD CPU Times
∗ Residual RMS
∗ Residual MADFM
∗ Residual 
I2

– Table of D and S optimised RMS and island parameters

• D/S Catalogues

– SF Catalogues
– Cluster Catalogue
– Clump Catalogue

• Optional Simulated Input Catalogue
• D/S Cutouts

– Un/annotated Images
– Un/annotated Residual Images

• D/S Diagnostic Plots

– Clump Size Distributions
– Detections vs S/N
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Figure 7. Hydra Viewer Infographic: The cutout viewing section of Hydra’s local web-viewer interface. At the top is the navigation bar, which allows the user to navigate by clump
ID, go to a specific clump, turn on/off cutout annotations, or examine S/N bins of diagnostic plots such as C andR, by using the Mode button. The main panel containsD (top)
and S (bottom) square image cutouts (first column) and SF residual image cutouts (remaining columns), centred about a given clump’s centroid. Here the annotation is turned
on, with the neighbouring clumps greyed out. The table at the bottom (not to scale) is the cluster table rows for the clump, with the following columns: cluster catalogue ID,
SF catalogue cross-reference ID, clump ID, subclump ID, match ID, SF or J catalogue name, image depth, RA (◦), Dec (◦), semi-major axis (′′), semi-minor axis (′′), position angle
(◦), total flux density (mJy), BANE RMS noise (mJy), S/N (total flux over BANE RMS noise), peak flux (mJy beam−1), normalised-residual RMS (mJy (arcmin2 beam)−1), normalised-
residual MADFM (mJy (arcmin2 beam)−1), and normalised-residual
I2 ((mJy (arcmin2 beam))−2). The normalised-residual statistics are normalised by the cutout area (arcmin2).
This statistical information is also shown below each cutout, alongwith the number of components (N), and cutout size (Size, in arcmin). This figure is to illustrate the layout of the
Hydra viewer, not the details. It shows screen shots from the Hydra Viewer pasted together, hence the fonts appear small. The data at the bottom is raw output from the cluster
table, which is not rounded in this version of the software.

– C vs S/N
– R vs S/N
– Flux-Ratios: Sout/Sin vs S/N
– False-Positives vs S/N

• Hydra Viewer: Local Web-browser Tool

All of this information is stored in a tarball. The Hydra Viewer
allows the user to view all of these data products. The cutout viewer
portion is linked only to the cluster catalogue. It is accessible
through an index.html file in the main tar directory.

4. Completeness and reliability metrics

Completeness and reliability metrics can be generated through
various combinations of deep, shallow, and injected sources. Fig. 9
shows a Venn diagram of the overlapping possibilities. In addition,
we need to be careful in our definitions of these metrics.

Here we use a clustering approach to spatially match our
detections (Equation (4)). An alternative method is to use a cut-
off distance in a catalogue cross-match (e.g., Huynh et al. 2012;
Hopkins et al. 2015; Hale et al. 2019).m Depending on the cutoff
distance adopted, ‘locally,’ this approach may lead to associations
between adjacent clumps that may not actually be related. The
clustering approach aims to mitigate against this effect.

Completeness (C) is the fraction of real detections to real
sources, and reliability (R) is the fraction of real detections to
detected sources (Fig. 9). Here we define these metrics in terms
of ‘real’ injected (simulated) sources (J ) vs deep (D) and shal-
low (S) detections and, ‘assumed-real’ deep detections vs shallow
detections. In the case where the sources are known (i.e., injected),

mBonaldi et al. (2021) also requires a level of consistency in flux density to associate
independently detected sources as being in common. We do not use this in our metric
as it can lead to falsely rejecting true source associations where flux densities are poorly
measured.
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Table 4. SF annotation colours.

SF Colour

Aegean Green

Caesar Magenta

ProFound Red

PyBDSF Orange

Selavy Blue

Simulated Black

Figure 8. An example of aD-image cutout, with annotations turned on, consisting of 4
Aegean, 2 ProFound, 2 PyBDSF, and 2 Selavy overlappingD-image catalogue compo-
nents. The label at the top indicates it corresponds to clump_id 243, and the numbers
at the centres of the cyan boxes are the match_ids (369 through 372).

we take the fraction of real–deep (D ∩J ) or real–shallow (S ∩J )
detections to the injected sources for our completeness,

CD = D ∩J
J (5)

or

CS = S ∩J
J , (6)

respectively.n Similarly, the fraction of real–deep or real–shallow
detections to the corresponding deep or shallow detections give
the reliability

RD = D ∩J
D (7)

or

RS = S ∩J
S , (8)

respectively. In the case where no true underlying sources are
known we use the deep detections as a proxy, and take the fraction

nIn general, in our notation, the length of a set is implicitly assumed: for example,D ∩
J ≡ |D ∩J |.

Figure 9. Venn diagram of completeness and reliability, for sets of deep (D), shallow
(S), and injected (J ) sources.

of real–shallow detections to deep detections for our complete-
ness,

CDS = S ∩D
D , (9)

and the fraction of real–shallow to shallow detections for our
reliability,

RDS = S ∩D
S . (10)

We can take this one step further by asking the question,
‘Given our knowledge of injected sources, how good are our mea-
sures of deep–shallow completeness (CDS) and reliability (RDS)?’
From this, we define the fraction of real–deep–shallow detec-
tions, (D ∩J )∩ (S ∩J ), to real–deep detections, D ∩J , as our
goodness of completeness,

C̃DS = (D ∩J )∩ (S ∩J )
D ∩J , (11)

and the fraction of real–deep–shallow detections to real-shallow
detections, S ∩J , as our goodness of reliability,

R̃DS = (D ∩J )∩ (S ∩J )
S ∩J . (12)

Table 5 summarises all of our completeness and reliability metrics
(Equations (5) through (12)).o

Fig. 10 shows examples of deep–shallow source component
overlaps, S ∩D, to illustrate the calculation of CDS and RDS .
Matches are done pair-wise, within clumps, between the closest
centres of overlapping deep–shallow components. This method
is more precise than a typical fixed separation nearest neigh-
bour approach (Hopkins et al. 2015; Riggi et al. 2019), as it
ensures source components always overlap. The |S ∩D|:|D| and

oThe current version of the Hydra Viewer (Fig. 7) only supports filtering the S/N bins
of its CDS andRDS diagnostic plots, through its Mode button.
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Table 5. Completeness/reliability metrics (see Fig. 9) in terms of deep (D), shallow (S), and injected (J ) sources.

