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Abstract

The electron cryomicroscopy (cryo-EM) resolution revolution has shifted structural biology into
a new era, enabling the routine structure determination of macromolecular complexes at an
unprecedented rate. Building on this, electron cryotomography (cryo-ET) offers the potential to
visualise the native three-dimensional organisation of biological specimens, from cells to tissues
and even entire organisms. Despite this huge potential, the study of tissue-like multicellular
specimens via cryo-ET still presents numerous challenges, wherein many steps in the workflow
are being developed or in urgent need of improvement. In this review, we outline the latest
techniques currently utilised for in situ imaging of multicellular specimens, while clearly
enumerating their associated limitations. We consider every step in typical workflows employed
by various laboratories, including sample preparation, data collection and image analysis, to
highlight recent progress and showcase prominent success stories. By considering the entire
structural biology workflow for multicellular specimens, we identify which future exciting
developments in hardware and software could enable comprehensive in situ structural biology
investigations, bringing forth a new age of discovery in molecular structural and cell biology.
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Introduction

The electron cryomicroscopy (cryo-EM) resolution revolution launched structural biology into a
time of unprecedented discovery, making it possible to routinely solve structures of purified
macromolecular complexes at an astonishing rate (Henderson, 2004; Kühlbrandt, 2014; McCaff-
erty et al., 2024; Nogales & Scheres, 2015). This quantum leap has set the stage for another
advance where structural biology questions could be posed directly within the native, three-
dimensional (3D) environment of biological specimens that range from organelles to single cells,
up to tissues and whole organisms using electron cryotomography (cryo-ET) (Baumeister et al.,
1999; Frank, 1995; McCafferty et al., 2024; Nogales & Mahamid, 2024). Using cryo-ET, the
intricate cellular environment can now be visualised at the nanometre scale (Beck & Baumeister,
2016; Gan & Jensen, 2012).

In cryo-ET, a series of two-dimensional (2D) images of a vitrified biological sample is acquired
at various tilt angles, termed tilt-series. Images in such tilt-series are subsequently aligned and
computationally combined to produce a 3D reconstruction of the specimen, which is called a
tomogram (Baumeister, 2005; De Rosier & Klug, 1968; Hoppe, 1970, 1974). Each tomogram
holds within it a veritable treasure-trove of data, containing information about the molecular
composition of the specimen along with its ultrastructural arrangement (Melia & Bharat, 2018;
Singh et al., 2024; Xue et al., 2022; P. Zhang, 2019; Zimmerli et al., 2021).

While cryo-ET has been applied to a wide variety of specimens, there are still several
difficulties associated with investigating multicellular specimens with this technique. These
difficulties are specifically related to vitrification of thick specimens, sample thinning, as well
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as subsequent challenges in cryo-ET data acquisition and image
processing. These difficulties will be addressed in turn in this article,
along with some recent success stories and a balanced reflection on
the future applicability of cryo-ET for near-native imaging of
tissues.

Sample preparation methods

A requirement to visualise biological specimens using cryo-ET
(or cryo-EM) is that the specimen must be vitrified, meaning that
the aqueous environment of the specimen of interest should form
an amorphous, glass-like arrangement (Dubochet & McDowall,
1981; McDowall et al., 1983). Vitrification preserves the sample
in a near-native state, providing ideal conditions for imaging while
minimising radiation damage, with no artefacts in imaging caused
by crystalline ice, by avoiding electron diffraction from ice crystals
that corrupt the acquired data (Dubochet et al., 1988; Henderson,
1992). It is worth mentioning that while vitrification has been
deemed as a necessity for cryo-EM, recent work has demonstrated
reduction in beam inducedmotion and better reconstructions from
the initial frames of the movie acquisition in a specimen devitrified
in a controlled manner (Wieferig et al., 2021). Nonetheless, to
prepare a suitably vitrified sample, the specimen must be cooled
at a rate faster than the rate of crystalline ice formation (Dubochet
et al., 1988). While most biological specimens are present in an
aqueous solution, the peculiarities of each individual specimen
being studied in any particular experiment determines how, prac-
tically, vitrification is performed to ensure suitable preservation for
cryo-ET. Broadly, there are two major techniques that can be
utilised to produce a vitrified sample – plunge freezing for thin
specimens, up to ~10 μm in thickness (Fuest et al., 2019), and high-
pressure freezing (HPF) for thicker specimens. For both plunge
frozen and high-pressure frozen samples, the quality of vitrification
must be investigated experimentally (for instance, by using electron
diffraction), as this cannot be reliably assumed a priori, because
vitrification intimately depends on the chemical characteristics of
the sample.

