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1. In t roduc t ion . It is we l l -known in e l e m e n t a r y c a l c u l u s 
tha t if a d i f fe ren t iab le function has a monotone i n c r e a s i n g c u r v a ­
t u r e , then i t s c u r v a t u r e is cont inuous and the c i r c l e s of c u r v a t u r e 
a t d i s t i nc t points have no points in c o m m o n . In p a r t i c u l a r , two 
o n e - s i d e d oscu la t ing c i r c l e s a t d i s t inc t points of an a r c A of 

cyc l ic o r d e r t h r e e have no points in c o m m o n ; cf. [ l ] , [2] , [3]. 
The c o n f o r m a i proof given h e r e that any two g e n e r a l o scu l a t i ng 
c i r c l e s a t d i s t i nc t points of A a r e d is jo in t ( T h e o r e m i ) , m a y 

be of i n t e r e s t . We a l s o p rove tha t a l l but a countab le n u m b e r 
of points of A a r e s t rong ly confo rma l ly d i f fe ren t iab le 

( T h e o r e m 2). 

2. The no ta t ions and def ini t ions used in th i s d i s c u s s i o n 
a r e the s a m e a s in [4] and [5] . F o r the conven ience of the 
r e a d e r , we l i s t s o m e of the r e s u l t s which a r e needed h e r e . 

An a r c A in the c o n f o r m a i plane is the cont inuous i m a g e 
of a r e a l i n t e r v a l . P , Q , . . . denote points in the c o n f o r m a i 
p l ane , and p , s , q , . . . denote points of a r c s . C deno tes an 
o r i e n t e d c i r c l e , wi th the i n t e r i o r C^ and e x t e r i o r C v , the 
l a t t e r r e g i o n lying at i ts r i gh t . 

An a r c A is ca l l ed once confo rma l ly d i f fe ren t iab le a t p 
if it s a t i s f i e s the following: 

CONDITION I. T h e r e e x i s t s a point Q + p such that if 
s i s suff icient ly c l o s e to p on A, then the c i r c l e C(p, s, Q) 
e x i s t s . It c o n v e r g e s if s c o n v e r g e s to p [4; T h e o r e m 1]. 
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We denote the limit tangent circle by C(T ;Q). 

If Condition I holds for a single point Q 4 p, then it holds 
for all such points, and the closed set T = *r(p), of all the 
tangent c i rc les of A at p is a parabolic pencil, i. e. , any 
two c i rc les of T meet at p and nowhere e lse . 

We call A conformally differentiable at p if it satisfies 

CONDITION IL _If_ s 4 p, then lim C ( T ;S) exis ts . 
s-p 

The limit osculating circle is denoted by C(p). 

We call C a general tangent c i rc le of an a rc A at p, 
if there exists a sequence of t r ip les of mutually distinct points 
t ,u ,Q , such that t and u converge on A to p, and 
n n n n n 

lim C(t , u ,Q ) = C. If, in addition, Q € A also converges 
n n n n 

to p, then we call C a general osculating c i rc le of A at p. 

A denotes an arc of cyclic order th ree ; thus no c i rc le 

meets A m o r e than three t imes . Here , p is counted twice 

on any general tangent c i rc le of A at p which is not a general 
osculating c i rc le . On a general osculating c i rc l e , and, in 
par t icu lar , on C(p), p is counted three t imes ; cf. [5; Section 3]. 

Each point of A has the property that if Q, R 4 P» 

Q -*- R and two distinct points u and v converge on A to p, 

then C(u,v,Q) always converges [5; Theorem 2]. 

If p is an end-point of A , then C( t ,u ,v) converges if 

the three mutually distinct points t , u , v converge on A to p 
[5; Theorem 3]. 

3. Let p€ A . Let B denote the open subarc of A 

bounded by p and an end-point of A . Let C be any general 

osculating c i rc le of A at p, and let C(p) be the (unique) 

osculating c i rc le of B at p. 
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If p is an end-point of A , the strong differentiability 

of A at p implies that C = C(p) (cf. [5], Theorem 3). 

Suppose, next, that p is an interior point of A . Then 

C and C(p) both intersect A at p (cf. [5], Section 3. 3). 

By [5; Theorem 2], the general tangent c i rc les of A at p 

form a pencil T ; thus, C * T , C(p) € T . 

LEMMA. Jf C * C C ( p ) * , then B C C(p)*. 

Proof. By [5; Sections 3. 32 and 3. 33], B r\ C =B r\ C(p)=p. 