Inputs Detections Real detections Completeness Reliability

J D D ∩J CD = D ∩J
J RD = D ∩J

D

J S S ∩J CS = S ∩J
J RS = S ∩J

S

D S S ∩D CDS = S ∩D
D RDS = S ∩D

S

D ∩J S ∩J (D ∩J )∩ (S ∩J ) C̃DS = (D ∩J )∩ (S ∩J )
D ∩J R̃DS = (D ∩J )∩ (S ∩J )

S ∩J

Figure 10. Examples of deep (blue) and shallow (amber) source component overlaps,
CDS = (S ∩D)/D andRDS = (S ∩D)/S. Real-shallow detections are indicated by
overlapping pair-wise deep-shallow detections (S ∩D), whose centres are closest.
The dash-lines indicate clumps of component extent overlays.

|S ∩D|:|S| ratios are then binned with respect to theD and S flux
densities (or S/N), respectively, producing CDS vsD completeness
andRDS vs S reliability histograms.

5. Validation

In this section we use 2◦ × 2◦ simulated-compact (CMP) and
simulated-extended (EXT) image data to characterise the perfor-
mance of Hydra, and validate some new metrics. In particular, the
simulated data are used to explore and develop metrics that can be
used for real images where the ground truth is unknown. A pre-
liminary discussion on SF performance is also presented. Paper II
is focused on cross-SF comparison, using our simulated data along
with some real data.

5.1. Image data

5.1.1. Simulated compact sources, CMP

The simulated image, shown in Fig. 11, is produced in two steps;
generation of a noise image, followed by the addition of artificial

Figure 11. Simulated map with point-like (compact) sources. The coordinates are
arbitrarily set, and the FWHM is set to 15”.

sources. We use MIRIAD (Sault, Teuben, &Wright 1995) to gener-
ate the artificial noise image, using the following steps. The IMGEN
task was used to produce a 1800×1800 pixel image, with 4” pix-
els, (i.e., a 2◦ × 2◦ field) populated by random Gaussian noise of
RMS 20µJy beam−1. This image was convolved using CONVOL to
mimic a 15” FWHM beam, which has the effect of increasing the
noise level by a factor of 2.8, so the resulting image is then scaled
using MATHS to divide by this factor, restoring the original noise
level of 20µJy beam−1.

To generate the properties of the artificial sources, we use
the 6th order polynomial fit to the 1.4 GHz source counts from
Hopkins et al. (2003), which is consistent with more recent source
count determinations for the flux density range considered here
(e.g., Gürkan et al. 2022, and references therein). A sequence of
34 exponentially spaced bins in flux density was defined, ranging
from 50µJy to 1 Jy, and within each bin the number of sources was
calculated from the source count model. The flux density for each
artificial source was assigned randomly between the extrema of the
bin in which it lies. Source positions were also assigned randomly,
with no attempt to mimic the clustering properties of real sources.
For the 2◦ × 2◦ field with a flux density limit of 50µJy, we end up
with a list of 9075 artificial sources.

These sources were added to the noise image using the Python
module Astropy (Astropy Collaboration et al. 2013, 2018) by con-
structing 2D Gaussian models with the FWHM of the restoring
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Figure 12. Simulated imagewith both point-like (compact) and extended sources. The
sky coordinates are arbitrarily chosen.

beam (15”) and scaling the amplitude to represent the randomly
assigned peak flux density of the source. Given the sources mod-
elled here are assumed to be point-like (compact), the peak flux
density for a source has the same amplitude as the integrated flux
density. Using this Gaussian model for each source, we generated
an image array for each source to be added into the simulated
image. We used Astropy again to convert the RA/Dec location
of the source to pixel locations and each source was added to the
simulated image at the desired location.

5.1.2. Simulated extended sources, EXT

Following a similar procedure as in Section 5.1.1, we generated
a sky model of size 1800× 1800 pixels (4′′ pixel size, 2◦×2◦ field
of view) with both point-like and extended sources injected. The
noise level is again set to 20 µJy beam−1. Extended sources are 2D
elliptical Gaussians with randomised position angle and axis ratio,
with axis ratio varying between 0.4 to 1. A maximum major axis
size was set at three times the synthesised beam size (45′′, with a
15′′ FWHM beam, as in Section 5.1.1).

A total of 9974 artificial sources were injected, correspond-
ing to a source density of 2500 deg−2, with 10% being extended
sources. The peak flux densities S of both point-like and extended
sources were set to follow an exponential distribution 10−λS with
λ=1.6, consistent with that seen in early ASKAP observations of
the Stellar Continuum Originating from Radio Physics In Our
Galaxy (SCORPIO, Umana et al. 2015) field (Riggi et al. 2021). The
minimumpeak flux density for all sources was set at 50µJy and the
maximumfixed at 1 Jy for compact sources and 1mJy for extended
sources. The final simulated image, shown in Fig. 12, was produced
by convolving this input sky model using the CASAp imsmooth
task and a target resolution of 15′′.

It is important to note here that, unlike the compact source
simulation above where the faintest injected source lies at
(S/N)min ∼ 2.5, in the extended source simulated image 20.6% of
the injected sources fall below S/N= 1. This is by design, to pro-
vide a more realistic image, and to test the impact on the SFs of

pCommon Astronomy Software Applications, https://casa.nrao.edu/.

Table 6. Hydra μ-optimised box_size and step_size inputs for Aegean,
PyBDSF, and Selavy,a using CMP and EXTD/S-image data.