Vitrification of thin samples

The conventional method of specimen vitrification for single-
particle cryo-EM is to plunge the specimen into a cryogen such
as liquid ethane (Bock & Grubmüller, 2022; Dubochet et al., 1988).
Liquid ethane at �180 °C can generate a cooling rate of 106 °C/s
(Dubochet et al., 1988), thereby allowing a layer of water, generally
thinner than 500 nm, to be rapidly vitrified in less than 100 μs,
before the volume of the water can expand and crystalline ice of any
form can manifest itself. During plunge freezing, the biological
sample is applied onto a cryo-EM grid (Schaffer et al., 2017),
followed by wicking the excess liquid off, to leave a thin film of
the specimen on the grid, which is then plunged into the cryogen.
Alternatively, cells may be grown directly on cryo-EM grids, often
after the grid is coated with polymers such as poly-L-lysine or
fibronectin that aid cellular adherence to the grid surface (Lam &
Villa, 2021; Mahamid et al., 2016; F. R. Wagner et al., 2020). Due to
the high heat capacity of the cryogen, the sample is cooled at a rapid
rate, leading to efficient vitrification (Dubochet & McDowall,
1981). Additionally, samples can also be vitrified using a cryogen
stream (Ravelli et al., 2020), dispensed onto a grid in minute
volumes and at rapid intervals designed principally for time sensi-
tive specimens (Dandey et al., 2020), or cryofixed during light-
microscope imagingusing a correlative light and electronmicroscope

(CLEM) fitted with a microfluidics device (Fuest et al., 2019). Even
more excitingly, protein samples can be passed through a mass
spectrometer in a gaseous state and deposited on a cryo-cooled grid
for cryo-EM, allowing an accurate characterisation of the applied
specimen prior to imaging (Esser et al., 2024). These approaches offer
a lot of flexibility in the sample preparation of biological material.
However, for in situ imaging of cells and tissues, all the approaches
discussed thus far are limited to relatively thin specimens, because the
cooling rate drastically drops at locations away from the surface of the
specimen. The thickness limitation for vitrification at ambient
atmospheric pressure is around 10 μm, although it varies between
different biological specimens and can be slightly circumvented
by the addition of cryoprotectants (Bäuerlein et al., 2023; Berger,
Premaraj, et al., 2023; Fuest et al., 2019; Jentoft et al., 2023; F. R.
Wagner et al., 2020).

Vitrification of thick samples

An alternative to the approaches listed above for thin specimens is
available, termed high-pressure freezing (HPF), which was devel-
oped several decades ago (Moor & Riehle, 1968), and is particularly
suitable for thicker samples up to ~200 μm (Kelley et al., 2022;
Studer et al., 2008). During HPF, a pressure of ~2100 bar is applied
to biological specimens clasped between two metal planchettes
during freezing. As ice is less dense than water, the high pressure
hinders crystalline ice formation, thereby reducing the cooling rate
requirement for vitrification (Moor, 1987). To further prevent
crystalline ice from forming and improve vitrification, a cryopro-
tectant can be added to the sample such as glycerol (Dahl &
Staehelin, 1989), glycans (I. Y. Chang et al., 2021), polyvinyl com-
pounds (Weil et al., 2019) and 1-hexadecene (McDonald et al.,
2010). These cryoprotectants prevent the formation of crystalline
ice by increasing the global concentration of all solutes present in
the aqueous sample (Pegg, 2007). Another special cryoprotectant is
2-methylpentane, which can be sublimed from the vitrified speci-
men by heating to�150 °C, allowing additional advantages such as
post-addition of fiducials, as well as for exposing the surface top-
ography of specimens to reduce the volume that needs to be
removed in the downstream thinning step (Harapin et al., 2015;
S. Wang et al., 2023).

Another route to accessing thicker volumes is to use the
so-called waffle method (Figure 1a) following earlier reports of a
similar nature (Weiner et al., 2013), where a grid is sandwiched
between two planchettes and high-pressure frozen using the grid
bars as a spacer (Kelley et al., 2022). This approach is designed to
accommodate various samples at a thickness compatible with
maximal reasonable gallium milling depth, which is ~50 μm
(Schaffer et al., 2019). This approach is applicable to cellular or
multicellular samples, sometimes made possible by concentrating
the cells (by skipping blotting), thus circumventing preferred orien-
tation of the cells, and could be useful for purified particles as well
(Kelley et al., 2022).