Suppose that B C C ( P ) * - Then B C C(p)*<°\ C*; otherwise, 

C(T ;S) could not converge to C(p) as s tends to p on B . 

This impl ies , however, that C(p) and C cannot both intersect 
A 3 at p. 

COROLLARY. J £ p is an interior point of A , then any 

general osculating circle of A at p lies between the two one­

sided osculating c i rc les of A at p in the pencil T (p) (cf. [5], 

3.42). 

4. THEOREM 1. Two general osculating c i rc les at 
distinct points of A have no points in common. 

Proof. On account of the above Corollary, we may now 

assume that A is an open arc with the end-points p and q. 

Thus, A has uniquely defined osculating c i rc les C(p) and 

C(q) at p and q, respectively. We may assume that neither 
C(p) nor C(q) is a point-circle . Let r and T denote the 

q 
families of tangent c i rc les at p and q, respectively. 

If t , u , v lie on A in that order , we may assign to 

C(t ,u, v) the orientation associated with the order of the points 
t , u , v on C( t ,u ,v ) . 
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Thus, the arc A induces a natural and continuous 

orientation on all the c i rc les which meet p KJA \J q three 

t imes (cf. [5], Section 3. 51). 

We may assume that A C ^(p)^. By considering the 

c i rc les C ( T : S ) and C(p, s ,q) , and letting s move from p 
to q on A , we readily verify that 

A , C C ( p ) * n C ( T ; q ) * n C ( p ; T ) * ^ C ( q ) * , 
3 q ' 

(1) 
C(T;q)*CC(p)* , and C(p;T ) * C C ( q ) * . 

Since C(p;T ) 4 C(T ;q), C(p;T ) in tersec ts C(T ;q) at 
q q 

p and q. Hence C(p;T ) also in te rsec ts C(p) at p and at 
q 

another point. Since C(T ;q) in tersec ts C(p;T ) at q, 
C(T ;q) also in tersec ts C(q) at q. Thus C ( T ;q) and C(q) 
in tersect at another point R. The points q and R decompose 
C(q) into two a r c s CT and C", such that C C C(p;T )^C\ C(T jq)^, 

while C" C C(p;T )^r\ C(T ;q)*. Since C(T jq)* C C(p)5|c, we 

obtain C C C(p)%. 

Suppose that C,f meets C(p); thus C!I mee ts 
C ( p ) n c ( p ; T ^ ) * . Then C" de composes the region 

% n C ( p ; T ^ O C ( T ; q ) * 

into three disjoint regions. Two of these lie in 

(2) c(PiT^nc(q)*nc(p), , 

and their boundaries have at most a single point in common 
which l ies in C(p). The region of (2) whose boundary includes 
an arc of C(T ;q) [C(p;T )] contains points of A close to 

q 3 
p [q]. But then the continuity of A and Relation (1) imply 
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that these two regions are connected. Hence C n C C(p)^., and 
the whole of C(q) =C f U Cn U { q , R } lies in C(p)#. 

Remark. The following alternative method of proving 
that C , f C C(p) ̂  is shorter and direct , but it requi res the full 
Jordan curve theorem. 

As above, C"CC(p ;T )^C\ C(T ;q)*. Since C(q) does 

not meet A , CH even lies in the region in C(p;T )^ bounded 

by A and C ( T ;q). Hence CM C C(p)#-

5. THEOREM 2. AU but a countable number of points 
of A a re strongly conformally differentiable; cf. [6]. 

Proof. Let p and q be the end-point s of A . We 

may assume that C(p) ^ p, and A Q C(p)#- By choosing a 

suitable co-ordinate system we may even assume that C(p) is 
a circle of a rea 1. 

Let s c A be a point at which A is not strongly 

conformally differentiable; then A does not satisfy Condition 

II at s; cf. 3, Corollary. Let C(s) and CT (s) be the one­
sided osculating c i rc les of A at s. We may assume that 

C( s)# C Cr (s)#« ^ e t ^(s) be the area between C(s) and Cf (s). 
By Theorem 1, the regions C ( s ) * 0 Cf (s)^ and C ( t ) * 0 CT (t)* 
a re disjoint if s ^ t, and they lie in CCp)^. 

Thus there are not more than 2 members in the c lass 
of points s for which 

l / 2 n - 1 > f(s) > l / 2 n (n = 1 , 2 , 3 , . . . ) . 

Since every point s € A with f(s) > 0 is included in 

exactly one of these c l a s se s , there is only a countable set of 
points s with f(s) > 0. 
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