Image Image μ box_size step_size

depth (µJy beam−1) (′′) (′′)
CMP D 21.81 240 120

S 108.2 180 88

EXT D 68.01 480 240

S 325.3 240 120
aSelavy only accepts box_size.

having real sources lying below the noise level (re. M. M. Boyce
et al., in preparation).

5.2. Typhon statistics

5.2.1. Optimisation run results

Hydra uses Typhon to set the RMS box and island parameters
for each SF (Aegean, Caesar, ProFound, PyBDSF, and Selavy) to
ensure a 90% PRD cutoff. The RMS box parameters, obtained
from Typhon’s μ-optimisation routine, were used by Aegean,
PyBDSF, and Selavy. An S-image was generated by Homados,
and RMS box and island parameters similarly estimated. Tables 6
and 7 summarise these results for our CMP and EXT images.

For the CMP source D-image, μ ∼ 22µJy beam−1 (Table 6)
which is consistent with the design RMS noise of 20µJy beam−1

(re. Section 5.1). For the EXT sourceD-image,μ ∼ 68µJy beam−1

which is higher due to the inclusion of extended structures with a
slightly higher source density, and the fact that the box size has
doubled. This is consistent with an average source size increase
from 15′′ to 30′′. We also note that μS/μD ∼ 5 for all images,
which is consistent with the factor of 5 noise increase for the S-
images (Section 3.1.1). So the RMS box statistics are consistent
with what might be expected from the simulated images.

In Table 7 we notice, in the broadest sense, that the RMS
and island parameters are similar for the D/S-images, row-wise.
Fig. 13 shows stacked plots of D/S source counts for the images.
In the CMP and EXT D-images, there is some variability in the
source counts, that is, N ∼ 4 650± 890, except for Selavy being
consistently lower by N ∼ 1 770± 950. In the S-image case, the
variability is fairly tight, with NCMP ∼ 661± 54 and NEXT ∼ 1 258±
70, except for Selavy which is consistently lowwithNCMP = 427 and
NEXT = 787.

For the CMP D-image, the RMS and MADFM residual statis-
tics are all ∼19µJy beam−1, with the exception of Selavy having
a significantly higher RMS (∼45µJy beam−1), likely the primary
cause for the reduction in numbers of detected sources it reports.
For the EXT D-image, the RMS values increase in order from
ProFound, Caesar, Aegean, PyBDSF, to Selavy, with the latter three
being comparable to the former being at extreme end. This is
also reflected in their MAFDMs, although here the values are
somewhat comparable. For the S-image case, everything is similar
within each image data set, except for Selavy having a higher RMS
in the EXT image case. These observed discrepancies for Selavy
are likely due to its use of robust statistics in the background esti-
mation (Section B.5). In contrast, the MADFM is similar in both
cases for all SFs.

Table 8 shows ratios of deep-to-injected (D :J ) and shallow-
to-deep (S :D) source counts: that is, D :J indicates the fraction
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Table 7. Typhon run statistics for CMP and EXT images, with SF, image depth, SF RMS parameter (nrms [σ ]), SF island parameter (nisland [σ ]),
source counts (N), residual RMS (µJy beam−1), and residual MADFM (µJy beam−1) columns.a

SF Image CMP sources EXT sources

depth nrms nisland N RMS MADFM nrms nisland N RMS MADFM

Aegean D 3.074 3.070 6016 20.0 19.0 3.074 3.070 4112 67.0 56.0

Caesar D 3.074 3.000 4084 19.0 16.0 3.206 3.000 3618 54.0 44.0

ProFound D 2.412 2.409 4997 18.0 16.0 2.412 2.409 3730 52.0 43.0

PyBDSF D 2.809 2.806 5991 22.0 19.0 2.809 2.806 4688 106 54.0

Selavy D 3.206 3.203 3225 45.0 20.0 3.206 3.203 2544 982 58.0

Aegean S 3.868 3.864 747 110 110 3.603 3.599 1287 321 317

Caesar S 4.000 3.000 657 109 106 3.603 3.000 1297 310 295

ProFound S 3.074 3.070 642 109 107 2.941 2.938 1138 311 298

PyBDSF S 3.735 3.732 598 111 109 3.338 3.335 1312 316 313

Selavy S 4.000 3.996 427 114 110 3.735 3.732 787 623 320
aThe MADFM estimators are normalised by 0.6744888 (Whiting 2012).

Figure 13. SF CMP and EXTD/S-image detection stacked plots (re. the N columns of
Table 7).

of sources recovered in the simulated images, whereas S :D indi-
cates the recovery rate assuming the deep detections are ‘real’.
Also included are S :J recovery rates, for comparison.q TheD :J
recovery rates are not expected to reach 100%, as the simulations
includes low S/N sources, and for EXT sources, some lying below
S/N= 1. The S :D recovery rate is lower for CMP sources than
EXT, which both track consistently with D :J .r This may be due
to some confusion in the EXT image (Fig. 12), given the S :J
recovery rates are similar.

The consistency of the RMS box, MADFM, D :J , S :J , and
S :D statistics provides a good indication that Hydra’s optimisa-
tion routines are performing robustly.

5.2.2. Source size distributions

Fig. 14 shows the major-axis distribution for our simulated image
data. Both the D and S source detections are combined, as the S

qAs S :D =S :J /D :J .
rthat is, (S :J )CMP & EXT ∼ 6.5± 1.1% implies S :D/D :J is roughly constant.q

Table 8. Ratios of deep-to-injected (D :J ) shallow-to-injected (S :J ), and
shallow-to-deep (S :D) sources. The D/S source counts (N) are provided in
Table 7, and the injected source counts are 9075 and 9974 for CMP and EXT
sources, respectively (re. Section 5.1).