Yet even HPF is limited by the sample thickness and is typically
useful only up to 100–200 μm (Kelley et al., 2022; Studer et al.,
2008). Accessing thick tissues is currently made possible by initial
mechanical sectioning using a vibratome prior to vitrification.
Typically, the sample is immersed in buffer or embedded in agar,
then sliced using a blade and placed on a grid for HPF (Creekmore
et al., 2024; Matsui et al., 2024; J. Zhang et al., 2021). However, this
step prolongs the period between sample isolation and freezing and
can introduce cutting artefacts at the surface of the sample, which
could hinder the preservation of the native, physiologically relevant
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state of interest. Thus, at the sample preparation stage, there is an
urgent need to develop novel techniques for obtaining vitrified
samples of much larger volumes, in particular when aiming to
image entire tissues and organisms (Baumeister, 2005; Hutchings
& Zanetti, 2018).

Thinning procedures

For cryo-ET data acquisition, since the electrons must be transmit-
ted through the biological specimen, to be able to contribute to
image formation at the detector, the mean free path of electrons, or
removal of inelastically scattered electrons by an energy filter, limits
specimen thickness usable for cryo-ET. This thickness limit has
been estimated by different studies that reported slightly different
values, with some studies reporting this limit to be as low as 300 nm,
because the effective thickness of the specimen increases signifi-
cantly at high tilt angles during cryo-ET data acquisition, and the
signal-to-noise ratio is thus greatly diminished (Petrov et al., 2022).
Even for a 200 nm-thick specimen, it has been reported that the
total transmitted electrons are roughly half of the illuminated dose,
as they interact with the sample resulting in decoherence and
energy loss (Elbaum, 2018). As most cellular specimens, apart from
a few examples of smaller microbial cells (O’Reilly et al., 2020; von
Kügelgen et al., 2024), are usually thicker than 200–300 nm (Melia
& Bharat, 2018; Oikonomou et al., 2016), they must be thinned
before cryo-ET can be performed. Previously, sample thinning for
cryo-EM was only possible using cryo-ultramicrotomy, where a
diamond knife is used to produce thin sections of the specimen at
cryogenic temperatures. These sections are subsequently placed on
an EM grid for imaging (Al-Amoudi et al., 2004; Bharat et al., 2018;
Eltsov et al., 2018; Gilbert et al., 2024; Leistner et al., 2023; McDo-
wall et al., 1983). This method, termed cryo-electron microscopy of
vitrified sections (CEMOVIS), might lead to distortions in the
specimen including expansion and compression due to the mech-
anical action of the knife. Even though CEMOVIS can be used
successfully to study cellular and tissue samples in situ (Bharat et al.,
2018; Gilbert et al., 2024; Ma et al., 2022), practical application of
CEMOVIS tends to be quite tedious as the sample is prepared

manually with low throughput, with the skill of the experimentalist
critically determining the outcome of the procedure (Al-Amoudi
et al., 2005).

Thinning of thin(ner) specimens using ion beams

To bypass this limitation of CEMOVIS, focused-ion-beam milling
(FIB milling) was adapted from material sciences and applied to
biological specimens at cryogenic temperatures to obtain thin
samples amenable for cryo-ET with minimal artefacts (Marko
et al., 2006, 2007; Rigort, Bäuerlein, et al., 2012; Rigort, Villa,
et al., 2012). For a comprehensive overview of the technique, we
recommend other authoritative reviews (Noble & de Marco, 2024;
Rigort & Plitzko, 2015). In brief, a focused ion beam, such as one
containing galliummetal ions, is utilised to ablate biological mater-
ial and mill it down to a lamella with a final thickness of roughly
180–200 nm (Villa et al., 2013). Before milling, the vitrified speci-
men is typically coated with a layer of organometallic platinum
compound to protect the sample surface and to ensure that the
milling process results in a smooth lamella (Schaffer et al., 2017).
During milling, high gallium currents (500–1000 pA) are initially
used to remove bulkmaterials and expose the central segment of the
specimen containing the region of interest. As high currents can
introduce damage to the specimen, in subsequent steps, the ion
current is progressively reduced and the sample is gradually milled
and polished, resulting in a thin, uniform lamella that is amenable
for cryo-ET (Figure 1b; Rigort, Bäuerlein, et al., 2012; Schaffer et al.,
2017; F. R. Wagner et al., 2020). Recent studies aimed at character-
ising the extent of the radiation damage introduced to lamellae by
the ion beam estimated that the specimen up to 30–60 nm in depth
from the lamella surface is affected by milling with gallium ions
(Lucas & Grigorieff, 2023; Tuijtel et al., 2024). Moreover, the data
showed that lamellae thinner than 180 nm do not offer any signifi-
cant improvement in the resolution obtained after subtomogram
averaging, likely due to the radiation damage (Tuijtel et al., 2024).
This is especially noteworthy since many groups aim for lamella
thickness of 100–120 nm. In comparison, for cryo-EM SPA, the
ideal ice thickness has been proposed to be as small as 30 nm (Koeck

Figure 1.Overview of sample preparation byHPF and FIBmilling of cellular and tissue specimens. (a) Cartoon description of thewaffle assembly – the EMgrid is placed between two
planchettes and subsequently vitrified using HPF. Adapted from Kelley et al. (2022). Image is CC BY, license link: http://creativecommons.org/licenses/by/4.0/. (b) Schematic
showing the geometry of the focused ion beam, SEM and the grid containing the sample (top). SEM image of a plunge-frozen sample with the milling direction marked, and
myofibrils aremarkedwith red arrows (bottom left). Polished lamella images, top-view imagedwith the SEM, and side-view imagedwith the FIB (bottom right). Bottom left scale bar
50 µm; Bottom right panel 5 µm. Adapted from Z. Wang et al. (2021). (c) Serial lift-out workflow: After the region of interest was identified using fluorescent labelling (green), the
micromanipulator wasmounted, and the areawasmilled in preparation for lift-out (top left). The slab removed in the previous step is positioned for subsequent thinning (top right).
Overview of themilled sections prior to cryo-ET data collection (bottom). Adapted from Schiøtz et al. (2023). Image is CC BY, license link: http://creativecommons.org/licenses/by/4.
0/.
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&Karshikoff, 2015), although 3Å resolution could be achievedwith
ice as thick as 200 nm (Neselu et al., 2023).

Thinning of thick specimens using FIB milling

FIBmilling using gallium beams is widespread, allowing the precise
generation of lamellae. The drawback is that gallium thinning is a
relatively slow process, since high currents are not achievable with
the available hardware configurations of the liquid metal ion
sources (Burnett et al., 2016). As a result, milling specimens thicker
than 50 μm is challenging. The solution is to employ different
milling strategies, use more powerful beams, or a combination of
both, which will be discussed in this section. To access regions far
from the tissue surface for structural studies using cryo-ET, a
method termed lift-out has been developed (Mahamid et al.,
2015; Rubino et al., 2012; Schaffer et al., 2019). Classical FIB-
milling requires the removal of most of the material around the
region-of-interest. Lift-out employs a micromanipulator with a
needle or gripper at its tip to lift-out a slab that is cut off the
specimen by FIB, thereby reducing the amount of material needed
to be removed, in order to access deep regions. This lift-out tech-
nique is becoming more widely applied, as it allows detailed inspec-
tion of complex 3D tissue or even whole organisms in their native
context. Recently, a serialised lift-out approach which produces
multiple lamellae within one lift-out process has been developed to
improve the throughput (Figure 1c; Gilbert et al., 2024; Klumpe
et al., 2022, 2023; Kuba et al., 2021; Nguyen et al., 2024; Plitzko et al.,
2022; Schiøtz et al., 2023; Zens et al., 2024).

An alternative to using a gallium ion beam is the use of various
gaseous ions produced from plasma (Berger, Dumoux, et al., 2023;
Zhong et al., 2021). Plasma sources can deliver higher currents
(Burnett et al., 2016; Gorelick &Marco, 2018; Lai et al., 2017), albeit
with reduced precision, which permit milling of larger volumes
when compared to liquid metal sources (Berger, Dumoux, et al.,
2023; Burnett et al., 2016; Chang et al., 2019; Dumoux et al., 2023;
Eder et al., 2021; Parkhurst et al., 2023). Thorough examination and
analysis are still required to elucidate the relative advantages of
using plasma sources over liquidmetal ion sources, andwhich gases
are optimal for use in the thinning and polishing steps of lamellae
preparation. Current data suggest beams using xenon plasma
sources can dispose of material at a faster rate than gallium beams,
suggesting that they could be useful during the roughmilling step of
large volumes, while argon produces lamellae at a high success rate
with relatively lower radiation damage (Berger, Dumoux, et al.,
2023; Berger et al., 2024; Burnett et al., 2016).When the specimen is
too thick to be thinned using FIB-milling (in the case of large organs
or organisms), performing a mechanical thinning step using a
vibratome and/or and an ultramicrotome presents an alternative
approach to obtain a sample amenable for downstream milling
(Creekmore et al., 2024; Iulianella, 2017; Matsui et al., 2024;
McCafferty et al., 2024; S. Wang et al., 2023; J. Zhang et al.,
2021). In the future ideally, larger areas of vitrified grids would be
thinned using ion beams, making entire tissues and organisms
amenable for cryo-ET data acquisition.