Source CMP EXT

finder D :J S :J S :D D :J S :J S :D
Aegean 66.3% 8.2% 12.4% 41.2% 7.5% 31.3%

Caesar 45.0% 7.2% 16.1% 36.3% 6.6% 35.8%

ProFound 55.1% 7.1% 12.8% 37.4% 6.4% 30.5%

PyBDSF 66.0% 6.6% 10.0% 47.0% 6.0% 28.0%

Selavy 35.5% 4.7% 13.2% 25.5% 4.3% 30.9%

provides no contrasting information and its statistics are quite low
(Fig. 13). Note that the size estimates for different SFs use different
methods and are not necessarily directly comparable. Those SFs
that fit Gaussians to source components report size as a FWHM,
while others (such as ProFound) use different measures, such as a
flux-weighted fit (see Appendix B for details).

For the CMP source case, ProFound and PyBDSF tend to over-
estimate the source sizes. This is likely due to deblending issues
or the incorporation of noise spikes. As for EXT sources, PyBDSF
tends to most accurately recover the extended source sizes, but,
along with Caesar also has the most outliers. These could be
attributed to size overestimates due to inclusion of noise spikes or
adjacent sources in the fitted sizes. All other SFs tend to marginally
underestimate the EXT source sizes. Components smaller than 15′′
are attributed primarily to noise spikes, but also occasionally to
underestimating the source sizes.

5.3. Completeness and reliability

In this section, we discuss deep (D) and shallow (S) complete-
ness (C) and reliability (R) (see Section 4). We then provide
justification for using deep-shallow (DS) completeness (CDS) and
reliability (RDS) metrics for real images, and qualifications on
their use, through goodness of completeness (C̃DS) and goodness
of reliability (R̃DS) results.
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Figure 14. Major-axis distributions for (a) CMP and (b) EXT sources (with D and S
both included). The vertical dashed-line represents the beam size. The distributions
of the injected sources are shown in grey. Recall that size estimates between SFs are
not necessarily directly comparable as they are estimated using different methods.

5.3.1. Simulated sources

Fig. 15 shows CD vs S/N (top) and RD vs S/N (bottom) for CMP
(left) and EXT (right)D-images, where the signal-to-noise (S/N) is
the ratio of theD-signal toD-noise. Fig. 16 shows the correspond-
ing results for S-images, where S/N is the ratio of the S-signal to
S-noise.

For CMP sources all SFs show a similar behaviour in gen-
eral. The completeness metric starts to decline slowly from 100%
at S/N� 30, and drops rapidly toward zero below S/N∼ 5. False
detections are typically limited to about 10% of the sample down
to S/N∼ 5, but can appear in some SFs as high as S/N∼ 30. In
general terms, Aegean provides the highest level of completeness
at any given S/N, with a well-behaved decline in reliability below
S/N∼ 5− 6. At the other end of the scale, Selavy has the lowest
level of completeness at any S/N, but the best reliability (fewest
false detections).

All SFs seem to miss some bright sources, with Selavy stand-
ing out as the poorest in this regard. This is likely due in part to
the handling of overlapping sources. Both PyBDSF and ProFound
report the largest numbers of false sources (seen in RD and RS)
at high S/N. For PyBDSF this is a consequence of overestimat-
ing source sizes (Fig. 14), especially in the presence of closely

neighbouring sources, or nearby noise spikes, by quite significant
amounts in some cases (see Paper II). For ProFound this arises due
to the blending of neighbouring sources (see Paper II).

For EXT sources there is generally poorer performance overall
compared to those for the CMP sources, most clearly seen in the
D-image results (Fig. 15). There are also several artefacts appear-
ing at unphysically low S/N (S/N< 1) arising from spurious faint
detections. Even at reasonable S/N (10< S/N< 100) there is mea-
surable incompleteness, and reliability that dips as low as 80% for
some SFs. Here Aegean appears to perform the best, with Selavy
showing much poorer performance.

5.3.2. Metrics for real sources

Fig. 17(a) and (b) show CDS vs S/N and RDS vs S/N, respec-
tively, for CMP sources. As we know what the true sources are,
we can explore the validity of CDS andRDS by removing any false
detections in the D and S-images, that is, we can compute C̃DS
(Equation (11)) and R̃DS (Equation (12)). The results are shown
in Fig. 17(c) and (d), respectively.

Comparing C̃DS and R̃DS with CDS and RDS , respectively,
C̃DS is largely unchanged, while R̃DS does not show the dip
in RDS around S/N ∼ 10 seen for most SFs. It also excludes
the decline seen by Aegean at low S/N. This suggests that the
apparently poorer estimated reliability in RDS arises from the
existence of spurious sources detected in theD-image that are (not
surprisingly) missed in the S-image.

To quantify these results we define residuals between our
unconstrained (CDS and RDS) and constrained (C̃DS and R̃DS)
metrics: that is, the residual completeness,

δCDS = C̃DS − CDS , (13)

and residual reliability,

δRDS = R̃DS −RDS . (14)

These quantities are shown in Fig. 17(e) and (f), respectively.
In general, they are expected to be positive, as there should be
an excess of false detections in CDS and RDS compared to C̃DS
and R̃DS , by construction. Negative values may appear when real
input sources are detected but poorly fit, leading to inconsistent
flux densities between theD and S-images. The figure shows δCDS
predominantly highlighting a small number of spurious PyBDSF
detections, and δRDS emphasising the distribution in S/N of the
false detections.

Recognising these limitations, while also noting that for several
SFs δCDS and δRDS are small, the approach of estimating com-
pleteness and reliability for a given finder based on real images
is not unreasonable. Clearly it is not as robust as doing so using
known injected sources as a reference, but it may be a useful
addition to analyses comparing finder performance on real data
containing imaging artefacts and other hard to simulate system-
atics. Similar conclusions can be drawn for the EXT source case
(Fig. 17(g) through (l)).

Finally, we note that CDS and RDS in Fig. 17(a) and (b),
respectively, for CMP sources fare much better than their EXT
counterparts, (g) and (h), respectively. The metrics in the latter
case perform even more poorly than their CD , RD , CS , and RS
counterparts (Figs. 15 and 16). This could perhaps be due to confu-
sion, given the source density (Fig. 12) and highMADFM statistics
(Table 7).
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Figure 15. SimulatedD-image compact (left) and extended (right) source CD (top) andRD (bottom) vs S/N (D-signal/Deep-noise) plots. TheD-noise is computed using BANE.