Various approaches in the field are currently aimed at turning
cryo-FIB milling into a fully automated process, rescinding the
need for high user proficiency, thus making it possible to generate
more than ~50 lamellae in a single session. Hardware improve-
ments such as the installation of cryo-shields, obtaining better
chamber vacuum systems and attempts to integrate the FIB plat-
form with TEMs to reduce contamination, all together improve the
stability of the lamellae produced and increase the throughput of

sample preparation for cryo-ET (Berger, Premaraj, et al., 2023;
Cleeve et al., 2023; Klumpe et al., 2021; Medeiros et al., 2018; Tacke
et al., 2021; Zachs et al., 2020). Future EM setups will likely include
all modules present in the same type of sample holder compatible
with cryo-FIB-SEM and TEM with the data collection software
keeping track of the grid locations throughout the process. This will
go a long way to making sample preparation and data collection
more efficient, less prone to human error and with reduced contam-
ination. Some modified setups are already available, such as the
additional accessory fluorescent light-microscopes (J. Yang et al.,
2023), and future setups may include mass spectrometers that could
assist in localised targeting andon-the-fly compositional analysis of the
specimen (Esser et al., 2024; Lindell et al., 2024; Passarelli et al., 2017).

Cryo-ET of thinned specimens

Once the multicellular specimen has been appropriately thinned, it
is ready for cryo-ET data collection for structural and cell biology.
One of the major factors limiting the throughput of cryo-ET is the
long acquisition time of tilt-series, compared to cryo-EM single
particle analysis (Böhning & Bharat, 2021). Different data collec-
tion schemes have sought to overcome this hurdle to support
widespread application of cryo-ET. One such approach accelerates
the speed of a single tilt-series acquisition by implementing a
continuous data collection (Chreifi et al., 2019, 2021; Eisenstein
et al., 2019). In this scheme, the specimen is exposed and tilted
continuously (in a single movement) without the need to track and
correct stage shifts, required in standard cryo-ET data collection
(Mastronarde, 2005). Abandoning these constant adjustments,
which require slowmechanical stagemovements in themicroscope,
increases the speed of tilt-series acquisition up to an order of
magnitude, but limits the overall quality of the reconstructed
tomograms since the tilt angle of each image must be estimated
experimentally (Chreifi et al., 2019). Other approaches aimed at
optimally imaging each square nanometre of the valuable milled
area of the specimen include the use of overlapping tiles that are
stitched together, thereby forming mosaic images that can eventu-
ally be merged and reconstructed as a highly detailed, large tomo-
graphic volume (Peck et al., 2022). Alternatively, the beam shape
could be changed to a square to maximise the collection area within
the lamella and permit data acquisition of neighbouring areas
without losing high-resolution features due to overlapping,
unnecessary exposure during data collection (Brown et al., 2024;
Chua et al., 2024).

Perhaps the most widely applicable acquisition strategy paralle-
lises cryo-ET data collection by defining a geometricmodel describ-
ing the lamella surface (or any specimen surface) relative to the tilt
axis. This geometric model helps in parallelised data collection by
utilising beam image shifts combined with a single tracking area,
hence allowing multiple tilt-series acquisition in a nearly simultan-
eous manner. This facilitates the collection of hundreds of tilt series
in a single session, substantially increasing throughput compared to
the traditional collection schemes (Bouvette et al., 2021; Eisenstein
et al., 2022; J. E. Yang et al., 2023). To overcome errors introduced
either by misaligned lamellae, specimen rotation caused by the
mechanical autoloader system, and inaccurate measurement of
the lamella’s eucentric position, the geometric model is used to
compensate for these errors and is updated throughout sample
tilting in the PACE-tomo (parallel cryo electron tomography)
workflow (Figure 2a; Eisenstein et al., 2022). To complement this
approach and introduce further automation, a machine learning
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model dubbed SPACE-tomo (smart parallel automated cryo elec-
tron tomography) was trained to facilitate unattended lamella
definition, identification and segmentation of regions of interest
within the lamella, and data acquisition set-up (Eisenstein et al.,
2023). As these methods become more widespread, we expect that
such unsupervised approaches will become an indispensable part of
the cryo-ET data collection pipelines.

While cryo-ET data collection has advanced significantly since
the advent of direct electron detectors, there is still room to sub-
stantially improve the quality of cryo-ET data, which will poten-
tially have a huge impact on reducing the amount of data needed to
solve structures inside cells and tissues. Lamella preparation
requires a lot of time and effort; therefore, it is imperative that
the cryo-ET data collected is of the highest possible quality (Ochner
& Bharat, 2023). From a hardware standpoint, the laser phase plate
is drawing significant attention and holds the potential to substan-
tially improve the signal-to-noise ratio in cryo-ET by modulating
the phase contrast difference between scattered and unscattered
electrons, during in-focus specimen imaging (Müller et al., 2010).
The unscattered electrons are focused and passed through an
electric field generated by an ultrafast continuous (Schwartz et al.,
2019) or pulsed (Du& Fitzpatrick, 2023) laser. The passage through
the field induces a phase shift caused by the ponderomotive force,
resulting in a phase difference (π/2 in the case for a quarter phase
plate), thus boosting contrast significantly even when the specimen
is in focus (Du & Fitzpatrick, 2023; Müller et al., 2010; Schwartz
et al., 2019). The phase contrast of the detected electrons results in
better image quality by converting the sine oscillation to cosine,
thus increasing the low-frequency signal, although CTF correction
is still required for both low and high resolution (Campbell et al.,
2018; Müller et al., 2010; Petrov et al., 2022; Schwartz et al., 2019).
The drawback of the current design was described as a resolution
loss due to magnetic field fluctuations caused by the laser pulses,
which are currently being investigated for future improvements
(Axelrod, Petrov, Zhang, Remis, et al., 2023; Axelrod, Petrov,
Zhang, Sandhaus, et al., 2023).

Subtomogram averaging structure determination

Once cryo-ET data on the multicellular specimen has been col-
lected, subtomogram averaging (STA) can be applied to obtain

structural information from the macromolecules present within
the specimen. Subtomogram averaging approaches have been
described in other reviews focused on this method (Briggs, 2013;
Lučić et al., 2013); therefore, it is only considered here briefly for
completeness. Following tilt-series acquisition, tomograms can be
reconstructed in a variety of software (Kremer et al., 1996; Zheng
et al., 2022) using a variety of pipelines (Burt et al., 2024; Himes &
Zhang, 2018; H. F. Liu et al., 2023). Next, typically tomographic
volumes are denoised to improve contrast (Buchholz et al., 2018;
Y. T. Liu et al., 2022), after which researchers can use a variety of
tools for manual picking, template matching or other feature
identification tasks (Chaillet et al., 2024; Cruz-León et al., 2024;
de Teresa-Trueba et al., 2023; Lucas et al., 2023; Moebel et al., 2021;
Rice et al., 2023; T. Wagner et al., 2019, 2020; Wan et al., 2024).
These subtomogram selection tasks can be followed by classifica-
tion and subtomogram averaging (Burt et al., 2024; M. Chen et al.,
2019; Förster et al., 2005; H. F. Liu et al., 2023; Tegunov et al., 2021).
Subtomogram averaging allows structure determination of macro-
molecules in their native environment (Figure 2b-c; Allegretti et al.,
2020; S. Chen et al., 2024; Z. Chen et al., 2023; Fedry et al., 2024;
Gemmer et al., 2023; Q. Guo et al., 2018; Held et al., 2024; Hoff-
mann et al., 2022; Hutchings et al., 2018; Kravčenko et al., 2024;
Leung et al., 2023;Mattei et al., 2016; Ni et al., 2022; Obr et al., 2024;
Pyle et al., 2024; Santos et al., 2024; Schur et al., 2016; Tamborrini et
al., 2023; Turoňová et al., 2020; von Kügelgen et al., 2020, 2024;
J. Wagner et al., 2024; Waltz et al., 2024; Z. Wang et al., 2021, 2022;
Watanabe et al., 2020, 2024;Wozny et al., 2023; Xue et al., 2022; You
et al., 2023; X. Zhang et al., 2023; Zimmerli et al., 2021), using image
processing algorithms that support high-resolution structure deter-
mination (Bharat et al., 2015; Burt et al., 2024; Tegunov et al., 2021;
Zivanov et al., 2022). The resulting structures provide valuable
insights on the mode of action of macromolecules in tissues, along
with their interactions with drugs, ligands, or accessory molecules
in situ. These interactions are often transient or disrupted by
protein purification techniques and thus cannot be easily reconsti-
tuted and visualised in vitro.