5.4. Summary of validation tests

The Hydra software was tested using the Aegean, Caesar,
ProFound, PyBDSF, and Selavy SFs, comparing them by first min-
imising the FDR based on a 90% PRD cutoff, through Typhon.
This process was done for 2◦ × 2◦ CMP and EXT D/S-images.
The RMS box, MADFM, and source detection statistics were also
shown to be consistent with the simulated data, thus validating
Hydra’s performance. The source size distributions also provided
an indication of its performance.

The simulated data was used to develop CDS andRDS metrics
for deep/shallow image pairs, treatingD detections as true sources.
This was done by examining these statistics with the erroneous
detections filtered out, using knowledge of the underlying injected
sources, leaving goodness of completeness, C̃DS , and goodness of
reliability, R̃DS , metrics. Contrasting CDS and RDS with CD (or
CS) and RD (or RS), respectively, a notable degradation in the
former was observed for EXT images, most likely due to DS-
confusion. That being said, in general, the form of CDS and RDS

remains relatively unchanged, although the S recovery rate, S :D,
is significantly reduced (Table 8). This suggests that these metrics
are good for studying SF performance in real images, given the
ability to quantify incompleteness (1− C) and FDR (1−R).

In passing, some observations of SF performance were also
made, and are explored in more detail in Paper II. The source
detection numbers were comparable between all SFs except for
Selavy, which was consistently low (Table 8). Some variability in
the residual RMS estimated for the D-mages was observed, with
Selavy having unusually high values. For CMP sources the values
were comparable except for Selavy, whereas for the EXT case there
was significant variation except for Caesar and Profound. As for
the S-images the values were all consistent, except for Selavy being
significantly high in the EXT source case. The MAFDM statistics
were consistent in both cases for all SFs.

For CMP and EXT sources, Aegean had the best CD (and
CS) statistics followed by PyBDSF, ProFound, Caesar, and Selavy.
Selavy, followed to a lesser degree by Caesar, tends to miss bright
sources, more so than the other SFs. For RD (and RS) they also
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Figure 16. SimulatedS-image compact (left) and extended (right) source CS (top) andRS (bottom) vs S/N (D-signal/S-noise) plots. TheS-noise is computed using BANE.

reported the largest number of false sources at high S/N. The
quality of the C and R statistics is poorer for EXT than CMP
sources which is mainly attributed to confusion (see Fig. 12).

6. Conclusions

Radio astronomy has dramatically progressed in the lead-up to the
SKA era (see, e.g., Fig. 1 of Norris et al. 2021). The past decades
have seen development of technologies and facilities that improve
the survey speed, survey depth, and a rapid growth in results from
SKA precursors. Ongoing and planned surveys such as VLASS
(Lacy et al. 2020; Gordon et al. 2021) with 82% sky-coverage, and
EMU (Norris et al. 2011, 2021) with 75% sky-coverage, expect to
produce catalogues with source numbers into the millions and
tens of millions.

Increasing survey sizes drive a need for SF software with highly
robust and well-characterised completeness and reliability statis-
tics. This need has driven source-finding challenges (e.g., Hopkins
et al. 2015; Bonaldi et al. 2021) for comparing the various tools
and technologies. Some optical SFs have also been applied to

radio images, such as SExtractor (Bertin & Arnouts 1996) and
ProFound (Hale et al. 2019). Caesar was introduced for han-
dling compact sources jointly with diffuse emission (Umana et al.
2015), through the reprocessing of its residual image (Riggi et al.
2016). These are atural extensions of traditional thinking on radio
source extraction. Qualitatively different approaches are also being
developed, including the application of machine learning to this
field (e.g., Bonaldi et al. 2021; D. Magro et al., in preparation).
In the SKA era, it may be that source detection and cataloguing
will need to be done on the fly due to the data volume (Bonaldi
et al. 2021). A Hydra-like tool may have substantial value in
that context, encapsulating the strengths of multiple SFs run in
parallel.

The optimum comparison between SFs requires the expertise
of the originators to fine tune their performance for a given set of
reference images, as pursued in such data challenges. For this rea-
son it is necessary to fairly compare large numbers of SFs on an
even footing. Hydra was developed to encapsulate this expertise,
in a modular fashion, using Docker containers. Hydra is exten-
sible and the user does not have to be an expert at every SF to
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Figure 17. CDS (a and g),RDS (b and h), C̃DS (c and i), R̃DS (d and j), δCDS (e and k), and δRDS (f and l) vs S/N for CMP (top set) and simulated-extend (bottom set) sources.
The S/N are expressed asD-signal/S-noise andS-signal/S-noise for completeness and reliability, respectively, where theS-noise is computed using BANE.

use it. Hydra focuses specifically on optimising the RMS threshold
and island growth parameters, common to the traditional class of
SFs, through the percentage real detections metric, PRD (Equation
(1)). This two-parameter optimisation technique is adopted fol-
lowing Hale et al. (2019), who did the optimisation by hand, in

a study comparing Aegean, ProFound, and PyBDSF. Hydra also
includes an optional background-estimation optimisation step to
identify the RMS box and step size parameters, through the mean
noise metric, μ (Equation (3)). It is clearly possible to improve
Hydra in order to handle more SF-specific parameters.
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Hydra provides deep (D, i.e the input image) and shallow (S ,
i.e., the D-image with 5σ noise added) catalogues for each SF,
which are linked through a cluster table of overlapping compo-
nents, or clumps (Fig. 5). The S-image creation and analysis is
motivated by a desire to assess a given finder’s performance against
itself, in the absence of simulated data, treating the D-image ver-
sion of the SF’s catalogue as the ground truth. Each clump has
an ID which can be used to locate the associated D/S-image and
residual cutouts (with and without component annotations).D/S
region files for the full images are also available. Hydra also merges
catalogues of known sources (simulated in our case), providing
corresponding metrics such as completeness (C) and reliability
(R). Hydra also comes with an HTML viewer that allows the user
to explore the various data products (Fig. 7).