Several modern studies not only report the cellular structures of
macromolecules by STA but also map the resulting structures back
into the original tomogram, providing additional ultrastructural
information of the tissue. With this in mind, we must note that a
thinned sample is taken out of the cellular or tissue context, because

Figure 2.Cryo-ET data collection and high resolution subtomogramaveraged structures. (a) FIB-milled lamellawith defined regions for parallel cryo-ET data acquisition using beam
image shifts. The tilt axis is marked with a dashed line. Adapted from Eisenstein et al. (2022). Reproduced with permission from SNCSC. (b) Slice through a tomogram of an entire
microbial cell where ribosomes, nucleoid and the surface layer (S-layer) encapsulating the cell are all visible. Inset - the subtomogram averagedmap of the S-layer, scale bar 50 nm.
Adapted from von Kügelgen et al. (2024). Image is CC BY, license link: http://creativecommons.org/licenses/by/4.0/. (c) Slice through a tomogram of the sarcomere thin and thick
filaments along with the subtomogram averaged map of the thin filament with a bound myosin. Scale bar 20 nm. Adapted from Z. Wang et al. (2022). Reprinted with permission
from AAAS.
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once thinned, it represents only a small slice from the initial intact
specimen. We anticipate that in the next few years, more molecular
structures will be characterised using a workflow combining cryo-
FIB-SEM, cryo-ET, predictive algorithms (Jumper et al., 2021) and
cellular transcriptomics and proteomics approaches (Baumeister,
2005; McCafferty et al., 2024).

Complementary techniques for 3D in situ imaging

Cryo-ET providesmolecular resolution in a limited sample volume,
due to the requirement of thinning tissue specimens. This limita-
tion can be partially alleviated by montage tomography (Peck et al.,
2022; J. E. Yang et al., 2023), which expands the field-of-view in the
“X-Y” dimension, and by serial lift-out approaches, which increases
depth through fabrication ofmultiple lamellae from the same tissue
(Nguyen et al., 2024; Schiøtz et al., 2023). However, this loss of
sample volume due to thinning is to an extent unavoidable in cryo-
ET. To circumvent this issue, there are other in situ imaging
techniques that provide an alternative option for imaging bulk
volumes such as 3D FIB-SEM imaging (also termed serial surface
imaging or “slice-and-view”), where a layer of biological material is
removed using the FIB followed by imaging of the exposed surface
using the SEM. By iterating the FIB-SEM process, a 3D volume can
be generated with a nearly isotropic resolution of a few nanometres.
This technique is extremely useful for cell biological investigations
inside tissues, because it provides a large field-of-view, and depth
information through the “Z”-axis of the tissue (Elbaum, 2018). This
serial FIB-SEM technique had previously been widely applied for
room temperature specimens that were chemically fixed (Denk &
Horstmann, 2004; D’Imprima et al., 2023; Heymann et al., 2006; Xu
et al., 2017, 2021) and has been recently expanded to cryogenic
temperature applications (Capua-Shenkar et al., 2022; Scher et al.,
2021; Schertel et al., 2013; Sviben et al., 2016; Vidavsky et al.,
2015, 2016). Despite the large potential applications, several chal-
lenges remain in the pipeline for imaging cryogenic, unstained
biological specimen, such as problems with automatic focusing,
automatic astigmatism and drift correction on these radiation
sensitive samples that are imaged for several hours, and sometimes
several days. Moreover, interpretation of the resulting images
remains complex due to the incompletely understood mechanisms
of contrast formation of cryogenic, unstained biological specimens.
While the contrast is suggested to arise from differential surface
potential and local charging, additional factors may also contribute
(Schertel et al., 2013; Vidavsky et al., 2016). With the growing
attention on cryo-FIB-ET, the 3D FIB-SEM technique is expected
to become more widely accessible, as it can be performed using the
same instrumentation available in many laboratories for lamella
production. Widespread application will likely require theoretical
developments in understanding image formation, and in the devel-
opment of streamlined strategies for data analysis. We hope further
software and hardware advancements will address the current
challenges, for example by reducing the ion beam size to allow finer
slicing of the sample, as well as improved SEM detectors that can
decrease the dwell time and allow faster imaging.