This paper is part one of a two part series, in which we
have introduced the Hydra software, and validated its optimisa-
tion algorithms, using simulated-compact (CMP) and simulated-
extended (EXT) image data. In addition to the traditionalD-image
metrics, such as completeness (CD) and reliability (RD), Hydra
introduces a whole new set of metrics, such as S-image complete-
ness (CS) and reliability (RS), andDS-image completeness (CDS)
and reliability (RDS), respectively. In this paper we also validated
the CDS and RDS metrics for use with real images, by using our
simulated data where the true sources are known. It was found that
CDS and RDS are useful for characterising SF performance, pro-
vided one keeps in mind the D detections are incomplete with a
slight degradation inRDS for low S/N. In Paper II we evaluate the
performance of the SFs using our simulated images along with real
data.
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Appendix A. Cerberus Code Template Notes

In this appendix we provide more architectural details regarding
Cerberus template rules discussed in Section 3.1.2. The intent here
is to provide enough detail to give an overall sense of Hydra’s
extensible nature. Further details can be found in the Hydra user
manual.

Fig. A.1. shows a more detailed view of the Cerberus code
generation workflow (c.f., Fig. 3). The term ‘template’ refers to
the overall directory hierarchy, configuration files, and naming
conventions. At the lowest level, within the config directory,
are subdirectories for each of the SFs, containing ∗.py and/or
∗.R script files, ∗.dcr Dockerfiles, and ∗.yml YAML files. The
docker-compose.yml and config.yml files in themain config
directory provide the glue for building containers and code gener-
ation, respectively.

A.1. Containerisation

The general recipe for containerising SFs is as follows.

• Create a Docker build file containing the following:

– Base operating system environment
– SF environment with tools
– SF wrapper script with command-line arguments:

∗ Input image path
∗ Processing directory path
∗ Output directory path
∗ Image filename to process
∗ RMS-Parameter with default setting
∗ Island-Parameter with default setting
∗ RMS box parameters (optional)
∗ FITS catalogue file output flag (default, CSV)
∗ Residual image flag
∗ Dump flag
∗ Help flag

– Internal directory structure:

∗ Script home directorys

· Input subdirectory
· Processing subdirectory
· Results subdirectory

– A container ENTRYPOINT

• Update the docker-compose.yml configuration file with the
container build instructions

• Build the container image

sUsed for software development and testing.
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Figure A.1. Detailed breakdown of the Cerberus code generation workflow given in Fig. 3. Fig. A.2 shows a detailed example of an Aegean container image build, utilising
aegean.dcr, aegean.py, and docker-compose.yml. Fig. A.3 shows an example of updating cerberus.py to include Aegean, through code generation, utilising aegean.yml
and config.yml. All of the information in Configuration Management is accessible to all of the tools within the Hydra software suite.

Figure A.2. Example of Aegean containerisation. The Dockerfile, aegean.dcr, has four main parts, (1) a base Ubuntu 20.04 operating system, (2) an AegeanTools toolbox build
environment, (3) a home_dir, input_dir, processing_dir, and output_dir directory structure along with a local script, aegean.py, and (4) an ENTRYPOINT (EP) through
which aegean.py can be externally accessed by cerberus.py. The docker-compose.yml configuration file contains an Aegean build block (aegean:), which has twomain parts,
(1) a part defining the image name (aegean) along with a pointer the Dockerfile (aegean/aegean.dcr), and (2) a part containing the directory file structure to be built along with
a pointer to aegean.py. The container image is built, using this information, with the docker-compose command.
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The input and output directories serve as external mount
points, used by the cerberus.py wrapper script: that is, the
input directory contains the input image, the processing directory
contains the SF wrapper script scratch files, and the results direc-
tory contains output catalogues, region files, etc.t The container
ENTRYPOINT allows cerberus.py external access to the internal
script. Aegean is perhaps one of the simplest SFs to containerise,
with details shown in Fig. A.2.

As can be seen, Aegean comes as part of an AegeanTools tool-
box within an Ubuntu 20.04 operating system. The Dockerfile,
container directory structure, and local aegean.py container
wrapper script are defined in the docker-compose.yml config-
uration file. Everything related to Aegean containers, directories,
scripts, etc., are all prefixed with aegean. Also, aegean.py can be
accessed internally within the container, for example,

or externally outside of the container, that is,

the latter being used by cerberus.py (Section 3.1.2). After imple-
menting the above template rules a new container image can be
built using the docker-compose command within the config
directory.

A.2. Code Generation

For code generation a metadata file needs to be created (e.g.,
aegean.yml), and then linked to the master configuration file,
config.yml. This information is then used for code generation
through the Jinja template engine. Fig. A.3 shows an example
workflow for creating the Aegean module.

All scripts within the Hydra software suite have access to the
Configuration Management system in order to perform opera-
tions in a generic fashion. For example, cerberus.py utilises the

tThe dump flag (- -dump) copies the contents of the internal processing directory to
the external results directory, which can be used for debugging purposes.

Figure A.3. Example of the addition of an Aegean module for cerberus.py through
code generation. In short, the developer creates an aegean.yml metadata file
and links it to the master configuration file, config.yml. Then by running the
script_generator.py script, in the libs directory, the module is installed.

docker-compose configuration file for linking calls to the source-
finder container images, typhon.py utilises the metadata files for
parameters and constraints used for source-finder optimisation,
hydra.py utilises the metadata files for catalogue processing, and
so on.

B. Source Finder Implementation Notes

In this section we briefly overview the SFs currently supported by
Hydra and their relevant settings.

It should be noted that Aegean, Caesar, and Selavy have various
multiprocessor mode implementations wherein large images are
split into manageable chunks and processed in parallel in order to
reduce the overall processing time (see Hancock et al. 2018; Riggi
et al. 2019; Whiting & Humphreys 2012, respectively for details).
For the current implementation of Hydra we have chosen to leave
these modes disabled. These modes provide various methods for
dealing with background noise computations and source detec-
tion, which become problematic near edges of sub-images, and
consequently have tendencies to bias the statistics especially when
comparing against non-multiprocessor SFs, such as ProFound and
PyBDSF.

B.1. Aegean

The AegeanTools toolbox contains two main items of relevance
to this discussion, a background and RMS noise computation
script, BANE, and a source finding script, Aegean (Hancock et al.
2018). BANE uses a sliding box-car method, with grid-based box
and step size parameters, wherein RMS noise estimates are cal-
culated using sigma-clipping. Aegean itself uses a faster, but less
accurate, ‘zones’ algorithm. Aegean can also use the output from
BANE, which is the implementation adopted here.
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The Aegean SF uses a flood-fill algorithm to identify islands
above a detection threshold. It then implements a deblending pro-
cess to determine the number of local maxima through the discrete
2D Laplacian (i.e., curvature) kernel

L2xy =

⎡
⎢⎢⎢⎣
1 1 1

1 −8 1

1 1 1

⎤
⎥⎥⎥⎦ , (B1)

to identify flux peaks for localised fitting of Gaussian compo-
nents (Hancock et al. 2012). Its flood-fill algorithm utilises two
parameters, a seed threshold parameter, σs (i.e., seedclip), above
which to seed an island, and a flood threshold parameter, σf (i.e.,
floodclip), above which to grow an island, such that, σs ≥ σf (see
Table 2). It then convolves the image with Equation (B1), produc-
ing a curvature map, from which it implements Gaussian fits to
local depressions (i.e., negative curvature bowls, corresponding to
local flux density maxima) within the islands.

The implementation of the Aegean (version 2.2.4) module for
Cerberus provides the box-car and flood-fill parameters, as per
module design requirements.

Here we use the source component catalogue: that is, source
island information is not included in this version of Hydra.u
Of particular interest are the integrated flux densities and fitted
component sizes.

B.2. Caesar

Caesar does its source finding using a flood-fill method to obtain
blobs (i.e., ‘islands’), from which child-blobs (or ‘nested blobs’) are
(optionally) extracted using elliptical-Gaussian-based Laplacian
(Equation (B1)) or χ 2 filters (Riggi et al. 2016, 2019). Compact
sources, that is, childless-blobs, are subtracted out to leave a
residual map with extended sources that can be extracted either
though a wavelet transform, saliency, hierarchical-clustering, or
active-contour filter.

The RMS and island parameters come in two sets,
one for the parents, seedThr and mergeThr, respec-
tively, and one for the children, nestedBlobPeakZThr and
nestedBlobPeakZMergeThr, respectively. As we are optimising
these parameters externally (through the PRD, Equation (1)), we
set compactSourceSearchNIters = 1 to prevent decrements
in seedThr by seedThrStep. In our implementation, we also
search for child-blobs (i.e., searchNestedSources = true),
with their RMS and island parameters set to the same values as
their parents (Riggi et al. 2019). For child-blob filtering we use the
Laplacian method (i.e., blobMaskMethod = 2, with fitSources
= true), and for source extraction we use the saliency filter
method (i.e., extendedSearchMethod = 2; for algorithms, see
Riggi et al. 2016).

It should be noted here that searching for child-blobs is not
necessary for an image consisting of only point sources; however,
for consistency, we prefer to have the same settings for both point
and extended sources, for the purposes of comparing performance
against other SFs. The only potential impact of this approach is in
extra processing time.

Caesar also does background and RMS noise optimisation
through any of the following metrics, μ/σ , median/MADFM,

uthat is, the - -island flag is not set. Formore details, see Aegean footnote a in Table 2.

Table B.1. Caesar (Version 1.1.5) module settings.

Parameter Value

useLocalBkg true

bkgEstimator 2

useBeamInfoInBkg true

searchCompactSources true

compactSourceSearchNIterse 1

searchNestedSources true

extendedSearchMethod 4

blobMaskMethod 2

nestedBlobPeakZThr seedThr

nestedBlobPeakZMergeThr mergeThr

fitSources true

computeResidualMap true

removeNestedSources true

removedSourceType -1

residualZHighThr seedThr

residualZThr mergeThr

saveResidualMap true

residualMapFITSFile residual.fits

biweight, and clipped median/σ . Consequently it does not
require pre-tuning like PyBSDF, for example. Here we have cho-
sen the median/MADFM metric (i.e., bkgEstimator = 2, with
useLocalBkg = true and useBeamInfoInBkg = true), as it
is similar to the pre-optimisation scheme option used by Typhon.

Table B.1 summarises all of the internal settings of Cerberus’s
Caesar module. Note that we have also set some of the resid-
ual image processing flags, so as to remove all source types
(removedSourceType = -1) with the appropriate threshold-
ing (i.e., residualZHighThr = seedThr and residualZThr
= mergeThr).

The output source components are obtained from the source
component catalogue, that is, we do not include the source island
catalogue in this version of Hydra. Of particular interest are the
integrated flux densities and fitted component sizes.

B.3. ProFound

ProFound uses a watershed deblending process, wherein it system-
atically searches for the highest flux pixel and expands outwards
and downwards in flux to some cutoff, creating a segment (i.e.,
‘island’), before proceeding to the next highest flux pixel, and so
on (Robotham et al. 2018). The end result is the formation of
‘flux-mountains’ (segments) with peaks and valleys (boundaries
between segment groups). After the segments have been deter-
mined, it then dilates them until convergence is reached, as deter-
mined by a Kron/Petrosian-like dilation kernel (see Section 2),
while assigning overlapping segment fluxes to the ones with
the most flux (e.g., Fig. B.1). The segment formation thresh-
old is determined by a skycut parameter, which corresponds to
our RMS parameter, and the segment partitioning is determined
by a tolerance parameter, which corresponds to our island
parameter.

ProFound was designed for optical images and so there are
some nuances when it comes to applying it to radio image data
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Figure B.1. Example of ProFound dilation process of a small 3′ × 3′ VLASS Epoch 1.1
Quick Look (QL) image cutout, centred at J222135+070712. The cutout was extracted
fromaQL image tile, available at NRAO (https://science.nrao.edu), and then processed
using ProFound in R Studio.