In the same vein as FIB-SEM imaging, another alternative
method to investigate whole cells or tissues in 3D is cryo-scanning
transmission electron microscopy (STEM), which uses a focused
electron beam probe rather than flood beam used in TEM appli-
cations (Jones & Leonard, 1978; Kellenberger et al., 1986). Cryo-
STEM allows scanning over the sample in a tiled manner using
multiple detectors that collect information for both transmitted and

scattered electrons (Elbaum et al., 2021; Wolf & Elbaum, 2019).
While samples up to 2 μm in thickness can potentially be imaged
using cryo-STEM, in practice to obtain data with a good contrast
and a reasonable pixel size, the effective specimen thickness is
usually less than 1 μm (Kirchweger et al., 2023; Wolf et al., 2014).
Cryo-STEM has been successfully utilised to visualise whole cells
(Wolf et al., 2014), organelles containing granular calcium struc-
tures (Kirchweger et al., 2023; Wolf et al., 2017), single particle
reconstructions at sub-nanometre resolutions of purified proteins
and virus particles (Lazić et al., 2022), as well as metal ion com-
position and localisation in purified proteins (Elad et al., 2017).
Cryo-STEM is therefore a complementary technique for cellular
imaging, providing another arrow in the quiver of the in situ
structural cell biologist.

Another cryo-tomography technique which has been recently
used to investigate large cells and tissues, albeit at lower resolution,
is cryo-soft X-ray tomography (cryo-SXT), which can provide
information through specimens that are several microns thick
(Larabell & Le Gros, 2004; Weiß et al., 2000). In cryo-SXT, contrast
is naturally generated by the difference in the K-shell absorption of
soft X-rays between carbon (or nitrogen) and oxygen in wave-
lengths ranging between 2.34–4.4 nm (Larabell & Nugent, 2010).
Imaging in this spectral range, also termed the ‘water window’,
causes organic material, which is abundantly present in cells and
organelles to absorb the X-rays, while water and other oxygen rich
compounds are effectively transparent (Carzaniga et al., 2014;
Larabell & Le Gros, 2004). Cryo-SXT offers not only a large depth
of field, which can reach 10–15 μm (Carzaniga et al., 2014; J. Guo &
Larabell, 2019; Uchida et al., 2009), but also a large field of view
together with fast data acquisition times, where unstained and
unmodified cells nearly 50μmin length canbe imaged in 20minutes
with a resolution of about 50 nm (Larabell & Nugent, 2010; Uchida
et al., 2009). This is much faster when compared to 3D FIB-SEM or
cryo-STEMwhich take several hours or days to collect a dataset of a
similar scale. Recent advancements in cryo-SXT include improve-
ment of data collection schemes to increase the depth of field (Otón
et al., 2017); however, the most substantial is the transition from
synchrotron-based microscopes into compact, standalone
machines which can be operated in a typical laboratory (Fahy
et al., 2021, 2024), which is expected to make this method available
to a wider community.

Conclusions and outlook

In conclusion, we have reviewed recent advances pertaining to
sample preparation, thinning strategies and cryo-ET data collection
schemes, which are currently being used to investigate multicellular
specimens and tissues in situ. From the sample preparation per-
spective, there is currently no method that can allow a reliable
vitrification of specimens thicker than 100–200 μm, meaning that
most tissues are currently not directly amenable for imaging by
cryo-ET, and innovation in this aspect is urgently needed. This
could be achieved by repurposing HPF to accommodate thicker
specimens, or by devising alternative techniques for sample prep-
aration. While metal ion beam sources have been used extensively
in materials sciences as well as for biological cryo-FIB sample
thinning, they are still limited by a low rate of material removal
and hence prevent easy access to thicker tissue samples. Investigat-
ing different focused ion beams is required to allow faster andmore
reliable milling, ideally with the potential to reduce the damage the
sample undergoes during thinning. As automation and increased
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throughput are introduced to the FIBmilling process, cryo-ET data
collection must also improve to allow tomogram acquisition from
multiple lamellae across multiple grids. Beam-shift collection
schemes could greatly increase the rate of data collection without
compromising data quality, but there is room for improvement in
making this available for all sorts of applications. To tackle the
densely packed cellular environment, and increase the overall
contrast of tomograms, the laser phase plate is expected to push
the limits of macromolecular identification in tomograms. These
and other approaches might help generate higher-resolution
tomograms, where sub-nanometre-level details could be resolved
and inferred directly from the reconstructed tomogram, without
the need for subtomogram averaging. We envision that future
cryo-EM instruments will include a combination of multimodal
components such as cryo-FIB-SEM, light microscopy objectives
and mass spectrometers, that will complement TEM data acqui-
sition, with cryo-ET as the central method of choice linking
information from these diverse sources together to help uncover
new biological mechanisms.
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