(see Hale et al. 2019). Table B.2 summarises all of the settings
internal to the ProFoundmodule,v used herein. In addition, a con-
siderable amount of wrapper code was required so as to extract
the appropriate ‘radio catalogue like’ information from its inter-
nal hierarchical data structure. Of particular interest are the total
flux density and component size, which are pixel sums and flux-
weighted fits,w respectively, for a given segment (Robotham et al.
2018). Consequently these are not directly comparable to FWHM
measurements from Gaussian fits in other SFs.

B.4. PyBDSF

PyBDSF identifies islands by collecting pixels greater than a given
flux threshold, thresh_pix,x and then expands outwards from
those pixels in octets above a given island-boundary threshold,
thesh_isl. Our RMS and island parameters correspond to for-
mer and latter thresholds, respectively. After the islands have
been determined, it performs multiple Gaussian fits to each island
(Hancock et al. 2012).

We follow the same generic recipe as Hale et al. (2019) to
accommodate extended sources, as outlined in Table B.3. The
atrous_do parameter selects the à trous wavelet decomposition
(Holschneider et al. 1989) module as one of several options for
post-processing. These include shapelet decomposition, à trous
wavelet decomposition, PSF variation, polarisation, and spec-
tral index modules. Setting flag_maxsize_bm = 100 along with
atrous_do = True allows for Gaussians greater than the beam
size and of varying scales, respectively. Setting mean_map =
“zero” sets the background mean to zero, enhancing the detec-
tion of extended emission.

The PyBDSF module also provides the rms_box tuple, so that
the RMS box and step sizes can be optimised by Typhon.

The output source components are obtained from the
source catalogue: that is, catalog_type = ’srl’ via the
write_image(. . .) command. The catalogue does not include
empty islands (i.e., incl_empty = False). Of particular inter-
est are the total flux densities and component sizes, which are
expressed as integrated Stokes I and FWHM’s, respectively.

vSee also ProFound footnote c in Table 2.
wFor the major axis, it is the ‘weighted standard deviation along the major axes (i.e., the

semi-major first moment, so ∼2 times this would be a typical major axis Kron radius) in
units of pix.’ 22

xRe. process_image(. . .) of footnote d in Table 2.

Table B.2ProFound (version 1.13.1, with R version 4.0.3)module default settings,
where box = c(100, 100). It should be noted that results can differ radically
between versions of ProFound and R. Furthermore, the default settings men-
tioned in the documentation can differ considerably from what is actually in
the source code. This table includes all settings that are deemed important for
reproducing our results.

Parameter Value Parameter Value

pixcut 3 iterative FALSE

ext 2 doclip TRUE

reltol 0 shiftloc FALSE

cliptol Inf paddim TRUE

sigma 1 verbose TRUE

smooth TRUE plot FALSE

SBN100 100 stats TRUE

size 5 rotstats TRUE

shape “disc” boundstats TRUE

iters 6 nearstats TRUE

threshold 1.05 groupstats TRUE

magzero 0 group NULL

pixscale 1 groupby “segim”

redosegim FALSE offset 1

redosky TRUE haralickstats FALSE

redoskysize 21 sortcol “segID”

box box decreasing FALSE

grid box lowmemory FALSE

type “bicubic” keepim TRUE

skytype “median” watershed “ProFound”

skyRMStype “quanlo” pixelcov FALSE

roughpedestal FALSE deblendtype “fit”

sigmasel 1 psf NULL

skypixmin prod(box)/2 fluxweight “sum”

boxadd box/2 convtype “brute”

boxiters 0 convmode “extended”

iterskyloc TRUE fluxtype “Raw”

deblend FALSE app_diam 1

df 3 Ndeblendlim Inf

radtrunc 2

Table B.3 PyBDSF (version 1.9.1) module settings.

Parameter Value

atrous_do True

flagging_opts True

flag_maxsize_bm 100

mean_map “zero”

interactive False

quiet False

B.5. Selavy

Selavy is a ‘single-pass’ raster-scan, or thresholding, type SF
(see Lutz 1980), with Duchamp (Whiting 2012), a 3D SF, at its
heart (Whiting & Humphreys 2012). Here we are interested in
its 2D spatial search features (i.e., searchType = spatial).
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The algorithm works downwards by growing regions of detec-
tion through a threshold parameter (see Fig. 3 of Whiting &
Humphreys 2012), snrCut, our RMS parameter, after which they
can be further extended downwards and outwards through an
optional growthCut parameter, our island parameter. Further
post-processing options are available, such as producing compo-
nents frommulti-Gaussian fitting: that is, doFit = True, to turn
the fitting option on, fitTypes = [full], to fit all degrees of
freedom, and numGaussFromGuess = True, to provide an ini-
tial guess from the number of distinct peaks found within a given
region during thresholding.y

Selavy also has various options for background estimates,
such as typical μ/σ or more robust median/MADFM based
statistics (Whiting 2012). We use a variable sliding box
method (VariableThreshold = True) with robust statis-
tics (flagRobustStats = True) and Selavy.Variable
Threshold.boxSize = (rms_box-1)/2, where rms_box is
determined by Typhon.

ySee Selavy footnote e in Table 2.

Table B.4. Selavy (version 1.1.0) module settings.

Parameter Value

Selavy.imagetype fits

Selavy.flagLog True

Selavy.flagDS9 True

Selavy.Fitter.doFit True

Selavy.Fitter.fitTypes [full]

Selavy.Fitter.numGaussFromGuess True

Selavy.searchType spatial

Selavy.VariableThreshold True

Selavy.flagRobustStats True

Selavy.flagGrowth True

Table B.4 summarises all of the internal settings of Cerberus’s
Selavy module.

The output source components are obtained from the source
component catalogue: that is, we do not include the source island
catalogue in this version of Hydra. Of particular interest are the
integrated flux densities and fitted component sizes.
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